MATH 4033 • Spring 2021 • Calculus on Manifolds

 Problem Set \#2 • Abstract Manifolds • Due Date: 21/03/2019, 11:59PMInstruction for LaTeX-typers: OK to draw pictures by hand, and use the includegraphics command to incorporate the diagram into your homework.

1. (20 points) Consider the following equivalence relation \sim defined on \mathbb{R}^{2} :
$(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \quad \Longleftrightarrow \quad\left(x^{\prime}, y^{\prime}\right)=\left((-1)^{n} x+m,(-1)^{m} y+n\right)$ for some integers m and n.
(a) Sketch an edge-identified square to represent the quotient space \mathbb{R}^{2} / \sim.
(b) By drawing pictures, explain why \mathbb{R}^{2} / \sim is homeomorphic to $\mathbb{R} \mathbb{P}^{2}$. No need to write down the explicit homeomorphism.
(c) Consider the two parametrizations of \mathbb{R}^{2} / \sim :

$$
\begin{aligned}
G_{1}:(0,1) \times(0,1) & \rightarrow \mathbb{R}^{2} / \sim & G_{2}:(0,1) \times(0.5,1.5) & \rightarrow \mathbb{R}^{2} / \sim \\
(x, y) & \mapsto[(x, y)] & (x, y) & \mapsto[(x, y)]
\end{aligned}
$$

Find the transition map $G_{2}^{-1} \circ G_{1}$.
2. (20 points) Consider two C^{∞} scalar functions $f, g: \mathbb{R}^{n \geq 3} \rightarrow \mathbb{R}$, and their non-empty level sets $\Sigma_{f}:=f^{-1}(0)$ and $\Sigma_{g}:=g^{-1}(0)$. Suppose $p \in \Sigma_{f} \cap \Sigma_{g}$ is a point such that $\{\nabla f(p), \nabla g(p)\}$ are linearly independent vectors in \mathbb{R}^{n}.
(a) Show that $\Sigma_{f} \cap \Sigma_{g}$ is locally a C^{∞} manifold near p, i.e. there exists an open set U in \mathbb{R}^{n} containing p such that $\Sigma_{f} \cap \Sigma g \cap U$ is a C^{∞} manifold. What is its dimension?
(b) Show also that the set $\Sigma_{f} \cap \Sigma_{g} \cap U$ in (a) is a submanifold of Σ_{f}.
3. (20 points) The famous quintic Calabi-Yau 3 -fold in string theory is the following subset in $\mathbb{C P}^{4}$:

$$
M:=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}: z_{4}\right] \in \mathbb{C P}^{4}: z_{0}^{5}+z_{1}^{5}+z_{2}^{5}+z_{3}^{5}+z_{4}^{5}=0\right\} .
$$

Show that M is a 6 -dimensional submanifold of $\mathbb{C P}^{4}$ (which is 8 dimensional).
[Hint: First be careful that $\Phi\left(\left[z_{0}: z_{1}: z_{2}: z_{3}: z_{4}\right]\right)=z_{0}^{5}+z_{1}^{5}+z_{2}^{5}+z_{3}^{5}+z_{4}^{5}: \mathbb{C P}^{4} \rightarrow \mathbb{C}$ is NOT well-defined! Try to show $M \cap F_{i}(\mathcal{U})$ is a submanifold of $\mathbb{C P}^{4}$ for each i where F_{i} 's are the standard local coordinate charts of $\mathbb{C P}^{4}$.]
4. (30 points) A Lie group G is a smooth manifold such that multiplication and inverse maps

$$
\begin{array}{rlrl}
\mu: G \times G & \rightarrow G & \nu: G & \rightarrow G \\
(g, h) & \mapsto g h & g & \mapsto g^{-1}
\end{array}
$$

are both smooth $\left(C^{\infty}\right)$ maps. As an example, $\mathrm{GL}(n, \mathbb{R})$ is a Lie group since it is an open subset of $M_{n \times n}(\mathbb{R}) \cong \mathbb{R}^{n^{2}}$, hence it can be globally parametrized using coordinates of $\mathbb{R}^{n^{2}}$. The multiplication map is given by products and sums of coordinates in $\mathbb{R}^{n^{2}}$, hence it is smooth. The inverse map is smooth too by the Cramer's rule $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(\mathrm{A})$ and that $\operatorname{det}(A) \neq 0$ for any $A \in \mathrm{GL}(n, \mathbb{R})$.
(a) Recall that $T_{(e, e)}(G \times G)$ can be identified with $T_{e} G \oplus T_{e} G=\left\{(X, Y): X, Y \in T_{e} G\right\}$. i. Show that the tangent map of μ at (e, e) is given by:

$$
\left(\mu_{*}\right)_{(e, e)}(X, Y)=X+Y
$$

ii. Show that μ is a submersion at (e, e).
(b) Show that the tangent map of ν at e is given by:

$$
\left(\nu_{*}\right)_{e}(X)=-X
$$

[Hint for part (a): when taking partial derivative $\frac{\partial f}{\partial u}$ at $(u, v)=\left(u_{0}, v_{0}\right)$, it is OK to substitute $v=v_{0}$ first, and then differentiate $f\left(u, v_{0}\right)$ by u. It is possible to prove (b) using the result from (a)i and the manifold chain rule in an appropriate way.]

