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4.8 Parametric Curves
In R2 (similarly for R3), we often represent a curve in parametric form, such as the unit circle:

x = cos t

y = sin t

where t ∈ [0, 2π]. One may denote these parametric equations in vector form:

r(t) = (cos t, sin t) = (cos t)i + (sin t)j, t ∈ [0, 2π].

The graph y = f(x) of a single variable function f : [a, b]→ R can be represented in parametric
form by:

r(t) = (t, f(t)), t ∈ [a, b].

It is helpful to think of t as the time variable, and r(t) as the position vector of a moving particle
at time t. Then the curve represented by r(t) is the path of the particle.

4.8.1 Geometric meaning of r′(t)
In physics, the meaning of r′(t) is defined to be the velocity at time t as it is the rate of change
of the position vector, and r′′(t) is the acceleration. In mathematics, one can show that r′(t) (if
non-zero) is in fact a tangent vector to the curve r(t).

To prove this, we first show that it is true when the curve is a graph of a C1 function f , i.e.
the special case r(t) = (t, f(t)). Then, we have

r′(t) = (1, f ′(t)) = i + f ′(t)j.

This vector has slope f ′(t), which is the slope of the tangent to the graph y = f(x) at the point
(t, f(t)). Hence, r′(t) is a tangent vector to the curve at the point (t, f(t)).

Now consider a general case r(t) = (f(t), g(t)) where f, g are C1 functions. If r′(t0) 6= 0 at a
particular time t0, then f ′(t0) 6= 0 or g′(t0) 6= 0. WLOG we assume f ′(t0) 6= 0. Then, f is strictly
monotone near t0, and hence it is locally invertible. From MATH 1023, we learned that the local
inverse f−1 : (τ0 − ε, τ0 + ε) → (t0 − δ, t0 + δ) is also C1. Here f(t0) = τ0. Next we consider a
“new” curve:

γ(τ) := r(f−1(τ)) =
(
τ, g ◦ f−1(τ)

)
, τ ∈ (τ0 − ε, τ0 + ε).

We put “new” in quotation because it is not really a new curve, but the same curve as r(t) near
t = t0 with the particle travelling at a different speed. By now, the curve γ(τ) is simply the graph
of y = g ◦ f−1(x). From the previous paragraph, we know that γ′(τ0) is a tangent vector to the
curve at the point γ(τ0) = (f(t0), g(t0)). However, by chain rule, we also know that

γ′(τ) =
d

dτ
r(f−1(τ)) = r′(f−1(τ))

d

dτ
f−1(τ) =⇒ γ′(τ0) =

d

dτ
f−1(τ)

∣∣∣∣
τ=τ0︸ ︷︷ ︸

scalar

r′(t0).

Therefore, γ′(τ0) and r′(t0) are parallel to each other, and so r′(t0) is also a tangent vector to the
curve at (f(t0), g(t0)). The case when g′(t0) 6= 0 is similar – just regard x is a function y near the
point (f(t0), g(t0)).

i The geometric meaning of r′′(t) is related to the curvature. You may learn more about it in
MATH 2023 or 4223.

4.8.2 Rectifiable Curves
Next we discuss what it means by length of a curve. Given a curve r(t) : [a, b] → R2, we first
attempt to approximate it by line segments. That is, take a partition P = {a = t0 < t1 < · · · <
tn = b} and consider the sum:

lP :=

n∑
i=1

|r(ti)− r(ti−1)| .
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It is the total length of the line segments joining points r(t0), r(t1), · · · , r(tn). As we are
taking more and more refined partitions P , we expect lP gets larger by the triangle inequality.
Therefore, the best approximation of the length of the curve is naturally defined as the maximum
possible lP among all partitions P .

