香港科技 大 學 THE HONG KONG UNIVERSITY OF SCIENCE

MIDTERM EXAMINATION

Course Code：MATH 1024

Course Title：Honors Calculus II
Semester：\quad Spring 2017－18
Date and Time：10：00AM－1：00PM， 24 March 2018

Instructions

－Do NOT open the exam until instructed to do so．
－All mobile phones and communication devices should be switched OFF．
－It is an OPEN－NOTES exam．Authorized reference materials are the lecture notes，two of your notebooks，and your own homework．No other reference materials are allowed．
－Answer ALL problems．Write your solutions in the space provided．
－You must SHOW YOUR WORK and JUSTIFY YOUR STEPS to receive credits in every problem in Part B．
－Some problems in Part B are structured into several parts．You can quote the results stated in the preceding parts to do the next part．

HKUST Academic Honor Code

Honesty and integrity are central to the academic work of HKUST．Students of the University must observe and uphold the highest standards of academic integrity and honesty in all the work they do throughout their program of study．As members of the University community，students have the responsibility to help maintain the academic reputation of HKUST in its academic endeavors．Sanctions will be imposed on students，if they are found to have violated the regulations governing academic integrity and honesty．
＂I confirm that I have answered the questions using only materials specified approved for use in this examination，that all the answers are my own work，and that I have not received any assistance during the examination．＂

Student＇s Signature：

Student＇s Name（English）：

> FAMILY NAME, First Name

HKUST ID：＿Seat Number： \qquad

Part A - Short Questions (25 points)

[Recommended time: < 30 min .]

1. Which ONE of the following is the correct definition of the lower Riemann integral

$$
L \int_{a}^{b} f(x) d x, \quad \text { or equivalently } \underline{\int_{a}^{b}} f(x) d x
$$

for a bounded function $f(x)$ over a bounded interval $[a, b]$? Put \checkmark in the correct answer:

$$
\begin{aligned}
& \bigcirc \sup \left\{\sum_{i=1}^{n} \sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x) \cdot\left(x_{i}-x_{i-1}\right) \mid P=\left\{a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b\right\}\right\} \\
& \bigcirc \sup \left\{\sum_{i=1}^{n} \inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x) \cdot\left(x_{i}-x_{i-1}\right) \mid P=\left\{a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b\right\}\right\} \\
& \bigcirc \inf \left\{\sum_{i=1}^{n} \sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x) \cdot\left(x_{i}-x_{i-1}\right) \mid P=\left\{a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b\right\}\right\} \\
& \bigcirc \inf \left\{\sum_{i=1}^{n} \inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x) \cdot\left(x_{i}-x_{i-1}\right) \mid P=\left\{a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b\right\}\right\}
\end{aligned}
$$

2. Let $f(x)$ be a third-degree polynomial such that $f(x)>0, f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$ on $[0,1]$. Denote P to be the uniform partition of $[0,1]$ into 100 sub-intervals. Rank the following sums and integrals in increasing order using $<$ or $=$. Do NOT use \leq. No justification is needed.

$$
U(P, f) \quad L(P, f) \quad L_{100} \quad M_{100} \quad R_{100} \quad T_{100} \quad S_{100} \quad \int_{0}^{1} f(x) d x
$$

3. Which of the following statement(s) would imply a (non-empty) set A in \mathbb{R}^{2} has zero Jordan measure? Put \checkmark in ALL correct answer(s), or put \checkmark in "None of the above".$\mu_{*}(A)=0$$\mu^{*}(A)=0$There is a simple region S such that $S \subset A$ and $\mu(S)=0$.There is a simple region S such that $A \subset S$ and $\mu(S)=0$.
One of the above
4. Give an example of a bounded function $f:[0,1] \rightarrow \mathbb{R}$ such that $f(x)$ itself is not Riemann integrable on $[0,1]$, but $f(x)^{2}$ is Riemann integrable on $[0,1]$.
5. Show that π^{x} is Riemann integrable on $[0,1]$ from the definition, and find the value of the integral:

$$
\int_{0}^{1} \pi^{x} d x
$$

6. Consider the function:

$$
f(x)=\frac{1}{(x-1)(x-2) \cdots(x-1024)} .
$$

Determine all real numbers c such that $\int_{c}^{+\infty} f(x) d x$ converges. Explain your answer.

