MATH 4033 - Spring 2017 - Calculus on Manifolds Problem Set \#2 • Abstract Manifolds • Due Date: 08/03/2017, 6PM

Instructions: When proving a certain set is a manifold, you don't have to verify topological conditions such as Hausdorff-ness, second countability, continuity of local parametrizations. Furthermore, to reduce your workload, when proving a certain map $\Phi: M \rightarrow N$ is smooth, just verify smoothness of $\mathrm{G}^{-1} \circ \Phi \circ \mathrm{~F}$ for one F and one G : be faithful the other combinations can be verified similarly.

1. (15 points) The complex projective plane $\mathbb{C P}^{1}$ is defined as follows:
$\mathbb{C} \cup\{\infty\} \cong S^{2}$.

$$
\mathbb{C P}^{1}:=\left\{\left[z_{0}: z_{1}\right]:\left(z_{0}, z_{1}\right) \neq(0,0)\right\} .
$$

Here z_{0}, z_{1} are complex numbers, and we declare $\left[z_{0}: z_{1}\right]=\left[w_{0}: w_{1}\right]$ if and only if $\left(z_{0}, z_{1}\right)=\lambda\left(w_{0}, w_{1}\right)$ for some $\lambda \in \mathbb{C} \backslash\{0\}$.
(a) Show that $\mathbb{C P}^{1}$ is a smooth manifold of (real) dimension 2.
(b) Show that $\mathbb{C P}^{1}$ and the sphere \mathbb{S}^{2} are diffeomorphic. [Hint: consider stereographic projections]
2. (20 points) Consider the following equivalence relation \sim defined on \mathbb{R}^{2} :

$$
(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \quad \Longleftrightarrow \quad\left(x^{\prime}, y^{\prime}\right)=\left((-1)^{n} x+m, y+n\right) \text { for some integers } m \text { and } n
$$

(a) Sketch an edge-identified square to represent the quotient space \mathbb{R}^{2} / \sim.
(b) Consider the two parametrizations of \mathbb{R}^{2} / \sim :

$$
\begin{aligned}
\mathrm{G}_{1}:(0,1) \times(0,1) & \rightarrow \mathbb{R}^{2} / \sim & \mathrm{G}_{2}:(0,1) \times(0.5,1.5) & \rightarrow \mathbb{R}^{2} / \sim \\
(x, y) & \mapsto[(x, y)] & (x, y) & \mapsto[(x, y)]
\end{aligned}
$$

Find the transition map $\mathrm{G}_{2}^{-1} \circ \mathrm{G}_{1}$.
(c) Write down a diffeomorphism between \mathbb{R}^{2} / \sim and the Klein bottle K in \mathbb{R}^{4} described in Example 2.16.
3. (20 points) Consider the following subset of $\mathbb{R}^{2} \times \mathbb{R}^{1}$

$$
M=\left\{\left(\left(x_{1}, x_{2}\right),\left[y_{1}: y_{2}\right]\right) \in \mathbb{R}^{2} \times \mathbb{R}^{1} \mid x_{1} y_{2}=y_{1} x_{2}\right\}
$$

(a) Show that M is a smooth 2-manifold by considering the following parametrizations:

$$
\begin{aligned}
& \mathrm{F}\left(u_{1}, u_{2}\right)=\left(\left(u_{1} u_{2}, u_{2}\right),\left[u_{1}: 1\right]\right) \\
& \mathrm{G}\left(v_{1}, v_{2}\right)=\left(\left(v_{1}, v_{1} v_{2}\right),\left[1: v_{2}\right]\right)
\end{aligned}
$$

(b) Consider the two projection maps $\pi_{1}: M \rightarrow \mathbb{R}^{2}$ and $\pi_{2}: M \rightarrow \mathbb{R P}^{1}$ defined by:

$$
\begin{aligned}
& \pi_{1}\left(\left(x_{1}, x_{2}\right),\left[y_{1}: y_{2}\right]\right)=\left(x_{1}, x_{2}\right) \\
& \pi_{2}\left(\left(x_{1}, x_{2}\right),\left[y_{1}: y_{2}\right]\right)=\left[y_{1}: y_{2}\right]
\end{aligned}
$$

i. Show that $\pi_{1}^{-1}(p)$ is either a point, or diffeomorphic to $\mathbb{R} \mathbb{P}^{1}$.
ii. Show that π_{2} is a submersion.
4. (25 points) The tangent bundle $T M$ of a smooth n-manifold M is the disjoint union of all tangent spaces of M, i.e.