Definition 4.7 — Rectifiable Curve and Arc Length. Let r(t) : [a, b]→ R2 be a curve in R2. We
call r(t) a rectifiable curve if lP ≤ C for some constant C ∈ (0,∞) independent of partitions
P of [a, b]. In such case, we define the arc length of {r(t)}t∈[a,b] to be:

sup
P
lP = sup

{
n∑
i=1

|r(ti)− r(ti−1)| : a = t0 < t1 < · · · < tn = b

}
.

i It doesn’t seem easy to check whether a curve is rectifiable nor to compute the arc length.
Fortunately, we can later show that any C1 curve (i.e. r(t) = (f(t), g(t)) where f, g are C1)

is rectifiable and its arc length is simply given by the integral
ˆ b

a

∣∣r′(t)∣∣ dt.
Obviously, any straight-line segment r(t) = (1 − t)r0 + tr1, t ∈ [0, 1], joining the points

with position vectors r0 and r1 is rectifiable. To prove this, we compute that for any partition
P : 0 = t0 < t1 < · · · < tn = 1, we have:

n∑
i=1

|r(ti)− r(ti−1)| =
n∑
i=1

|(ti − ti−1)r1 − r0| =
n∑
i=1

(ti − ti−1) |r1 − r0| = |r1 − r0| .

In particular, lP = |r1 − r0| for any partition P of [0, 1], hence it is bounded above. This shows
the straight-line segment is rectifiable, and its length is given by:

sup
P
lP = sup

P
|r1 − r0| = |r1 − r0| ,

which is exactly what we expect.
We next show that a unit circle is rectifiable. We want to avoid using any differentiation on

sin and cos functions, because they are based on the limit identity sin x
x → 1 when x → 0. The

proof of this limit identity requires the use of length of a circular arc, so it is built upon the fact
that a circle is rectifiable. To prove that a unit circle is rectifiable without circular reasoning, we
parametrize the semi-circle by:

r(t) :=
(
t,
√

1− t2
)
, t ∈ [−1, 1].

After showing also the lower semi-circle is also rectifiable (mutatis mutandis), then we can
conclude that the full circle is rectifiable. We need the following observation:

� Exercise 4.77 Let P be a partition of [a, b], and let P ′ = P ∪ {t′}. Show that lP ≤ lP ′ . Hence,
show that for a continuous curve {r(t)}t∈[a,b], if {r(t)}t∈[a,c] and {r(t)}t∈[c,b] are rectifiable for
some c ∈ (a, b), then {r(t)}t∈[a,b] is also rectifiable.

Recall that we parametrize the upper semi-circle by r(t) :=
(
t,
√

1− t2
)
, t ∈ [−1, 1]. Given

any partition P of [−1, 1], we may refine P by taking P ′ := P ∪ {0}, then we must have lP ≤ lP ′ .
After such a refinement, one can easily see from the diagram below that lP ′ ≤ 4:

Figure 4.6: diagram to be added

In particular, we have lP ≤ lP ′ ≤ 4 for any partition P of [−1, 1]. This shows the upper
semi-circle is rectifiable, meaning that supP lP exists in R. We then define

π := sup
P
lP .
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� Exercise 4.78 Show that if Φ : R2 → R2 is a distance-preserving map, and {r(t)}t∈[a,b] is a
rectifiable curve, then {Φ ◦ r(t)}t∈[a,b] is also rectifiable and its length is the same as that of
{r(t)}t∈[a,b].

4.8.3 An example of a non-rectifiable curve
A curve could be non-rectifiable if it fluctuates too much, such as:

r(t) =

{
(0, 0) if t = 0

(t, sin 1
t ) if 0 < t ≤ 2

π

.

To see why it is not rectifiable, we consider the sequence of partitions:

Pn : 0 <
1

π
2 + 2nπ

<
1

−π2 + 2nπ
<

1
π
2 + 2(n− 1)π

<
1

−π2 + 2(n− 1)π
< · · · < 1

−π2 + 2π
<

1
π
2

.

Then, we can easily see that

lPn
≥

n∑
k=1

∣∣∣∣r( 1
π
2 + 2kπ

)
− r

(
1

−π2 + 2kπ

)∣∣∣∣
≥

n∑
k=1

∣∣∣sin(π
2

+ 2kπ
)
− sin

(
−π

2
+ 2kπ

)∣∣∣
≥

n∑
k=1

2 = 2n.

Since n ∈ N can be arbitrarily large, it is impossible to find an upper bound C for lPn
. This

concludes such the curve r(t) is not rectifiable.

� Exercise 4.79 Show that the graph y = f(x), x ∈ [0, 2/π] where

f(x) =

{
x sin 1

x if x 6= 0

0 if x = 0

is not rectifiable.