Part B - Long Questions (75 points): Answer ALL THREE problems

[Recommended time: Q1 $<40 \mathrm{~m}, \mathrm{Q} 2<55 \mathrm{~m}, \mathrm{Q} 3<55 \mathrm{~m}$.]

1. Consider a bijective function $f:[a, b] \rightarrow[f(a), f(b)]$ which is differentiable on $[a, b]$ and $f^{\prime}(x)>0$ on (a, b).
(a) By sketching a diagram, guess the value of:

$$
\int_{a}^{b} f(x) d x+\int_{f(a)}^{f(b)} f^{-1}(y) d y
$$

in terms of $a, b, f(a), f(b)$.
(b) Prove your claim in (a) using integration by substitution.
(c) Let $g(x)=5 \sqrt{x}-6$. Show that the definite integral:

$$
\int_{4}^{9} g(g(g(g(g(x))))) d x
$$

is a rational number.
2. Let $f(x):[a, b] \rightarrow \mathbb{R}$ be a continuous function defined on a bounded interval $[a, b]$. Fix a constant $\lambda \in[0,1]$ and a large positive integer n. Consider the uniform partition of $[a, b]$:

$$
\left\{a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b\right\}
$$

and define a numerical approximation of $\int_{a}^{b} f(x) d x$ by:

$$
A_{n}:=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \cdot\left(x_{i}-x_{i-1}\right), \quad \text { where } x_{i}^{*}:=(1-\lambda) x_{i-1}+\lambda x_{i} .
$$

(a) By sketching a diagram, explain the geometric meaning of the sum A_{n}.
(b) Suppose $f^{\prime}(x)$ exists and is continuous on $[a, b]$. Show that:

$$
\left|\int_{a}^{b} f(x) d x-A_{n}\right| \leq \frac{\left(1-2 \lambda+2 \lambda^{2}\right)(b-a)^{2}}{2 n} \sup _{[a, b]}\left|f^{\prime}\right|
$$

(c) Suppose further that $f^{\prime \prime}(x)$ exists and is continuous on $[a, b]$. Show that:

$$
\left|\int_{a}^{b} f(x) d x-A_{n}\right| \leq \frac{|1-2 \lambda|(b-a)^{2}}{2 n} \sup _{[a, b]}\left|f^{\prime}\right|+\frac{\left(1-3 \lambda+3 \lambda^{2}\right)(b-a)^{3}}{6 n^{2}} \sup _{[a, b]}\left|f^{\prime \prime}\right|
$$

3. Let a and b be two positive integers, and $g_{0}:\left[0, \frac{a}{b}\right] \rightarrow \mathbb{R}$ be a continuous function on $\left[0, \frac{a}{b}\right]$, we define for any integer $n \geq 0$ that:

$$
\begin{array}{ll}
f_{n}(x):=\frac{x^{n}(a-b x)^{n}}{n!} & \\
g_{n}(x):=\int_{0}^{x} g_{n-1}(x) d x & \text { for any } n \geq 1
\end{array}
$$

(a) Show that for any $n \geq 0$, the k-th order derivatives $f_{n}^{(k)}(0)$ and $f_{n}^{(k)}\left(\frac{a}{b}\right)$ are integers for any $k \geq 0$.
(b) Define $I_{n}:=\int_{0}^{\frac{a}{b}} f_{n}(x) g_{0}(x) d x$. Using (a), or otherwise, show that there exist two finite sequences of integers $\left\{a_{i}\right\}_{i=1}^{N}$ and $\left\{b_{i}\right\}_{i=1}^{N}\left(a_{i}, b_{i}\right.$ and N may depend on $\left.n\right)$ such that

$$
I_{n}=\sum_{i=1}^{N}\left(a_{i} g_{i}(a / b)+b_{i} g_{i}(0)\right)
$$

(c) Given that r is a positive number such that there exists a non-negative, non-constant continuous function $g_{0}:[0, r] \rightarrow[0, \infty)$ such that $g_{n}(0)$ and $g_{n}(r)$ are integers for any $n \geq 0$ (where $g_{n}(x)$ is defined recursively as above). Show that r is irrational.

