MATH 4033 • Spring 2019 • Calculus on Manifolds Problem Set #2 • Abstract Manifolds • Due Date: 10/03/2019, 11:59PM

1. (30 points) Let Σ be a regular surface in \mathbb{R}^3 such that $(0,0,0) \notin \Sigma$. For each $p \in \Sigma$, define $N_p\Sigma$ to be the 1-dimensional vector space spanned by a non-zero normal vector to Σ at p. Consider the set:

$$N\Sigma := \{ (p, n_p) \in \{ p \} \times N_p\Sigma : p \in \Sigma \},$$

and the following subset of $\Sigma \times \mathbb{R}^3$:

$$L\Sigma := \{(p, tp) \in \Sigma \times \mathbb{R}^3 : t \in \mathbb{R}\}.$$

- (a) Show that $N\Sigma$ is a C^{∞} 3-manifold.
- (b) Show that $L\Sigma$ is a C^{∞} 3-manifold, and is a submanifold of $\Sigma \times \mathbb{R}^3$.
- (c) Suppose further that there exists a well-defined C^{∞} map $\hat{\nu}: \Sigma \to \mathbb{R}^3$, where $\hat{\nu}(p)$ is a unit normal vector to Σ at p. Show that $N\Sigma$ and $L\Sigma$ are diffeomorphic.

[Hint: If any non-zero vectors v, w in \mathbb{R}^3 are parallel to each other, then $v = \frac{\langle v, w \rangle}{\| \|w \|^2} w$.]

2. (25 points) Consider
$$\Phi: \mathbb{RP}^2 \to \mathbb{R}^4$$
 be given by
$$\Phi([x:y:z]) = \frac{(x^2 - y^2, xy, zx, yz)}{x^2 + y^2 + z^2}.$$

$$\Phi([x:y:z]) = \frac{(x^2 - y^2, xy, zx, yz)}{x^2 + y^2 + z^2}.$$

- (a) Show that Φ is well-defined, and is injective.
- (b) Cover \mathbb{RP}^2 by the standard coordinate charts. Compute the local coordinate expressions of Φ respect each coordinate charts.
- (c) Compute the matrix representation $[\Phi_*]$ with respect to **each** local coordinates chart
- (d) Show that Φ is an immersion. \Leftrightarrow Φ_* is injective
- 3. (20 points) The famous quintic Calabi-Yau 3-fold in string theory is the following subset in \mathbb{CP}^4 :

$$M:=\left\{[z_0:z_1:z_2:z_3:z_4]\in\mathbb{CP}^4:z_0^5+z_1^5+z_2^5+z_3^5+z_4^5=0\right\}.$$

Show that M is a 6-dimensional submanifold of \mathbb{CP}^4 (which is 8 dimensional).

[Hint: First be careful that $\Phi([z_0:z_1:z_2:z_3:z_4])=z_0^5+z_1^5+z_2^5+z_3^5+z_4^5:\mathbb{CP}^4\to\mathbb{C}$ is NOT well-defined! Try to show $M\cap F_i(\mathcal{U})$ is a submanifold of \mathbb{CP}^4 for each i where F_i 's are the standard local coordinate charts of \mathbb{CP}^4 .

4. (25 points) Let $p(x_1, \dots, x_k)$ be a m-homogeneous polynomial of k variables where $k, m \ge 1$ 2, i.e.

$$p(\lambda x_1, \cdots, \lambda x_k) = \lambda^m p(x_1, \cdots, x_k)$$

for any $\lambda > 0$, $(x_1, \dots, x_k) \in \mathbb{R}^k$.