$$
T M:=\bigcup_{p \in M}\{p\} \times T_{p} M=\left\{\left(p, V_{p}\right): p \in M \text { and } V_{p} \in T_{p} M\right\}
$$

(a) Show that TM is a smooth $2 n$-manifold. [Again, skip the topological parts, but show detail work of the differentiable parts.]
(b) Show that the map $\pi: T M \rightarrow M$ defined by $\pi\left(p, V_{p}\right):=p$ is a submersion.
(c) Define the subset $\Sigma_{0}:=\left\{\left(p, 0_{p}\right) \in T M: p \in M\right\}$ where 0_{p} is the zero vector in $T_{p} M$. This set Σ_{0} is called the zero section of the tangent bundle. Show that Σ_{0} is a smooth n-manifold diffeomorphic to M, and that it is a submanifold of $T M$.
(d) Now suppose M is just a C^{k}-manifold (where $k \geq 2$), then $T M$ is a $C^{\text {what? }}$-manifold?
5. (20 points) A Lie group G is a smooth manifold such that multiplication and inverse maps

$$
\begin{array}{rlrl}
\mu: G \times G & \rightarrow G & v: G & \rightarrow G \\
(g, h) & \mapsto g h & g & \mapsto g^{-1}
\end{array}
$$

are both smooth $\left(C^{\infty}\right)$ maps. As an example, $\mathrm{GL}(n, \mathbb{R})$ is a Lie group since it is an open subset of $M_{n \times n}(\mathbb{R}) \cong \mathbb{R}^{n^{2}}$, hence it can be globally parametrized using coordinates of $\mathbb{R}^{n^{2}}$. The multiplication map is given by products and sums of coordinates in $\mathbb{R}^{n^{2}}$, hence it is smooth. The inverse map is smooth too by the Cramer's rule $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(\mathrm{A})$ and that $\operatorname{det}(A) \neq 0$ for any $A \in \mathrm{GL}(n, \mathbb{R})$.
(a) Recall that $T_{(e, e)}(G \times G)$ can be identified with $T_{e} G \oplus T_{e} G=\left\{(X, Y): X, Y \in T_{e} G\right\}$.
i. Show that the tangent map of μ at (e, e) is given by:

$$
\left(\mu_{*}\right)_{(e, e)}(X, Y)=X+Y .
$$

ii. Show that μ is a submersion at (e, e).
(b) Show that the tangent map of v at e is given by:

$$
\left(v_{*}\right)_{e}(X)=-X
$$

[Hint for part (a): when taking partial derivative $\frac{\partial f}{\partial u}$ at $(u, v)=\left(u_{0}, v_{0}\right)$, it is OK to substitute $v=v_{0}$ first, and then differentiate $f\left(u, v_{0}\right)$ by u. It is possible to prove (b) using the result from (a)i and the manifold chain rule in an appropriate way.]

1 (a) Show \mathbb{C}^{\prime} is a \mathbb{C}^{∞} 2-manifold.

$$
\begin{aligned}
& \left.\left\{\left[z_{0}^{\prime \prime} z_{1}\right]:\left(z_{0}, z_{1}\right) \in \mathbb{C}^{2}\right]\{0\}\right\} \text {. } \\
& F_{0}(z): \mathbb{C} \rightarrow \mathbb{C} P^{\prime}, F_{0}(z):=[1: z] \\
& F_{1}(w): \mathbb{C} \rightarrow \mathbb{C} \mathbb{P}^{\prime}, F_{1}(w):=(w) \\
& F_{0}^{-1}: F_{1}: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \\
& F_{0}^{-1} \circ F_{1}(z) \\
& =F_{0}^{-1}([z ; 1]) \\
& =\frac{1}{z} \text {. } \\
& F_{0}(\mathbb{C}) \cap F_{1}(\mathbb{C})<\mathbb{C B}^{1} \\
& =\left\{\left[z_{0}: z_{1}\right]: \begin{array}{c}
z_{0} \neq 0 \\
z_{1} \neq 0
\end{array}\right\} \\
& F_{0}(\underset{C}{?})=[z: 1] \\
& F_{0}(1 / 2)=[1: 1 / 2] \\
& F_{0}^{-1} \circ F_{1}: z \underbrace{z \mapsto \frac{1}{z}} \text { is } c^{\infty} \\
& \text { on } \mathbb{C} \backslash\{0\} \text {. } \\
& =[z: 1] \text {. }
\end{aligned}
$$

