4.8 Parametric Curves

In \mathbb{R}^{2} (similarly for \mathbb{R}^{3}), we often represent a curve in parametric form, such as the unit circle:

$$
\begin{aligned}
& x=\cos t \\
& y=\sin t
\end{aligned}
$$

where $t \in[0,2 \pi]$. One may denote these parametric equations in vector form:

$$
\mathbf{r}(t)=(\cos t, \sin t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}, \quad t \in[0,2 \pi] .
$$

The graph $y=f(x)$ of a single variable function $f:[a, b] \rightarrow \mathbb{R}$ can be represented in parametric form by:

$$
\mathbf{r}(t)=(t, f(t)), \quad t \in[a, b]
$$

It is helpful to think of t as the time variable, and $\mathbf{r}(t)$ as the position vector of a moving particle at time t. Then the curve represented by $\mathbf{r}(t)$ is the path of the particle.

4.8.1 Geometric meaning of $\mathbf{r}^{\prime}(t)$

In physics, the meaning of $\mathbf{r}^{\prime}(t)$ is defined to be the velocity at time t as it is the rate of change of the position vector, and $\mathbf{r}^{\prime \prime}(t)$ is the acceleration. In mathematics, one can show that $\mathbf{r}^{\prime}(t)$ (if non-zero) is in fact a tangent vector to the curve $\mathbf{r}(t)$.

To prove this, we first show that it is true when the curve is a graph of a C^{1} function f, i.e. the special case $\mathbf{r}(t)=(t, f(t))$. Then, we have

$$
\mathbf{r}^{\prime}(t)=\left(1, f^{\prime}(t)\right)=\mathbf{i}+f^{\prime}(t) \mathbf{j}
$$

This vector has slope $f^{\prime}(t)$, which is the slope of the tangent to the graph $y=f(x)$ at the point $(t, f(t))$. Hence, $\mathbf{r}^{\prime}(t)$ is a tangent vector to the curve at the point $(t, f(t))$.

Now consider a general case $\mathbf{r}(t)=(f(t), g(t))$ where f, g are C^{1} functions. If $\mathbf{r}^{\prime}\left(t_{0}\right) \neq \mathbf{0}$ at a particular time t_{0}, then $f^{\prime}\left(t_{0}\right) \neq 0$ or $g^{\prime}\left(t_{0}\right) \neq 0$. WLOG we assume $f^{\prime}\left(t_{0}\right) \neq 0$. Then, f is strictly monotone near t_{0}, and hence it is locally invertible. From MATH 1023, we learned that the local inverse $f^{-1}:\left(\tau_{0}-\varepsilon, \tau_{0}+\varepsilon\right) \rightarrow\left(t_{0}-\delta, t_{0}+\delta\right)$ is also C^{1}. Here $f\left(t_{0}\right)=\tau_{0}$. Next we consider a "new" curve:

$$
\gamma(\tau):=\mathbf{r}\left(f^{-1}(\tau)\right)=\left(\tau, g \circ f^{-1}(\tau)\right), \quad \tau \in\left(\tau_{0}-\varepsilon, \tau_{0}+\varepsilon\right)
$$

We put "new" in quotation because it is not really a new curve, but the same curve as $\mathbf{r}(t)$ near $t=t_{0}$ with the particle travelling at a different speed. By now, the curve $\gamma(\tau)$ is simply the graph of $y=g \circ f^{-1}(x)$. From the previous paragraph, we know that $\gamma^{\prime}\left(\tau_{0}\right)$ is a tangent vector to the curve at the point $\gamma\left(\tau_{0}\right)=\left(f\left(t_{0}\right), g\left(t_{0}\right)\right)$. However, by chain rule, we also know that

$$
\gamma^{\prime}(\tau)=\frac{d}{d \tau} \mathbf{r}\left(f^{-1}(\tau)\right)=\mathbf{r}^{\prime}\left(f^{-1}(\tau)\right) \frac{d}{d \tau} f^{-1}(\tau) \Longrightarrow \gamma^{\prime}\left(\tau_{0}\right)=\underbrace{\left.\frac{d}{d \tau} f^{-1}(\tau)\right|_{\tau=\tau_{0}}}_{\text {scalar }} \mathbf{r}^{\prime}\left(t_{0}\right)
$$

Therefore, $\gamma^{\prime}\left(\tau_{0}\right)$ and $\mathbf{r}^{\prime}\left(t_{0}\right)$ are parallel to each other, and so $\mathbf{r}^{\prime}\left(t_{0}\right)$ is also a tangent vector to the curve at $\left(f\left(t_{0}\right), g\left(t_{0}\right)\right)$. The case when $g^{\prime}\left(t_{0}\right) \neq 0$ is similar - just regard x is a function y near the point $\left(f\left(t_{0}\right), g\left(t_{0}\right)\right)$.
(i) The geometric meaning of $\mathbf{r}^{\prime \prime}(t)$ is related to the curvature. You may learn more about it in MATH 2023 or 4223.

