Tutorial_11

- 1. Find the radius of convergence of each of the following power series
 - (a) $\sum_{n=1}^{\infty} n^n z^n$
 - (b) $\sum_{n=1}^{\infty} n^2 z^n$
 - (c) $\sum_{n=1}^{\infty} \frac{3^n}{n!} z^n$
 - (d) $\sum_{n=1}^{\infty} \frac{2^n}{n^2} z^n$
 - (e) $\sum_{n=1}^{\infty} \frac{n^3}{3^n} z^n$
 - (f) $\sum_{n=1}^{\infty} \frac{n^n}{n!} z^n$
- 2. Supposed that $\sum_{n=0}^{\infty} c_n(x-a)^n$ converges at x=b where $a,b \in \mathbb{R}$, b < a, for what value of x the series must converges or converges absolutely?
- 3. Let $\{c_n\}_{n\in\mathbb{N}}$ be a infinite sequence of integers such that there are infinitely many $n\in\mathbb{N}$ where $c_n\neq 0$
 - (a) Show that the radius of convergence of the power series $\sum_{n=0}^{\infty} c_n z^n$ is at most 1
 - (b) Give an example of such series which is a Taylor series of a smooth function with radius of convergence 1
 - (c) Give an example of such series which is a Taylor series of a smooth function with radius of convergence $\frac{1}{2}$
 - (d) Give an example of such series with radius of convergence $\frac{1}{\pi}$