MATH 4033 • Spring 2021 • Calculus on Manifolds

 Problem Set \#3 • Stokes' Theorem • Due Date: 16/05/2019, 11:59PM1. (15 points) (a) Show that any complex manifold is orientable. [Note: The way I computed the determinant of a block matrix in class was not generally correct. Try to fix it.]
(b) Show that any symplectic manifold is orientable. A manifold M is said to be symplectic if there exists a closed 2-form ω on M such that whenever X is a tangent vector such that $i_{X} \omega=0$, then $X=0$.
(c) Let $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be a C^{∞} function such that $f^{-1}(0) \neq \emptyset$, and $\nabla f(p) \neq 0$ for any $p \in f^{-1}(0)$. Show that $\Sigma:=f^{-1}(0)$ is orientable.
2. (10 points) Let Ω be a non-vanishing n-form on a manifold M without boundary (hence M is orientable). Show, from the definition of integral on n-forms, that $\int_{M} \Omega \neq 0$. Hence, show that $H_{\mathrm{dR}}^{n}(M) \neq 0$.
3. (10 points) Let Σ^{n} be an orientable regular hypersurface in \mathbb{R}^{n+1}, and Ω be a $(n+1)$ dimensional submanifold in \mathbb{R}^{n+1} such that $\partial \Omega=\Sigma$. Let μ be the n-form on Σ defined as in Q3 of the midterm this year. Using the results proved in the midterm and the generalized Stokes' Theorem, prove that for any C^{∞} vector field Y on \mathbb{R}^{n+1}, we have

$$
\int_{\Omega} \nabla \cdot Y d V=\int_{\Sigma}(Y \cdot \nu) \mu
$$

where $d V=d x^{1} \cdots d x^{n+1}$, and ν is the outward-pointing unit normal vector to Σ.
4. (20 points) Consider the following torus \mathbb{T}^{2} in \mathbb{R}^{4} :

$$
\mathbb{T}^{2}:=\left\{(x, y, z, w) \in \mathbb{R}^{4}: x^{2}+y^{2}=1 \quad \text { and } \quad z^{2}+w^{2}=1\right\},
$$

which can be locally parametrized by $F:(0,2 \pi) \times(0,2 \pi) \rightarrow \mathbb{T}^{2}$:

$$
F\left(\theta_{1}, \theta_{2}\right)=\left(\cos \theta_{1}, \sin \theta_{1}, \cos \theta_{2}, \sin \theta_{2}\right)
$$

Denote $\iota: \mathbb{T}^{2} \rightarrow \mathbb{R}^{4}$ to be the inclusion map. Consider the following 1-form on \mathbb{T}^{2} :

$$
\sigma:=\iota^{*}\left(y^{3} d x-\left(x^{3}-3 x\right) d y+\left(w^{3}-3 w\right) d z-z^{3} d w\right) .
$$

(a) Show that σ is closed.
(b) Let \mathbb{S}^{1} be the unit circle in \mathbb{R}^{2} parametrized by $G(t)=(\cos t, \sin t)$. Consider the map $\Phi: \mathbb{S}^{1} \rightarrow \mathbb{T}^{2}$ given by:

$$
\underbrace{(p, q)}_{\text {coordinates in } \mathbb{R}^{2}} \mapsto \underbrace{(p, q,(p-q) / \sqrt{2},(p+q) / \sqrt{2})}_{\text {coordinates in } \mathbb{R}^{4}} \text {. }
$$

Express $\Phi^{*} \sigma$ in terms of $d t$.
(c) Using (b), show that σ is not exact.
5. (20 points) Let ω be the n-form on $\mathbb{R}^{n+1} \backslash\{0\}$ defined by:

$$
\omega=\frac{1}{|x|^{n+1}} \sum_{i=1}^{n+1}(-1)^{i-1} x_{i} d x^{1} \wedge \cdots \wedge d x^{i-1} \wedge d x^{i+1} \wedge \cdots \wedge d x^{n+1}
$$

where $x=\left(x_{1}, \ldots, x_{n+1}\right)$ and $|x|=\sqrt{x_{1}^{2}+\cdots+x_{n+1}^{2}}$. Denote by \mathbb{S}^{n} the unit n-sphere centered at 0 .
(a) Let $\iota: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n+1}$ be the inclusion map. Show that $\int_{\mathbb{S}^{n}} \iota^{*} \omega \neq 0$.
(b) Hence, show that ω is closed but is not exact on $\mathbb{R}^{n+1} \backslash\{0\}$.