4.8.2 Rectifiable Curves

Next we discuss what it means by length of a curve. Given a curve $\mathbf{r}(t):[a, b] \rightarrow \mathbb{R}^{2}$, we first attempt to approximate it by line segments. That is, take a partition $P=\left\{a=t_{0}<t_{1}<\cdots<\right.$ $\left.t_{n}=b\right\}$ and consider the sum:

$$
l_{P}:=\sum_{i=1}^{n}\left|\mathbf{r}\left(t_{i}\right)-\mathbf{r}\left(t_{i-1}\right)\right|
$$

It is the total length of the line segments joining points $\mathbf{r}\left(t_{0}\right), \mathbf{r}\left(t_{1}\right), \cdots, \mathbf{r}\left(t_{n}\right)$. As we are taking more and more refined partitions P, we expect l_{P} gets larger by the triangle inequality. Therefore, the best approximation of the length of the curve is naturally defined as the maximum possible l_{P} among all partitions P.

Definition 4.7 - Rectifiable Curve and Arc Length. Let $\mathbf{r}(t):[a, b] \rightarrow \mathbb{R}^{2}$ be a curve in \mathbb{R}^{2}. We call $\mathbf{r}(t)$ a rectifiable curve if $l_{P} \leq C$ for some constant $C \in(0, \infty)$ independent of partitions P of $[a, b]$. In such case, we define the arc length of $\{\mathbf{r}(t)\}_{t \in[a, b]}$ to be:

$$
\sup _{P} l_{P}=\sup \left\{\sum_{i=1}^{n}\left|\mathbf{r}\left(t_{i}\right)-\mathbf{r}\left(t_{i-1}\right)\right|: a=t_{0}<t_{1}<\cdots<t_{n}=b\right\} .
$$

(i) It doesn't seem easy to check whether a curve is rectifiable nor to compute the arc length. Fortunately, we can later show that any C^{1} curve (i.e. $\mathbf{r}(t)=(f(t), g(t))$ where f, g are C^{1}) is rectifiable and its arc length is simply given by the integral $\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$.

Obviously, any straight-line segment $\mathbf{r}(t)=(1-t) \mathbf{r}_{0}+t \mathbf{r}_{1}, t \in[0,1]$, joining the points with position vectors \mathbf{r}_{0} and \mathbf{r}_{1} is rectifiable. To prove this, we compute that for any partition $P: 0=t_{0}<t_{1}<\cdots<t_{n}=1$, we have:

$$
\sum_{i=1}^{n}\left|\mathbf{r}\left(t_{i}\right)-\mathbf{r}\left(t_{i-1}\right)\right|=\sum_{i=1}^{n}\left|\left(t_{i}-t_{i-1}\right) \mathbf{r}_{\mathbf{1}}-\mathbf{r}_{\mathbf{0}}\right|=\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)\left|\mathbf{r}_{1}-\mathbf{r}_{0}\right|=\left|\mathbf{r}_{1}-\mathbf{r}_{0}\right|
$$

In particular, $l_{P}=\left|\mathbf{r}_{1}-\mathbf{r}_{0}\right|$ for any partition P of $[0,1]$, hence it is bounded above. This shows the straight-line segment is rectifiable, and its length is given by:

$$
\sup _{P} l_{P}=\sup _{P}\left|\mathbf{r}_{1}-\mathbf{r}_{0}\right|=\left|\mathbf{r}_{1}-\mathbf{r}_{0}\right|,
$$

which is exactly what we expect.
We next show that a unit circle is rectifiable. We want to avoid using any differentiation on \sin and cos functions, because they are based on the limit identity $\frac{\sin x}{x} \rightarrow 1$ when $x \rightarrow 0$. The proof of this limit identity requires the use of length of a circular arc, so it is built upon the fact that a circle is rectifiable. To prove that a unit circle is rectifiable without circular reasoning, we parametrize the semi-circle by:

$$
\mathbf{r}(t):=\left(t, \sqrt{1-t^{2}}\right), t \in[-1,1]
$$

After showing also the lower semi-circle is also rectifiable (mutatis mutandis), then we can conclude that the full circle is rectifiable. We need the following observation:

