Ss - de Ram cohomology

$$
\begin{gathered}
\beta=d \alpha \quad \Rightarrow d \beta=d(d \alpha)=0 . \\
\text { (exact } \Rightarrow \text { closed) }
\end{gathered}
$$

closed \neq exact
"How many" closed furs ane not exact?
eff. $M=\mathbb{R}^{2} \backslash\{(0.0)\}$.

$$
\begin{aligned}
\alpha & :=-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y \quad \text { (defined an } M \text {) } \\
d \alpha & =0 \text { (exercise) } \\
c: C & \rightarrow M \\
\int_{C} v^{*} d & =\int_{C}-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y \\
& =\int_{0}^{2 \pi}-\frac{\sin t}{1} d(\cos t)+\frac{\cot t}{1} d(\sin t)(x, y)=(\cos t, \sin t) \\
& =2 \pi .
\end{aligned}
$$

(If) $\frac{\alpha=d f \text {, then } i^{*} \alpha=c^{*} d f=d\left(\tilde{t}^{*} f\right)}{\left(t_{0}\right)}$

$$
\int_{c} i^{*} \alpha=\int_{c} d\left(i^{*} f\right)=\int_{\partial C} c^{*} f=0
$$

Contradiction!
$\therefore \alpha$ is not exact.

Higher dinensim:

$$
\begin{aligned}
& M=\mathbb{R}^{n+1} \mid\{\overrightarrow{0}\} . \quad \vec{x}=\left(x_{1}, \ldots, x_{n+1}\right) \\
& \alpha:=\sum_{j=1}^{n+1}(-1)^{j} \frac{x_{j}}{|\bar{x}|^{?}} d x^{\hat{x}} \cdots \ldots \hat{d x} \text { a ..ndx } \\
& n \text {-frum. }
\end{aligned}
$$

tere Cheot $\quad d \alpha=0$.
bVt not exout

If $d \alpha=0$. but α is not exact. then $\alpha+d \beta$ is anction such example.

$$
d(d+d \beta)=d a+d^{2} \beta=0
$$

Cd is ancther such example.
\uparrow
coustar

$$
\begin{aligned}
\operatorname{per}\left(d: \Lambda^{k} T^{*} M \rightarrow \Lambda^{k+1} T^{*} M\right)= & \left\{\alpha \in \Lambda^{k} \tau^{*} M: \quad d \alpha=0\right\} . \\
= & \text { set of all doed } \\
& t \text {-fowms om } M
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Im}\left(d: \Lambda^{k-1} T^{\top} M \rightarrow \lambda^{k} \tau^{\prime} M\right) & =\left\{d \beta: \beta \in \Lambda^{k-1} \hat{T}^{x} M\right\} \\
& =\text { set of all exact } \\
& \text { f-farms in } M .
\end{aligned}
$$

$$
\underbrace{H_{d R}^{k}(M)}_{T}:=\frac{\operatorname{Ker}\left(d: \Lambda^{k} T^{*} M \rightarrow \lambda^{k+1} T^{*} M\right)}{I_{m}\left(d: \Lambda^{k-1} T^{*} M \rightarrow \Lambda^{k} T^{*} M\right)}
$$

kath de Rham cohomology goup of M.

$$
\begin{aligned}
& {[\omega] \in H_{4 p}^{*}(M)} \\
& \{\omega k \text { fam an } M \\
& d \omega=0
\end{aligned} \quad[\omega]=[\omega+d \beta] .
$$

Theorer If M and N are diffeomathic, then $H_{d R}^{h}(M)$ and $H_{d R}^{*}(N)$ are isomomphic (as vocter speces).
Prow: Let $\Phi: M \rightarrow N$ be a diffecomphism.

$$
\begin{aligned}
& \Phi^{*}: \Lambda^{*} T^{*} N \rightarrow \Lambda^{k} T^{*} M . \\
& \widetilde{\Phi}^{k}: H_{d R}^{k}(N) \rightarrow H_{d R}^{k}(M)
\end{aligned}
$$

Post: $d \omega=0 \Rightarrow d\left(\mathbb{S}^{*} \omega\right)=\underline{\Phi}^{*}(d \omega)=\Phi^{*}(0)=0$.

$$
\therefore \tau_{\text {clond }}
$$

If $[\omega]=\left[\omega^{\prime}\right], \omega-\omega^{\prime}=d \beta$

$$
\Phi^{*} \omega-\bar{\Sigma}^{*} \omega^{\prime}=\Phi^{*}(\alpha \beta)=d\left(\Phi^{*} \beta\right) .
$$

$$
\Rightarrow\left[\Sigma^{*} \omega\right]=\left[\delta^{*} \omega^{\prime}\right] \text { in } H_{d p}^{k}(M) \text {. }
$$

$$
\begin{aligned}
& \widetilde{\left(G^{-}\right)^{*}}: \\
& : H_{d R}^{k}(M) \rightarrow H_{d R}^{k}(N) \\
& \left(\Phi^{-1}\right)^{*}([\eta\})=\left[\left(\Phi^{-}\right)^{*} \eta\right] .
\end{aligned}
$$

$$
\begin{aligned}
& =[\underbrace{\left.\S^{*}\left(\Phi^{-1}\right)^{*} \eta\right]} \\
& =[\underbrace{\left(\delta_{i-1}^{-1}\right)^{*} \eta}_{\text {id }}]=[\eta] \text {. }
\end{aligned}
$$