4.8.4 Arc-length formula for C1 curves
Now we are ready to derive the formula of arc-length that appears in many calculus textbooks
for physics/engineering majors.

Proposition 4.30 Suppose r(t) = (f(t), g(t)), t ∈ [a, b], is a curve with f, g being C1 on [a, b].
Then, {r(t)}t=[a,b] is rectifiable, and its arc-length is given by:

ˆ b

a

|r′(t)| dt =

ˆ b

a

√
f ′(t)2 + g′(t)2 dt.

Proof. The key idea is the use the mean value theorem to relate r′(t) and r(ti)− r(ti−1). First
note that |r′(t)| is a continuous function on [a, b], so it is Riemann integrable on [a, b]. Hence, we
have

sup
P
L(|r′| , P ) =

ˆ b

a

|r′(t)| dt =

ˆ b

a

|r′(t)| dt =

ˆ b

a

|r′(t)| dt = inf
P
U(|r′| , P ).

By the standard 1
n -trick, one can take a sequence of partitions {Pn} of [a, b] such that

lim
n→∞

L(|r′| , Pn) = sup
P
L(|r′| , P ).
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Since f ′(t) and g′(t) are continuous on the closed and bounded interval [a, b], they are also
uniformly continuous on [a, b]. Hence, for any n ∈ N, there exists δn > 0 such that whenever
|t− s| < δn, we have |f ′(t)− f ′(s)| < 1

n and |g′(t)− g′(s)| < 1
n .

Now given any partition P of [a, b], we need to bound lP by a constant, and that
ˆ b

a

|r′(t)| dt

is the least upper bound of lP ’s among all partitions P of [a, b]. By mixing P with Pn, and with
enough partition points {c1, · · · , ck}, we can get a refined partition P ′n = P ∪ Pn ∪ {c1, · · · , ck}
such that all its subintervals have width less than δn. By reordering the partition points, we
denote:

P ′n = {a = t0 < t1 < · · · < tn−1 < tn = b}
Then, we have ti − ti−1 < δn for any i. Then, we still have

lim
n→∞

L(|r′| , P ′n) =

ˆ b

a

|r′(t)| dt

since

L(|r′| , Pn) ≤ L(|r′| , P ′n) ≤
ˆ b

a

|r′(t)| dt.

Next on each [ti−1, ti], we use the mean value theorem compare |r(ti)− r(ti−1)| with the
term inf [ti−1,ti] |r′| (ti − ti−1) in L(|r′| , P ′n). By extreme value theorem and continuity of |r′(t)|,
there exists si ∈ [ti−1, ti] such that

inf
[ti−1,t]

|r′| = |r′(si)| .

Also, mean value theorem shows there exists t∗i , t
∗∗
i ∈ (ti−1, ti) such that

f(ti)− f(ti−1) = f ′(t∗i )(ti − ti−1),

g(ti)− g(ti−1) = g′(t∗∗i )(ti − ti−1).

Then, we have

lP ≤ lP ′n =

n∑
i=1

|r′(ti)− r′(ti−1)| =
n∑
i=1

∣∣(f ′(t∗i ), g′(t∗∗i )
)∣∣ (ti − ti−1).

Note that by si, t∗i , t
∗∗
i ∈ [ti−1, ti] where ti − ti−1 < δn, so we have

|f ′(t∗i )− f ′(si)| <
1

n
and |g′(t∗∗i )− g′(si)| <

1

n
.

This shows∣∣(f ′(t∗i ), g′(t∗∗i )
)
−
(
f ′(si), g

′(si)
)∣∣ =

√
|f ′(t∗i )− f ′(si)|

2
+ |g′(t∗∗i )− g′(si)|2 <

√
2

n
.

Then by the (corollary of) triangle inequality in R2: |v| ≤ |v −w|+ |w| for any v,w ∈ R2, we
have ∣∣(f ′(t∗i ), g′(t∗∗i )

)∣∣ ≤ ∣∣(f ′(t∗i ), g′(t∗∗i )
)
−
(
f ′(si), g

′(si)
)∣∣+

∣∣(f ′(si), g′(si))∣∣
<

√
2

n
+ |r′(si)| =

√
2

n
+ inf

[ti−1,ti]
|r′| .

