香港科技 大 學 THE HONG KONG UNIVERSITY OF SCIENCE

數學系 AND TECHNOLOGY

FINAL EXAMINATION

Course Code：MATH 4033

Course Title：Calculus on Manifolds
Semester：Spring 2018－19
Date and Time：12：30PM－3：30PM， 25 May 2019

Instructions

－Do NOT open the exam until instructed to do so．
－All mobile phones and communication devices should be switched OFF．
－It is an OPEN－NOTES exam．Authorized reference materials are the instructor＇s lecture notes，homework solutions，your own notebooks．No other reference materials（such as books）are allowed．
－Answer ALL problems．In Part A，write your answers in the spaces provided；whereas in Part B，write your solutions in the yellow book．
－You must SHOW YOUR WORK and JUSTIFY YOUR STEPS to receive credits in every problem in Part B．
－Some problems in Part B are structured into several parts．You can quote the results stated in the preceding parts to do the next part．

HKUST Academic Honor Code

Honesty and integrity are central to the academic work of HKUST．Students of the Uni－ versity must observe and uphold the highest standards of academic integrity and honesty in all the work they do throughout their program of study．As members of the University community，students have the responsibility to help maintain the academic reputation of HKUST in its academic endeavors．Sanctions will be imposed on students，if they are found to have violated the regulations governing academic integrity and honesty．
＂I confirm that I have answered the questions using only materials specified approved for use in this examination，that all the answers are my own work，and that I have not received any assistance during the examination．＂

Student＇s Signature：

Student＇s Name：

FAMILY NAME，First Name
HKUST ID： \qquad Seat Number： \qquad

Part A - Short Questions (25 points)

[Recommended time: < 30 min .]
Instruction: Write your answers in this question paper in Part A.

1. Among the mathematicians listed below, who lived the longest? Put \checkmark in the correct answer:

Shiing-Shen Chern
O Michael Atiyah

- Leopold Vietoris

O Évariste Galois
○ Bernhard Riemann
2. Is it always true that $\omega \wedge \omega=0$ for any differential form ω in \mathbb{R}^{2} ? If true, explain briefly why. If false, give a simple counter-example.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. Write down a smooth 1 -form on $\mathbb{R}^{2} \backslash\{(1,2)\}$ which is closed but not exact, or prove that such an example does not exist.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4. Let V be a vector space, and W be a subspace of V. Define EACH of the linear maps below so that the sequence becomes exact.

$$
0 \rightarrow W \rightarrow V \rightarrow V / W \rightarrow 0
$$

5. Let $f: \mathbb{R}^{2019} \rightarrow \mathbb{R}$ be a smooth function. Suppose $\Sigma:=f^{-1}(0)$ is non-empty and f is a submersion at every $p \in \Sigma$. Which of the following must be true? Put \checkmark in ALL correct answer(s):
$\bigcirc \Sigma$ is a 2019-dimensional smooth manifold.
$\bigcirc \Sigma$ is a smooth submanifold of \mathbb{R}^{2019}.
$\bigcirc \Sigma$ is compact.
\bigcirc For any $p \in \Sigma$, there exist local coordinates $\left(u_{1}, \cdots, u_{n}\right)$ such that under the coordinates we have

$$
\left[f_{*_{p}}\right]=\left[\begin{array}{lllll}
1 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

6. Which of the following statement(s) is/are always true? Put \checkmark in ALL correct answer(s):

The cotangent bundle of the tangent bundle of the Klein bottle is orientable.
\bigcirc If M and N are orientable smooth manifolds, then so is $M \times N$.
\bigcirc Suppose M is an orientable smooth manifold, and $N:=M / \sim$ is a quotient set of M so that it is also a smooth manifold. Then N is also orientable.
\bigcirc Let M be a smooth n-dimensional manifold (where $n \geq 2$), and let $p \in M$. Then as a vector space the dimension of $\wedge^{2} T_{p}^{*} M$ is n^{2}.
\bigcirc Let $f: M \rightarrow \mathbb{R}$ be a smooth function from a smooth manifold M. Suppose $c \in \mathbb{R}$ such that $\Sigma:=f^{-1}((-\infty, c])$ is non-empty, and suppose f is a submersion at any $p \in f^{-1}(c)$. Then Σ is a manifold with boundary.
Let $I_{i}, i=1, \ldots, n$, be non-empty open intervals of \mathbb{R} (possibly with different length). Then the 1st Betti number of the set

$$
U:=I_{1} \times \cdots \times I_{n} \subset \mathbb{R}^{n}
$$

is equal to 0 .
7. Based on the proof discussed in the lecture note or in class, which of the following is/are consequence(s) of the Inverse/Implicit Function Theorem for Euclidean spaces?
[Remark: If (A) is used to prove (B), and (B) is used to prove (C), then (C) is also regarded as a consequence of (A).]

