MATH 4033 • Spring 2021 • Calculus on Manifolds Problem Set \#4 • de Rham Cohomology • Due Date: Optional

1. The purpose of this exercise is to prove that $H^{2}\left(\mathbb{R}^{3}\right)=0$, i.e. every closed 2-form on \mathbb{R}^{3} must be exact. Consider a closed form:

$$
\omega=A d y \wedge d z+B d z \wedge d x+C d x \wedge d y
$$

where A, B and C are smooth scalar functions of (x, y, z). Define the following 1-form:

$$
\begin{aligned}
\alpha:= & \left(\int_{0}^{1} A(t x, t y, t z) t d t\right)(y d z-z d y) \\
& +\left(\int_{0}^{1} B(t x, t y, t z) t d t\right)(z d x-x d z) \\
& +\left(\int_{0}^{1} C(t x, t y, t z) t d t\right)(x d y-y d x)
\end{aligned}
$$

First, compute $d \alpha$; then use the result to show that ω is exact.
2. Consider the following alphabet. Each letter is regarded as a solid region.

Answer the following without justification:
(a) Which letter(s) is/are contractible?
(b) Which letter(s) is/are star-shaped?
(c) Which letter(s) has/have non-zero 1st Betti number b_{1} ?
3. Prove the following statements about deformation retracts by explicitly constructing Ψ_{t}.
(a) Show that the Möbius strip Σ defined in Example 4.11 deformation retracts onto a circle. [Hence, $H_{\mathrm{dR}}^{1}(\Sigma)=H_{\mathrm{dR}}^{1}\left(\mathbb{S}^{1}\right)=\mathbb{R}$.]
(b) The zero section Σ_{0} of the tangent bundle $T M$ of a smooth manifold M is defined to be:

$$
\Sigma_{0}:=\left\{\left(p, 0_{p}\right) \in p \times T_{p} M: p \in M\right\}
$$

where 0_{p} is the zero vector in $T_{p} M$. Show that Σ_{0} is a deformation retract of $T M$. [Hence, $H_{\mathrm{dR}}^{*}(T M)=H_{\mathrm{dR}}^{*}\left(\Sigma_{0}\right)=H_{\mathrm{dR}}^{*}(M)$.]

In the following problems, you may assume the Poincare's Lemma and Deformation Retract Invariance hold on any H^{k}. Also, we may use the following fact without proof:

On a compact, connected orientable manifold M without boundary, then:

- $\operatorname{dim} H^{n}(M)=1$ where $n=\operatorname{dim} M$
- $H^{n}(M \backslash\{p\})=0$ for any $p \in M$.

4. Let \mathbb{T}^{2} be the 2 -dimensional torus. Show that $b_{1}\left(\mathbb{T}^{2}\right)=2$.
5. Given two compact smooth 2-manifolds A and B without boundary, its connected sum $A \# B$ is a 2 -manifold obtained by removing an open ball in each of A and B, and then gluing them along the two boundary circles:

(a) Show that $A \# B$ is orientable if both A and B are so. [Hint: use partitions of unity to construct a global non-vanishing 2 -form.]
(b) Using Mayer-Vietoris sequence, show that $b_{1}(A \# B)=b_{1}(A)+b_{1}(B)$.
6. (∞ points (bonus)) Prove or disprove: "Every Hodge cohomology class of a non-singular complex projective manifold $X \subset \mathbb{C P}^{N}$ is a linear combination with rational coefficients of the cohomology classes of complex subvarieties of X."

End of all MATH 4033 homework.

