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MATH 4033 Spring 2018-19 Final Exam

Part A - Short Questions (25 points)

[Recommended time: < 30 min.]
Instruction: Write your answers in this question paper in Part A.

1. Among the mathematicians listed below, who lived the longest? Put v in the correct an-
swer:
(O Shiing-Shen Chern
(O Michael Atiyah
J Leopold Vietoris ( \‘Ne:x 6s \mﬂ% o \M—‘ Sett’-mﬂ'&)
(O Evariste Galois
(O Bernhard Riemann

2. Is it always true that w A w = 0 for any differential form w in R?? If true, explain briefly
why. If false, give a simple counter-example.

A\\u&-\s ‘\NudL lgy w) 1,'5 a \ Q—wm
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3. Write down a smooth 1-form on R?\{(1,2)} which is closed but not exact, or prove that
such an example does not exist.

~ (-2 + Ge-O Y
(-« (~‘ )

4. Let V be a vector space, and W be a subspace of V. Define EACH of the linear maps below
so that the sequence becomes exact.

0—-W =V V/IW -0

O-—>\W O+>0
W — \ - W =
\)—%\)M : ~v = O\
\l/w_»,o : Lle—=0O
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5. Let f : R?™9 — R be a smooth function. Suppose ¥ := f~1(0) is non-empty and f is a
submersion at every p € 3. Which of the following must be true? Put v* in ALL correct
answer(s):

(O ¥ is a 2019-dimensional smooth manifold.
& ¥ is a smooth submanifold of R20%9.
(O 3 is compact.

ﬁd For any p € X, there exist local coordinates (uj,---,uy) such that under the
coordinates we have

, : ve . o4
(Povaki cowsidaw T i &% 1 0) g
V\c‘( a boasa g( R4 @, .- W e = v(‘\/w‘%\ )

6. Which of the following statement(s) is/are always true? Put v" in ALL correct answer(s):
@/ The cotangent bundle of the tangent bundle of the Klein bottle is orientable.
(j If M and N are orientable smooth manifolds, then so is M x N.

g > O Suppose M is an orientable smooth manifold, and N := M/ ~ is a quotient set
G{W of M so that it is also a smooth manifold. Then N is also orientable.

- §77L (O Let M be a smooth n-dimensional manifold (where n > 2), and let p € M. Then
L as a vector space the dimension of /\QT;M is n2.

d Let f : M — R be a smooth function from a smooth manifold M. Suppose ¢ € R
such that ¥ := f~!((—o0, c]) is non-empty, and suppose f is a submersion at any
p € f~!(c). Then X is a manifold with boundary.

@ Let I;, ¢« = 1,...,n, be non-empty open intervals of R (possibly with different
length). Then the 1st Betti number of the set

U:=ILx---x1I,CR"
R

is equal to 0. . .

7. Based on the proof discussed in the lecture note or in class, which of the following is/are
consequence(s) of the Inverse/Implicit Function Theorem for Euclidean spaces?

[Remark: If (A) is used to prove (B), and (B) is used to prove (C), then (C) is also regarded
as a consequence of (A).]

@ Submersion Theorem

(O Cartan’s Magic Formula

@ Regular surfaces in R? are smooth manifolds.
(\Z Inverse Function Theorem for manifolds

O d>=0

(O Zigzag's Lemma
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Part B - Long Questions (75 points): Answer ALL THREE problems

[Recommended time: Q1 < 30 min; Q2 < 1hr; Q3 < 1hr]

Instruction: Write your solutions in the YELLOW answer book.

1. Consider two C* scalar functions f, ¢ : R"Z? — R, and their non-empty level sets & fo=
f71(0) and £, := ¢g~1(0). Suppose p € ¥y N%, is a point such that {V f(p), Vg(p)} are
linear independent vectors in R™.

(a) Show that ¥y N X, is locally a C>° manifold near p, i.e. there exists an open set U in
R™ containing p such that ¥ N3¢ N U is a C* manifold. What is its dimension?

(b) Show also that the set ¥y N3, N U in (a) is a submanifold of 3.

2. Consider a C*°-manifold M™ which is compact, connected, orientable, and without bound-
ary. Denote its local coordinates by (U;u1,- - ,u,). Consider a C* vector field X which
can be expressed locally as X = Z?:1 X0

Ou; *
(a) Show that

ix(du' Ao Adu™) = (1T X dut A A dud T A duI T A dut
j=1
(b) Suppose 2 is a C*° non-vanishing n-form globally defined on M. Denote its local
expression in any local chart (U;uq, -+ ,uy) by

Q:=clvdul A Adu.

Consider another n-form w;; whose local expression in the local chart (U;uq, -+, uy)
is given by:
"L (0X7 Ofu
= T xi%U) g
wu Z ( 8Uj * 8uj )
7j=1

i. Show that the above local expression is independent of local coordinates.

ii. Denote w := wy on any local chart U. Show that / w = 0.
M

3. (a) Show that for kK € NU {0}, we have

() — {

[Remark: You can use results from Example 5.22 if needed.]
(b) Consider the subsets of CP? := {[zq : 21 : 22] | (20, 21, 22) € C*\{(0,0,0)}}:

U .= CPQ\{[l :0: 0]} and ZO = {[O A ZQ] € (C]PQ | (Zl,ZQ) 7& (0,0)}.

Show that ¥ is a deformation retract of U. Please provide the detail, including why
Yo is a submanifold of U, and the explicit construction (and verification) the retraction
maps V,.

(c) Using (a) and (b), find H é“R(CIP’Q) for all k € NU{0}. Give at least a brief reason for
every small step. You can use the fact that CPP? is compact.

R ifk=0o0r3
0 otherwise .

* End of Paper *
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