Propr: Given $g(x, y, z): \mathbb{R}^{3} \rightarrow \mathbb{R}, C^{\infty}$ and consider $\Sigma:=g^{-1}(c)$

$$
\begin{aligned}
& =\underbrace{\{(x, y, z): g(x, y, z)=c\}}_{\text {Assume } \neq \phi .} .
\end{aligned}
$$

then I is a regular surface.
cis.

$$
\begin{aligned}
& \{\underbrace{}_{\underbrace{x^{2}+y^{2}+z^{2}}_{g}=1\}}=S^{2} \\
& \quad \nabla g=(2 x, 2 y, 2 z)=\overrightarrow{0} \\
& \Leftrightarrow(x, y, z)=(0,0,0) \notin S^{2} . \\
& \nabla g(P) \neq \overrightarrow{0} \quad \forall P \in S^{2}
\end{aligned}
$$

\Rightarrow by Prop., S^{2} is a regular surface.
Hi:

$$
\left\{\bar{x}: \vec{x}^{\top} A \vec{x}=1\right\}
$$

Proof:

Implicit Function Theorem

$$
\begin{aligned}
\nabla g(p) \pm \overrightarrow{0} & \Rightarrow \frac{\partial g}{\partial z}(p) \neq 0 \Rightarrow z=f_{1}(x, y) \\
& \text { or } \frac{\partial g}{\partial y}(p) \neq 0 \Rightarrow y=f_{2}(x, z) \\
& \text { or } \frac{\partial g}{\partial x}(p) \neq 0 \Rightarrow x=f_{3}(y, z)
\end{aligned}
$$

$$
\int g(x, y, z)=c
$$

tangent plane ot $\frac{\left(x_{0}, y_{0}, z_{0}\right) \in g^{-1}(c) \text { : }}{F_{0}}$:

$$
\begin{gathered}
\left.\frac{\partial g}{\partial x}\right|_{P_{0}}\left(x-x_{0}\right)+\left.\frac{\partial g}{\partial y}\right|_{p_{0}}\left(y-y_{0}\right)+\left.\frac{\partial}{\partial z}\right|_{z 0}\left(z-z_{0}\right)=0 . \\
I f \quad \neq 0 .
\end{gathered}
$$

$$
\Rightarrow \quad z=-\frac{-}{\Rightarrow} \Rightarrow \quad-\quad .
$$

Prop: $M=g^{-1}(c)$ where

$$
\nabla g(P) \neq 0 \quad \cup P \in M
$$

let $\left.F(a, \infty): u \rightarrow O \subset \mathbb{R}^{2}\right)$ Satisfy:
(1) F is C^{∞} on \boldsymbol{u}
(2) F is bijective Gind F is

$$
\begin{gathered}
F(r, \theta)=\frac{(\operatorname{ras} \theta, r \sin \theta)}{y} \\
r: \sqrt{x^{2}+y^{2}} \\
\left.\tan ^{-1} \frac{y}{x}+\frac{7}{x} \right\rvert\, \tan ^{-1} \frac{y}{x} \\
\left.\tan ^{-1} \frac{y}{x}-\frac{7}{2}\right) \tan ^{-1} \frac{y}{x}
\end{gathered}
$$

(3) $\frac{\partial F}{\partial u}+\frac{\partial F}{\partial v} \neq \overrightarrow{0}$ on u.
then $F^{-1}: \Theta \rightarrow x$ is contimuers.

$F(u, v)$
$=(x(x, v), y(a, v), z(c, v, v)$

$0+\frac{\partial F}{\partial u} \times \frac{\partial F}{\partial v}$

$\pi \circ F(u, v)=(x(u, N), y(x, s))$
FFT^{\top} (locally $(\pi \circ F)^{-1}$ exists.
and $(\mathbb{R O F})^{-1}$ is

$$
\left(\frac{\partial F}{\partial u}+\frac{\partial F}{\partial v}\right) \cdot \hat{k} \neq 0
$$

$$
\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial y}{\partial u} \frac{\partial x}{\partial v} \neq 0
$$

$$
\operatorname{det}\left[\begin{array}{ll}
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial u} \\
\frac{\partial x}{\partial x} & \frac{\partial y}{\partial y}
\end{array}\right] \neq 0 \text {. }
$$

between G and F.
at $P \quad T(x, y, z)=(x, y)$ at P.

$$
\Rightarrow \text { det } D(\pi \cdot G) \neq 0
$$

at P
TTOG is locally inventiable neen P. and $(\pi \circ G)^{-1}$ is C^{∞}.

$$
G^{-1} \cdot F=\frac{(\pi \cdot G)^{-1}}{C^{\infty}} \cdot \frac{(\pi \cdot F)}{C^{\infty}} \text { is } C^{\infty}
$$

f is c^{k} at $p \in M$ eat $f \circ F$ is C^{k} at

$$
\begin{aligned}
f \circ G & =(\underbrace{f \circ F}) \cdot\left(F^{-1} \circ G\right) \text {. } \begin{array}{l}
F^{-\infty}(p) \in \mathbb{R}^{2} . \\
\\
\end{array} \text { is } C^{\infty} .
\end{aligned}
$$

Given $F(u, v)=(x(u, v), y(u, v), z(u, v))$ is C^{∞}.

$$
\begin{aligned}
& \text { for } f(p):=x(p) \\
&=\underbrace{x(u, v)} \quad(x(u, v), y(u, v))
\end{aligned}
$$

e.9. $f(p)=x\left(p^{2}+y(p)^{2}+z(p)^{2}\right.$ is C^{∞}.

$$
M \quad f \circ F(u, v)=x(u, v)^{2}+y(u, v)^{2}+z(u, v)^{2} \text {. }
$$

M, N regular surfaces:

Φ is C^{k} at $p \in M$
$\stackrel{\text { def }}{\Rightarrow}$

$$
\left.G^{-1} \cdot \Phi \cdot F\right|_{F^{\prime}\left(F\left(u_{1}\right) \cap \S^{-1}\left(G\left(u_{2}\right)\right)\right)} \quad \begin{gathered}
C^{k} d \\
F^{-1}(p) .
\end{gathered}
$$