- Exercise 4.77 Let P be a partition of $[a, b]$, and let $P^{\prime}=P \cup\left\{t^{\prime}\right\}$. Show that $l_{P} \leq l_{P^{\prime}}$. Hence, show that for a continuous curve $\{\mathbf{r}(t)\}_{t \in[a, b]}$, if $\{\mathbf{r}(t)\}_{t \in[a, c]}$ and $\{\mathbf{r}(t)\}_{t \in[c, b]}$ are rectifiable for some $c \in(a, b)$, then $\{\mathbf{r}(t)\}_{t \in[a, b]}$ is also rectifiable.

Recall that we parametrize the upper semi-circle by $\mathbf{r}(t):=\left(t, \sqrt{1-t^{2}}\right), t \in[-1,1]$. Given any partition P of $[-1,1]$, we may refine P by taking $P^{\prime}:=P \cup\{0\}$, then we must have $l_{P} \leq l_{P^{\prime}}$. After such a refinement, one can easily see from the diagram below that $l_{P^{\prime}} \leq 4$:

Figure 4.6: diagram to be added

In particular, we have $l_{P} \leq l_{P^{\prime}} \leq 4$ for any partition P of $[-1,1]$. This shows the upper semi-circle is rectifiable, meaning that $\sup _{P} l_{P}$ exists in \mathbb{R}. We then define

$$
\pi:=\sup _{P} l_{P}
$$

■ Exercise 4.78 Show that if $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a distance-preserving map, and $\{\mathbf{r}(t)\}_{t \in[a, b]}$ is a rectifiable curve, then $\{\Phi \circ \mathbf{r}(t)\}_{t \in[a, b]}$ is also rectifiable and its length is the same as that of $\{\mathbf{r}(t)\}_{t \in[a, b]}$.

4.8.3 An example of a non-rectifiable curve

A curve could be non-rectifiable if it fluctuates too much, such as:

$$
\mathbf{r}(t)= \begin{cases}(0,0) & \text { if } t=0 \\ \left(t, \sin \frac{1}{t}\right) & \text { if } 0<t \leq \frac{2}{\pi}\end{cases}
$$

To see why it is not rectifiable, we consider the sequence of partitions:

$$
P_{n}: 0<\frac{1}{\frac{\pi}{2}+2 n \pi}<\frac{1}{-\frac{\pi}{2}+2 n \pi}<\frac{1}{\frac{\pi}{2}+2(n-1) \pi}<\frac{1}{-\frac{\pi}{2}+2(n-1) \pi}<\cdots<\frac{1}{-\frac{\pi}{2}+2 \pi}<\frac{1}{\frac{\pi}{2}}
$$

Then, we can easily see that

$$
\begin{aligned}
l_{P_{n}} & \geq \sum_{k=1}^{n}\left|\mathbf{r}\left(\frac{1}{\frac{\pi}{2}+2 k \pi}\right)-\mathbf{r}\left(\frac{1}{-\frac{\pi}{2}+2 k \pi}\right)\right| \\
& \geq \sum_{k=1}^{n}\left|\sin \left(\frac{\pi}{2}+2 k \pi\right)-\sin \left(-\frac{\pi}{2}+2 k \pi\right)\right| \\
& \geq \sum_{k=1}^{n} 2=2 n
\end{aligned}
$$

Since $n \in \mathbb{N}$ can be arbitrarily large, it is impossible to find an upper bound C for $l_{P_{n}}$. This concludes such the curve $\mathbf{r}(t)$ is not rectifiable.

- Exercise 4.79 Show that the graph $y=f(x), x \in[0,2 / \pi]$ where

$$
f(x)= \begin{cases}x \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is not rectifiable.

4.8.4 Arc-length formula for C^{1} curves

Now we are ready to derive the formula of arc-length that appears in many calculus textbooks for physics/engineering majors.