Submersion Theorem
Cartan's Magic Formula
\bigcirc Regular surfaces in \mathbb{R}^{3} are smooth manifolds.
\bigcirc Inverse Function Theorem for manifolds
$\bigcirc d^{2}=0$
O Zigzag's Lemma

Part B - Long Questions (75 points): Answer ALL THREE problems

[Recommended time: Q1 < 30 min ; Q2 $<1 \mathrm{hr}$; Q3 $<1 \mathrm{hr}$]
Instruction: Write your solutions in the YELLOW answer book.

1. Consider two C^{∞} scalar functions $f, g: \mathbb{R}^{n \geq 3} \rightarrow \mathbb{R}$, and their non-empty level sets $\Sigma_{f}:=$ $f^{-1}(0)$ and $\Sigma_{g}:=g^{-1}(0)$. Suppose $p \in \Sigma_{f} \cap \Sigma_{g}$ is a point such that $\{\nabla f(p), \nabla g(p)\}$ are linear independent vectors in \mathbb{R}^{n}.
(a) Show that $\Sigma_{f} \cap \Sigma_{g}$ is locally a C^{∞} manifold near p, i.e. there exists an open set U in \mathbb{R}^{n} containing p such that $\Sigma_{f} \cap \Sigma g \cap U$ is a C^{∞} manifold. What is its dimension?
(b) Show also that the set $\Sigma_{f} \cap \Sigma_{g} \cap U$ in (a) is a submanifold of Σ_{f}.
2. Consider a C^{∞}-manifold M^{n} which is compact, connected, orientable, and without boundary. Denote its local coordinates by $\left(U ; u_{1}, \cdots, u_{n}\right)$. Consider a C^{∞} vector field X which can be expressed locally as $X=\sum_{j=1}^{n} X^{j} \frac{\partial}{\partial u_{j}}$.
(a) Show that

$$
i_{X}\left(d u^{1} \wedge \cdots \wedge d u^{n}\right)=\sum_{j=1}^{n}(-1)^{j-1} X^{j} d u^{1} \wedge \cdots \wedge d u^{j-1} \wedge d u^{j+1} \wedge \cdots d u^{n}
$$

(b) Suppose Ω is a C^{∞} non-vanishing n-form globally defined on M. Denote its local expression in any local chart $\left(U ; u_{1}, \cdots, u_{n}\right)$ by

$$
\Omega:=e^{f_{U}} d u^{1} \wedge \cdots \wedge d u^{n} .
$$

Consider another n-form ω_{U} whose local expression in the local chart ($U ; u_{1}, \cdots, u_{n}$) is given by:

$$
\omega_{U}:=\sum_{j=1}^{n}\left(\frac{\partial X^{j}}{\partial u_{j}}+X^{j} \frac{\partial f_{U}}{\partial u_{j}}\right) \Omega
$$

i. Show that the above local expression is independent of local coordinates.
ii. Denote $\omega:=\omega_{U}$ on any local chart U. Show that $\int_{M} \omega=0$.
3. (a) Show that for $k \in \mathbb{N} \cup\{0\}$, we have

$$
H_{\mathrm{dR}}^{k}\left(\mathbb{S}^{3}\right)= \begin{cases}\mathbb{R} & \text { if } k=0 \text { or } 3 \\ 0 & \text { otherwise }\end{cases}
$$

[Remark: You can use results from Example 5.22 if needed.]
(b) Consider the subsets of $\mathbb{C P}^{2}:=\left\{\left[z_{0}: z_{1}: z_{2}\right] \mid\left(z_{0}, z_{1}, z_{2}\right) \in \mathbb{C}^{3} \backslash\{(0,0,0)\}\right\}$:

$$
U:=\mathbb{C P}^{2} \backslash\{[1: 0: 0]\} \text { and } \Sigma_{0}:=\left\{\left[0: z_{1}: z_{2}\right] \in \mathbb{C P}^{2} \mid\left(z_{1}, z_{2}\right) \neq(0,0)\right\} .
$$

Show that Σ_{0} is a deformation retract of U. Please provide the detail, including why Σ_{0} is a submanifold of U, and the explicit construction (and verification) the retraction maps Ψ_{t}.
(c) Using (a) and (b), find $H_{\mathrm{dR}}^{k}\left(\mathbb{C P}^{2}\right)$ for all $k \in \mathbb{N} \cup\{0\}$. Give at least a brief reason for every small step. You can use the fact that $\mathbb{C P}^{2}$ is compact.

[^0]
[^0]: * End of Paper *