Therefore, we conclude that:

lP ≤ lP ′n =

n∑
i=1

∣∣(f ′(t∗i ), g′(t∗∗i )
)∣∣ (ti − ti−1)

<

(√
2

n
+ inf

[ti−1,ti]
|r′|

)
(ti − ti−1)

=

√
2

n
(b− a) + L(|r′| , P ′n).
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Letting n→∞, we proved that

lP ≤ lim
n→∞

(√
2

n
(b− a) + L(|r′| , P ′n)

)
=

ˆ b

a

|r′(t)| dt.

Therefore, lP is bounded from above by a constant
ˆ b

a

|r′(t)| dt independent of t. This shows the

curve {r(t)}t∈[a,b] is rectifiable.

To show that supP lP =

ˆ b

a

|r′(t)| dt, we first show that

lim
n→∞

lP ′n =

ˆ b

a

|r′(t)| dt.

Recall that ∣∣(f ′(t∗i ), g′(t∗∗i )
)
−
(
f ′(si), g

′(si)
)∣∣ < √2

n
.

By |w| ≥ − |v −w|+ |v|, we have∣∣(f ′(t∗i ), g′(t∗∗i )
)∣∣ ≥ − ∣∣(f ′(t∗i ), g′(t∗∗i )

)
−
(
f ′(si), g

′(si)
)∣∣+

∣∣(f ′(si), g′(si))∣∣
> −
√

2

n
+ |r′(si)| = −

√
2

n
+ inf

[ti−1,ti]
|r′| .

This shows

lP ′n =

n∑
i=1

∣∣(f ′(t∗i ), g′(t∗∗i )
)∣∣ (ti − ti−1) > −

√
2

n
(b− a) + L(|r′| , P ′n).

Combining with earlier result, we have

−
√

2

n
(b− a) + L(|r′| , P ′n) < lP ′n < +

√
2

n
(b− a) + L(|r′| , P ′n).

Letting n→∞ and by squeeze theorem, we proved:

lim
n→∞

lP ′n =

ˆ b

a

|r′(t)| dt

•
ˆ b

a

|r′(t)| dt is an upper bound of lP over all partitions P of [a, b], and

• there exists a sequence {P ′n} such that

lim
n→∞

lP ′n =

ˆ b

a

|r′(t)| dt.

These combined show that supP lP =

ˆ b

a

|r′(t)| dt. It proves that this integral gives the length of

the curve. �

� Exercise 4.80 Show that if L is an upper bounded of X, and there exists a sequence xn ∈ X
such that lim

n→∞
xn = L, then we have supX = L.

� Exercise 4.81 First digest the whole proof of Proposition 4.30. In the proof we considered

supP L(|r′| , P ) to extract a sequence {Pn} so that L(|r′| , Pn) converges to
ˆ b

a

|r′(t)| dt. Can

we prove the proposition by considering infP U(|r′| , P ) instead? If not, point out why. If yes,
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rewrite the whole proof (without looking at the above proof) by considering infP U(|r′| , P ).

Using the arc-length formula, one can easily derive that the length of the graph y = f(x) over
x ∈ [a, b] is given by: ˆ b

a

√
1 + f ′(x)2 dx

It is simply because we can parametrize the graph by r(t) = (t, f(t)), t ∈ [a, b]. One can check

easily that |r′(t)| = |(1, f ′(t))| =
√

1 + |f ′(t)|2.

� Exercise 4.82 When you ride a bicycle near a farm field and a piece of cow’s dung sticks on
your wheel. The trajectory of the dung is given by:

r(t) = (rt− r sin t, r − r cos t),

where r > 0 is the radius of the wheel (assuming r is much larger than the diameter of the
dung). Find the distance travelled by the dung after one cycle.

� Exercise 4.83 Write down a parametrization r(t) of the curve x2/3 + y2/3 = 1, and compute
its arc length.

� Exercise 4.84 A polar curve is one that is given by an equation r = f(θ), θ ∈ [α, β]. Here
(r, θ) denote the polar coordinates and f is a C1 function of θ. Show that the length of the
curve is given by ˆ β

α

√
f(θ)2 + f ′(θ)2 dθ.