Proposition 4.30 Suppose $\mathbf{r}(t)=(f(t), g(t)), t \in[a, b]$, is a curve with f, g being C^{1} on $[a, b]$. Then, $\{\mathbf{r}(t)\}_{t=[a, b]}$ is rectifiable, and its arc-length is given by:

$$
\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{a}^{b} \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t
$$

Proof. The key idea is the use the mean value theorem to relate $\mathbf{r}^{\prime}(t)$ and $\mathbf{r}\left(t_{i}\right)-\mathbf{r}\left(t_{i-1}\right)$. First note that $\left|\mathbf{r}^{\prime}(t)\right|$ is a continuous function on $[a, b]$, so it is Riemann integrable on $[a, b]$. Hence, we have

$$
\sup _{P} L\left(\left|\mathbf{r}^{\prime}\right|, P\right)=\underline{\int_{a}^{b}}\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t=\overline{\int_{a}^{b}}\left|\mathbf{r}^{\prime}(t)\right| d t=\inf _{P} U\left(\left|\mathbf{r}^{\prime}\right|, P\right)
$$

By the standard $\frac{1}{n}$-trick, one can take a sequence of partitions $\left\{P_{n}\right\}$ of $[a, b]$ such that

$$
\lim _{n \rightarrow \infty} L\left(\left|\mathbf{r}^{\prime}\right|, P_{n}\right)=\sup _{P} L\left(\left|\mathbf{r}^{\prime}\right|, P\right)
$$

Since $f^{\prime}(t)$ and $g^{\prime}(t)$ are continuous on the closed and bounded interval $[a, b]$, they are also uniformly continuous on $[a, b]$. Hence, for any $n \in \mathbb{N}$, there exists $\delta_{n}>0$ such that whenever $|t-s|<\delta_{n}$, we have $\left|f^{\prime}(t)-f^{\prime}(s)\right|<\frac{1}{n}$ and $\left|g^{\prime}(t)-g^{\prime}(s)\right|<\frac{1}{n}$.

Now given any partition P of $[a, b]$, we need to bound l_{P} by a constant, and that $\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$ is the least upper bound of l_{P} 's among all partitions P of $[a, b]$. By mixing P with P_{n}, and with enough partition points $\left\{c_{1}, \cdots, c_{k}\right\}$, we can get a refined partition $P_{n}^{\prime}=P \cup P_{n} \cup\left\{c_{1}, \cdots, c_{k}\right\}$ such that all its subintervals have width less than δ_{n}. By reordering the partition points, we denote:

$$
P_{n}^{\prime}=\left\{a=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=b\right\}
$$

Then, we have $t_{i}-t_{i-1}<\delta_{n}$ for any i. Then, we still have

$$
\lim _{n \rightarrow \infty} L\left(\left|\mathbf{r}^{\prime}\right|, P_{n}^{\prime}\right)=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

since

$$
L\left(\left|\mathbf{r}^{\prime}\right|, P_{n}\right) \leq L\left(\left|\mathbf{r}^{\prime}\right|, P_{n}^{\prime}\right) \leq \int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Next on each $\left[t_{i-1}, t_{i}\right]$, we use the mean value theorem compare $\left|\mathbf{r}\left(t_{i}\right)-\mathbf{r}\left(t_{i-1}\right)\right|$ with the term $\left.\inf _{\left[t_{i-1}, t_{i}\right]}\right] \mathbf{r}^{\prime} \mid\left(t_{i}-t_{i-1}\right)$ in $L\left(\left|\mathbf{r}^{\prime}\right|, P_{n}^{\prime}\right)$. By extreme value theorem and continuity of $\left|\mathbf{r}^{\prime}(t)\right|$, there exists $s_{i} \in\left[t_{i-1}, t_{i}\right]$ such that

$$
\inf _{\left[t_{i-1}, t\right]}\left|\mathbf{r}^{\prime}\right|=\left|\mathbf{r}^{\prime}\left(s_{i}\right)\right|
$$

Also, mean value theorem shows there exists $t_{i}^{*}, t_{i}^{* *} \in\left(t_{i-1}, t_{i}\right)$ such that

$$
\begin{aligned}
f\left(t_{i}\right)-f\left(t_{i-1}\right) & =f^{\prime}\left(t_{i}^{*}\right)\left(t_{i}-t_{i-1}\right) \\
g\left(t_{i}\right)-g\left(t_{i-1}\right) & =g^{\prime}\left(t_{i}^{* *}\right)\left(t_{i}-t_{i-1}\right)
\end{aligned}
$$

