MATH 4033 • Spring 2021 • Calculus on Manifolds Problem Set #3 • Stokes' Theorem • Due Date: 16/05/2019, 11:59PM

- 1. (15 points) (a) Show that any complex manifold is orientable. [Note: The way I computed the determinant of a block matrix in class was not generally correct. Try to fix it.]
 - (b) Show that any symplectic manifold is orientable. A manifold M is said to be symplectic if there exists a closed 2-form ω on M such that whenever X is a tangent vector such that $i_X \omega = 0$, then X = 0.
 - (c) Let $f : \mathbb{R}^{n+1} \to \mathbb{R}$ be a C^{∞} function such that $f^{-1}(0) \neq \emptyset$, and $\nabla f(p) \neq 0$ for any $p \in f^{-1}(0)$. Show that $\Sigma := f^{-1}(0)$ is orientable.
- 2. (10 points) Let Ω be a non-vanishing *n*-form on a manifold M without boundary (hence M is orientable). Show, from the definition of integral on *n*-forms, that $\int_M \Omega \neq 0$. Hence, show that $H^n_{dR}(M) \neq 0$.
- (10 points) Let Σⁿ be an orientable regular hypersurface in ℝⁿ⁺¹, and Ω be a (n + 1)-dimensional submanifold in ℝⁿ⁺¹ such that ∂Ω = Σ. Let μ be the *n*-form on Σ defined as in Q3 of the midterm this year. Using the results proved in the midterm and the generalized Stokes' Theorem, prove that for any C[∞] vector field Y on ℝⁿ⁺¹, we have

$$\int_{\Omega} \nabla \cdot Y dV = \int_{\Sigma} (Y \cdot \nu) \, \mu$$

where $dV = dx^1 \cdots dx^{n+1}$, and ν is the outward-pointing unit normal vector to Σ .

4. (20 points) Consider the following torus \mathbb{T}^2 in \mathbb{R}^4 :

 $\mathbb{T}^2:=\{(x,y,z,w)\in \mathbb{R}^4: x^2+y^2=1 \quad \text{and} \quad z^2+w^2=1\},$

which can be locally parametrized by $F: (0, 2\pi) \times (0, 2\pi) \to \mathbb{T}^2$:

 $F(\theta_1, \theta_2) = (\cos \theta_1, \sin \theta_1, \cos \theta_2, \sin \theta_2)$

Denote $\iota : \mathbb{T}^2 \to \mathbb{R}^4$ to be the inclusion map. Consider the following 1-form on \mathbb{T}^2 :

 $\sigma := \iota^* \left(y^3 \, dx - (x^3 - 3x) \, dy + (w^3 - 3w) \, dz - z^3 \, dw \right).$

- (a) Show that σ is closed.
- (b) Let \mathbb{S}^1 be the unit circle in \mathbb{R}^2 parametrized by $G(t) = (\cos t, \sin t)$. Consider the map $\Phi : \mathbb{S}^1 \to \mathbb{T}^2$ given by:

$$\underbrace{(p,q)}_{\text{coordinates in } \mathbb{R}^2} \mapsto \underbrace{(p,\,q,\,(p-q)/\sqrt{2},\,(p+q)/\sqrt{2})}_{\text{coordinates in } \mathbb{R}^4}$$

Express $\Phi^* \sigma$ in terms of dt.

- (c) Using (b), show that σ is not exact.
- 5. (20 points) Let ω be the *n*-form on $\mathbb{R}^{n+1} \setminus \{0\}$ defined by:

$$\omega = \frac{1}{|x|^{n+1}} \sum_{i=1}^{n+1} (-1)^{i-1} x_i \, dx^1 \wedge \dots \wedge dx^{i-1} \wedge dx^{i+1} \wedge \dots \wedge dx^{n+1}$$

where $x = (x_1, \ldots, x_{n+1})$ and $|x| = \sqrt{x_1^2 + \cdots + x_{n+1}^2}$. Denote by \mathbb{S}^n the unit *n*-sphere centered at 0.

- (a) Let $\iota : \mathbb{S}^n \to \mathbb{R}^{n+1}$ be the inclusion map. Show that $\int_{\mathbb{S}^n} \iota^* \omega \neq 0$.
- (b) Hence, show that ω is closed but is not exact on $\mathbb{R}^{n+1} \setminus \{0\}$.