(b) In lecture: $\mathbb{S}^{2} \cong \mathbb{C}\{\{\infty\}$.

$$
\mathbb{C} \mathbb{P}^{\prime}=\{[1: w]: w \in \mathbb{C}\} \perp\{[0: 1]\}
$$

$\Psi: \mathbb{C P}^{\prime} \rightarrow \mathbb{C} \cup\{\infty\}$.

$$
\begin{aligned}
& \overline{\mathcal{I}}([1: w])=w \in \mathbb{C} \\
& \bar{\Psi}([0: 1])=\infty \in \mathbb{C} v\{\infty\} .
\end{aligned}
$$

Check $7_{0}^{-1} \mathcal{I}_{0} ? C^{\infty}$

2(a): $\quad(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \quad \Longleftrightarrow \quad\left(x^{\prime}, y^{\prime}\right)=\left((-1)^{n} x+m, y+n\right)$ for some integers m and n.

$$
\begin{aligned}
& { }^{4} t \sim(1) \\
& \left(1, \frac{1}{4}\right)=\left((-1)^{0} 0+1, \frac{1}{4}+0\right) \\
& \left(2, \frac{1}{4}\right)=\left((-1)^{0} 1+1 \frac{1}{4}+0\right) \\
& \left.\frac{1}{4}\right) \\
& \left(\frac{3}{4}, 0\right)=(\underbrace{(-1)^{-1} \frac{1}{4}+\frac{1}{n}}_{-\frac{1}{4}} \frac{1+(-1))}{n})
\end{aligned}
$$

(b)

$$
\begin{aligned}
G_{1}:(0,1) \times(0,1) & \rightarrow \mathbb{R}^{2} / \sim & G_{2}:(0,1) \times(0.5,1.5) \rightarrow \mathbb{R}^{2} / \sim \\
(x, y) & \mapsto[(x, y)] & (x, y) \mapsto[(x, y)] .
\end{aligned}
$$

$G_{2}>$

$$
\begin{aligned}
& G_{2}^{-1} \cdot G_{1}: \begin{array}{l}
!(1) \\
\vdots 0
\end{array} \rightarrow \mathbb{R}^{2} . \\
& G_{2}^{-1} \circ G_{1}(x, y)= \begin{cases}(1-x, y+1) & \text { if } \\
(x, y) & \text { if }\end{cases} \\
& \text { is } C^{\infty} \text { on }=\cdots
\end{aligned}
$$

3

$$
M=\left\{\left(\left(x_{1}, x_{2}\right),\left[y_{1}: y_{2}\right]\right) \in \mathbb{R}^{2} \times \mathbb{R P}^{1} \mid x_{1} y_{2}=y_{1} x_{2}\right\}
$$

$$
\begin{aligned}
& \text { Giver: }
\end{aligned}
$$

if $\left(x_{1}, x_{2}\right)=(0,0) \rightarrow x_{1} y_{2}=y_{1}, x_{2}=0$ always hold.
$\Rightarrow\left[y_{1}: y_{2}\right]$ can be any point in $\mathbb{R} \mathbb{P}^{\prime}$.

$$
\begin{aligned}
M= & \mathbb{R}^{2} \text { blow-up. } \\
& \text { at }(0,0) .
\end{aligned}
$$

$$
\begin{aligned}
M= & \left\{\left(\left(x_{1}, x_{2}\right),\left[x_{1}: x_{2}\right]\right) \mid\left(x_{1}, x_{2}\right) \neq(0,0)\right\} \leftrightarrow \mathbb{R}^{2} \backslash\{0\} \\
& \|!\left\{\left((0,0),\left[y_{1}: y_{2}\right]\right) \mid\left[y_{1}, y_{2}\right] \in \mathbb{R} \mathbb{P}^{\prime}\right\} \longleftrightarrow \mathbb{R P}^{\prime}
\end{aligned}
$$