Then, we have

$$
l_{P} \leq l_{P_{n}^{\prime}}=\sum_{i=1}^{n}\left|\mathbf{r}^{\prime}\left(t_{i}\right)-\mathbf{r}^{\prime}\left(t_{i-1}\right)\right|=\sum_{i=1}^{n}\left|\left(f^{\prime}\left(t_{i}^{*}\right), g^{\prime}\left(t_{i}^{* *}\right)\right)\right|\left(t_{i}-t_{i-1}\right)
$$

Note that by $s_{i}, t_{i}^{*}, t_{i}^{* *} \in\left[t_{i-1}, t_{i}\right]$ where $t_{i}-t_{i-1}<\delta_{n}$, so we have

$$
\left|f^{\prime}\left(t_{i}^{*}\right)-f^{\prime}\left(s_{i}\right)\right|<\frac{1}{n} \quad \text { and } \quad\left|g^{\prime}\left(t_{i}^{* *}\right)-g^{\prime}\left(s_{i}\right)\right|<\frac{1}{n}
$$

This shows

$$
\left|\left(f^{\prime}\left(t_{i}^{*}\right), g^{\prime}\left(t_{i}^{* *}\right)\right)-\left(f^{\prime}\left(s_{i}\right), g^{\prime}\left(s_{i}\right)\right)\right|=\sqrt{\left|f^{\prime}\left(t_{i}^{*}\right)-f^{\prime}\left(s_{i}\right)\right|^{2}+\left|g^{\prime}\left(t_{i}^{* *}\right)-g^{\prime}\left(s_{i}\right)\right|^{2}}<\frac{\sqrt{2}}{n}
$$

Then by the (corollary of) triangle inequality in $\mathbb{R}^{2}:|\mathbf{v}| \leq|\mathbf{v}-\mathbf{w}|+|\mathbf{w}|$ for any $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{2}$, we have

$$
\begin{aligned}
\left|\left(f^{\prime}\left(t_{i}^{*}\right), g^{\prime}\left(t_{i}^{* *}\right)\right)\right| & \leq\left|\left(f^{\prime}\left(t_{i}^{*}\right), g^{\prime}\left(t_{i}^{* *}\right)\right)-\left(f^{\prime}\left(s_{i}\right), g^{\prime}\left(s_{i}\right)\right)\right|+\left|\left(f^{\prime}\left(s_{i}\right), g^{\prime}\left(s_{i}\right)\right)\right| \\
& <\frac{\sqrt{2}}{n}+\left|\mathbf{r}^{\prime}\left(s_{i}\right)\right|=\frac{\sqrt{2}}{n}+\inf _{\left[t_{i-1}, t_{i}\right]}\left|\mathbf{r}^{\prime}\right|
\end{aligned}
$$

Therefore, we conclude that:

$$
\begin{aligned}
l_{P} & \leq l_{P_{n}^{\prime}}=\sum_{i=1}^{n}\left|\left(f^{\prime}\left(t_{i}^{*}\right), g^{\prime}\left(t_{i}^{* *}\right)\right)\right|\left(t_{i}-t_{i-1}\right) \\
& <\left(\frac{\sqrt{2}}{n}+\inf _{\left[t_{i-1}, t_{i}\right]}\left|\mathbf{r}^{\prime}\right|\right)\left(t_{i}-t_{i-1}\right) \\
& =\frac{\sqrt{2}}{n}(b-a)+L\left(\left|\mathbf{r}^{\prime}\right|, P_{n}^{\prime}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we proved that

$$
l_{P} \leq \lim _{n \rightarrow \infty}\left(\frac{\sqrt{2}}{n}(b-a)+L\left(\left|\mathbf{r}^{\prime}\right|, P_{n}^{\prime}\right)\right)=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Therefore, l_{P} is bounded from above by a constant $\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$ independent of t. This shows the curve $\{\mathbf{r}(t)\}_{t \in[a, b]}$ is rectifiable.

To show that $\sup _{P} l_{P}=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$, we first show that

$$
\lim _{n \rightarrow \infty} l_{P_{n}^{\prime}}=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Recall that

$$
\left|\left(f^{\prime}\left(t_{i}^{*}\right), g^{\prime}\left(t_{i}^{* *}\right)\right)-\left(f^{\prime}\left(s_{i}\right), g^{\prime}\left(s_{i}\right)\right)\right|<\frac{\sqrt{2}}{n}
$$