(a) Prove that for any $(x_1, \cdots, x_k) \in \mathbb{R}^k$, the following identity holds:

$$\sum_{i=1}^{k} x_i \frac{\partial p}{\partial x_i}(x_1, \dots, x_k) = mp(x_1, \dots, x_k).$$

- (b) Show that for any $a \neq 0$, the level-set $p^{-1}(a)$, whenever non-empty, is a (k-1)submanifold of \mathbb{R}^k .
- (c) Show that for any $a \neq 0$, we have $p^{-1}(a)$ is diffeomorphic to $p^{-1}(a/|a|)$ (or both are empty).

$$\frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1$$

WANT: eigenvalues of
$$I + \frac{227}{1-127} = \frac{7}{127}$$

$$(I + \frac{227}{1-127}) \frac{1}{12} = \frac{1}{12} + \frac{227}{1-127} = \frac{1}{127}$$

$$= \left(1 + \frac{121}{1-127}\right) \frac{1}{12} = \frac{1}{127} = \frac{$$

$$F(\mathbf{u},\mathbf{v}) = \frac{(x^2 - y^2, xy, zx, yz)}{x^2 + y^2 + z^2}.$$

$$F(\mathbf{u},\mathbf{v}) = \frac{(x^2 - y^2, xy, zx, yz)}{x^2 + y^2 + z^2}.$$

$$= id^{-1} \circ \Phi \cdot F(u,v)$$

$$= id^{-1} \circ \Phi \left([v : u : v] \right)$$

$$= (1 - u^{2}, u, v, uv)$$

$$= (1 + u^{2} + v)^{2}$$

$$\frac{(1-u^{2}+u^{2})(-2u)-(1-u^{2})(2u)}{(1+u^{2}+u^{2})^{2}} = \frac{(1-u^{2}+u^{2})^{2}}{(1+u^{2}+u^{2})^{2}}$$

$$\frac{(1+u^{2}+u^{2})(-2u)-(1-u^{2})(2u)}{(1+u^{2}+u^{2})^{2}} = \frac{(1+u^{2}+u^{2})^{2}}{(1+u^{2}+u^{2})^{2}}$$

$$\frac{(1+u^{2}+u^{2})(-2u)-(1-u^{2})(2u)}{(1+u^{2}+u^{2})^{2}} = \frac{(1+u^{2}+u^{2})(2u)}{(1+u^{2}+u^{2})^{2}}$$

$$\frac{(1+u^{2}+u^{2})(-2u)-(1-u^{2})(2u)}{(1+u^{2}+u^{2})^{2}} = \frac{(1+u^{2}+u^{2})(2u)}{(1+u^{2}+u^{2})^{2}}$$

$$\frac{(1+u^{2}+u^{2})(-2u)-(1-u^{2})(2u)}{(1+u^{2}+u^{2})^{2}}$$

$$\frac{(1+u^{2}+u^{2})(-2u)-(1-u^{2})(2u)}{(1+u^{2}+u^{2})^{2}}$$

$$\frac{(1+u^{2}+u^{2})(-2u)-(1-u^{2})(2u)}{(1+u^{2}+u^{2})^{2}}$$

$$\frac{(1+u^{2}+u^{2})(-2u)-(1-u^{2})(2u)}{(1+u^{2}+u^{2})^{2}}$$

$$\frac{-\frac{\sqrt{2}N}{(1+u^{2}+u^{2})^{2}}}{(1+u^{2}+v^{2})^{2}} \frac{(1+u^{2}+v^{2})^{2}}{(1+u^{2}+v^{2})^{2}} \frac{(1+u^{2}+v^{2})^{2}}{(1+u^{2}+v^{2})^{2}}$$

$$= \frac{1}{(1+u^{2}+v^{2})^{2}} \frac{2u(-1-u^{2}+v^{2})^{2}}{(1+u^{2}+v^{2})^{2}} \frac{(1+u^{2}+v^{2})^{2}}{(1+u^{2}+v^{2})^{2}} \frac{2u(-1-u^{2}+v^{2})^{2}}{(1+u^{2}+v^{2})^{2}} \frac{(1+u^{2}+v^{2})^{2}}{(1+u^{2}+v^{2})^{2}} \frac{1+u^{2}-v^{2}}{(1+u^{2}+v^{2})^{2}} \frac{1+u^{2}-v^{2}$$