Similarly: $\left(\widetilde{5^{-1}}\right)^{*} \cdot \widehat{Q^{x}}([w])=[\omega]$.
$\therefore \bar{\Phi}^{*}: H_{\alpha p}^{k}(N) \rightarrow H_{\alpha \psi}^{k}(M)$ is an isomosphim.
Notation:

$$
z^{z}([\omega])=\left[\pi^{x} \times\right]
$$

Poincaré Lemma.
If $u \subset \mathbb{R}^{n}$ star-shaped.

$$
\text { then } H_{d R}^{k}(x)=0 \quad \forall k \geq 1
$$

Paof $1 \operatorname{cose}$ k=1
want: any clored 1 t-fam on u is exaed 1.!
let ω be a claxd 1 -from on u.
Guess: $f(x)=\int_{L_{\bar{x}}} t^{*} \omega$

$$
L_{p}, \vec{x} \in u
$$

$$
\overrightarrow{p_{f}}(t)=(1-t) \vec{p}+t \vec{x}, \quad 0 \leq t \leq 1
$$

$$
\vec{V}=\begin{gathered}
\nabla f \\
\uparrow \\
\text { potantial } \\
\text { funcition. }
\end{gathered}
$$

$$
\text { let } \omega=\sum_{i=1}^{n} \omega_{i}(\bar{x}) d x^{i} \text {, }
$$

$$
f(x)=\int_{L_{i}} \omega^{*} \omega=\int_{t=0}^{t=1} \sum_{i} \omega_{i}\left(r_{x}(s)\right) \cdot\left(x_{i}-p_{i}\right) d t
$$

$$
\begin{aligned}
c^{x} d x^{i} & =d\left((1-0) p_{i}+t x_{i}\right) \\
& =\left(x_{i}-p_{i}\right) d t
\end{aligned}
$$

$$
\begin{align*}
& \frac{\partial f}{\partial x_{i}}=\int_{t=0}^{t=1} \frac{\partial}{\partial x_{i}} \sum_{j=1}^{n} \omega_{j}\left(\vec{r}_{i}(t)\right) \cdot\left(x_{j}-p_{j}\right) d t \\
& =\sum_{j=1}^{n} \int_{t=0}^{t=1} \frac{\partial}{\partial x_{i}} \omega_{j}\left(r_{,}(\Omega)\right) \cdot\left(t_{j}-P_{j}\right)+\omega_{j}\left(\vec{r}_{k}(t)\right) \cdot \delta_{i j} d t \\
& =\sum_{j=1}^{n} \int_{t=0}^{t=1} \frac{\partial \omega_{j}}{\partial x_{i}} t \cdot\left(x_{j}-p_{j}\right)+\omega_{j}\left(\vec{r}_{i}(\omega)\right) \delta_{i j} \cdot d t \\
& =\int_{t=0}^{t=1} \sum_{j=1}^{n} \frac{\partial \omega_{j}}{\partial x_{i}} t\left(x_{j}-p_{j}\right)+\omega_{i}\left(p_{i}, 0\right) d t \\
& =\int_{t=0}^{t=1} \underbrace{\sum_{i=1}^{n} \frac{\partial \omega_{i}}{\partial x_{j}} t\left(x_{j}-P_{f}\right)}+\omega_{i}\left(F_{r}(t)\right) d t \\
& =\int_{0}^{1} t \frac{\partial}{\partial t} \omega_{i}\left(F_{x}(\omega)\right)+\omega_{i}\left(\vec{r}_{k}(t)\right) d t \\
& \text { (c) } x \text { of } x
\end{align*}
$$

$$
\begin{aligned}
& =\int_{0}^{1} \frac{\partial}{\partial t}\left(t \omega_{i}\left(\vec{r}_{x}(r)\right)\right) d t \quad \frac{\partial}{\partial t} \omega_{i}\left(\vec{r}_{x}(s)\right) \\
& =\left[t \omega_{i}\left(\vec{r}_{x}(\Omega)\right]_{0}^{1}=\sum_{j=1}^{n} \frac{\partial \omega_{i}}{\partial x_{j}}\left(x_{j}-p_{j}\right)\right. \\
& =\omega_{i}\left(\vec{r}_{x}(\mu)\right)-0 . \\
& =\omega_{i}(\vec{x}) . \\
& \therefore d f=\omega
\end{aligned}
$$

$U \subset \mathbb{R}^{2}$ is simply-comectrd $\left(u \neq \mathbb{R}^{2}\right)$
$\xrightarrow{R M T} U$ diffeomplic to $(\underset{=}{c}$
differ. inv.
r会妾, stor-staped.
\therefore All dosed (-funs ar u are eract.
\therefore All orl-zero vectur field an U are cousemative.

$$
\begin{aligned}
& H_{A R}^{\prime}\left(R^{2} \backslash(0 \cdot 3) \neq 0 .\right. \\
& \underbrace{\left[-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y\right]}_{\in H_{A P^{\prime}}\left(R^{2} \backslash(803) .\right.}+[0]
\end{aligned}
$$

$\therefore \mathbb{R}^{2} \backslash\{0\}$ is not diffeomemphic to ony stow-shaped open set in R^{2}.