By $|\mathbf{w}| \geq-|\mathbf{v}-\mathbf{w}|+|\mathbf{v}|$, we have

$$
\begin{aligned}
\left|\left(f^{\prime}\left(t_{i}^{*}\right), g^{\prime}\left(t_{i}^{* *}\right)\right)\right| & \geq-\left|\left(f^{\prime}\left(t_{i}^{*}\right), g^{\prime}\left(t_{i}^{* *}\right)\right)-\left(f^{\prime}\left(s_{i}\right), g^{\prime}\left(s_{i}\right)\right)\right|+\left|\left(f^{\prime}\left(s_{i}\right), g^{\prime}\left(s_{i}\right)\right)\right| \\
& >-\frac{\sqrt{2}}{n}+\left|\mathbf{r}^{\prime}\left(s_{i}\right)\right|=-\frac{\sqrt{2}}{n}+\inf _{\left[t_{i-1}, t_{i}\right]}\left|\mathbf{r}^{\prime}\right|
\end{aligned}
$$

This shows

$$
l_{P_{n}^{\prime}}=\sum_{i=1}^{n}\left|\left(f^{\prime}\left(t_{i}^{*}\right), g^{\prime}\left(t_{i}^{* *}\right)\right)\right|\left(t_{i}-t_{i-1}\right)>-\frac{\sqrt{2}}{n}(b-a)+L\left(\left|\mathbf{r}^{\prime}\right|, P_{n}^{\prime}\right)
$$

Combining with earlier result, we have

$$
-\frac{\sqrt{2}}{n}(b-a)+L\left(\left|\mathbf{r}^{\prime}\right|, P_{n}^{\prime}\right)<l_{P_{n}^{\prime}}<+\frac{\sqrt{2}}{n}(b-a)+L\left(\left|\mathbf{r}^{\prime}\right|, P_{n}^{\prime}\right)
$$

Letting $n \rightarrow \infty$ and by squeeze theorem, we proved:

$$
\lim _{n \rightarrow \infty} l_{P_{n}^{\prime}}=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

- $\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$ is an upper bound of l_{P} over all partitions P of $[a, b]$, and
- there exists a sequence $\left\{P_{n}^{\prime}\right\}$ such that

$$
\lim _{n \rightarrow \infty} l_{P_{n}^{\prime}}=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

These combined show that $\sup _{P} l_{P}=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$. It proves that this integral gives the length of the curve.

- Exercise 4.80 Show that if L is an upper bounded of X, and there exists a sequence $x_{n} \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=L$, then we have $\sup X=L$.
- Exercise 4.81 First digest the whole proof of Proposition 4.30. In the proof we considered $\sup _{P} L\left(\left|\mathbf{r}^{\prime}\right|, P\right)$ to extract a sequence $\left\{P_{n}\right\}$ so that $L\left(\left|\mathbf{r}^{\prime}\right|, P_{n}\right)$ converges to $\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$. Can we prove the proposition by considering $\inf _{P} U\left(\left|\mathbf{r}^{\prime}\right|, P\right)$ instead? If not, point out why. If yes,
rewrite the whole proof (without looking at the above proof) by considering $\inf _{P} U\left(\left|\mathbf{r}^{\prime}\right|, P\right)$.
Using the arc-length formula, one can easily derive that the length of the graph $y=f(x)$ over $x \in[a, b]$ is given by:

$$
\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x
$$

It is simply because we can parametrize the graph by $\mathbf{r}(t)=(t, f(t)), t \in[a, b]$. One can check easily that $\left|\mathbf{r}^{\prime}(t)\right|=\left|\left(1, f^{\prime}(t)\right)\right|=\sqrt{1+\left|f^{\prime}(t)\right|^{2}}$.

- Exercise 4.82 When you ride a bicycle near a farm field and a piece of cow's dung sticks on your wheel. The trajectory of the dung is given by:

$$
\mathbf{r}(t)=(r t-r \sin t, r-r \cos t),
$$

where $r>0$ is the radius of the wheel (assuming r is much larger than the diameter of the dung). Find the distance travelled by the dung after one cycle.

- Exercise 4.83 Write down a parametrization $\mathbf{r}(t)$ of the curve $x^{2 / 3}+y^{2 / 3}=1$, and compute its arc length.
- Exercise 4.84 A polar curve is one that is given by an equation $r=f(\theta), \theta \in[\alpha, \beta]$. Here (r, θ) denote the polar coordinates and f is a C^{1} function of θ. Show that the length of the curve is given by

$$
\int_{\alpha}^{\beta} \sqrt{f(\theta)^{2}+f^{\prime}(\theta)^{2}} d \theta
$$

