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4.6 Numerical Methods of Integrations
Experience in previous chapters told us that find the exact value of an integral could be very

difficult. While it is easy to integrate
ˆ b

a

xe−x
2

dx, no one has even managed to find the exact

value of
ˆ b

a

e−x
2

dx even though this integral is important in statistics (normal distribution). In

view of this, mathematicians have developed various workable way of find the approximated
values of a definite integral.

4.6.1 Left-Hand, Mid-Point, and Right-Hand Sums
The key idea behind left-hand, mid-point, right-hand sums is to approximate the region under
the graph y = f(x) by bar-charts (i.e. rectangles). Consider a function f : [a, b]→ R. We define
Pn to be the uniform partition of [a, b]:

Pn : a = x0 < x1 < · · · < xn−1 < xn = b

where xi = a+ b−a
n i. We then define

Ln :=
b− a
n

n∑
i=1

f(xi−1)

Mn :=
b− a
n

n∑
i=1

f

(
xi−1 + xi

2

)

Rn :=
b− a
n

n∑
i=1

f(xi)

to be the n-th left-hand sum, mid-point sum, and right-hand sum respectively.
Practically, we could choose n to be a large integer (say 100) and compute L100, M100 and

R100 directly using, for instance, a spreadsheet app. We leave it for readers to play around with
Excel on computing these sums. Our emphasis in this section is to determine how accuracy are
these approximations.

Proposition 4.23 Let f be a C1 function on [a, b]. Then, the error between left-hand sum Ln

and right-hand sum Rn (defined previously) and the actual integral
ˆ b

a

f(x) dx is bounded

by: ∣∣∣∣∣
ˆ b

a

f(x) dx− Ln

∣∣∣∣∣ ≤ (b− a)2

2n
sup
[a,b]

|f ′|∣∣∣∣∣
ˆ b

a

f(x) dx−Rn

∣∣∣∣∣ ≤ (b− a)2

2n
sup
[a,b]

|f ′|

Proof. Consider the uniform partition Pn of [a, b] and denote the partition points by xi’s where
i = 0, 1, · · · , n. By the Newton-Leibniz’s Formula, we get

f(x) = f(xi−1) +

ˆ x

xi−1

f ′(t) dt, ∀x ∈ [xi−1, xi].

Then, we have
ˆ b

a

f(x) dx =

n∑
i=1

ˆ xi

xi−1

f(x) dx =

n∑
i=1

ˆ xi

xi−1

(
f(xi−1) +

ˆ x

xi−1

f ′(t) dt

)
dx

=

n∑
i=1

f(xi−1)(xi − xi−1)︸ ︷︷ ︸
=Ln

+

n∑
i=1

ˆ xi

xi−1

(ˆ x

xi−1

f ′(t) dt

)
dx.
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The first term is exactly Ln, so the second double integral term gives the error between
ˆ b

a

f(x) dx

and Ln. Next we estimate:∣∣∣∣∣
ˆ x

xi−1

f ′(t) dt

∣∣∣∣∣ ≤
ˆ x

xi−1

|f ′(t)| dt ≤
ˆ x

xi−1

sup
[a,b]

|f ′| dt = sup
[a,b]

|f ′| · (x− xi−1).

This shows ∣∣∣∣∣
ˆ b

a

f(x) dx− Ln

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

ˆ xi

xi−1

(ˆ x

xi−1

f ′(t) dt

)
dx

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∣
ˆ xi

xi−1

(ˆ x

xi−1

f ′(t) dt

)
dx

∣∣∣∣∣ ≤
n∑
i=1

ˆ xi

xi−1

∣∣∣∣∣
ˆ x

xi−1

f ′(t) dt

∣∣∣∣∣ dx
≤

n∑
i=1

ˆ xi

xi−1

(x− xi−1) sup
[a,b]

|f ′| dx

=

n∑
i=1

(xi − xi−1)2

2
sup
[a,b]

|f ′| =
n∑
i=1

(b− a)2

2n2
sup
[a,b]

|f ′|

=
(b− a)2

2n
sup
[a,b]

|f ′|

where the we used the fact that Pn is a uniform partition so that xi − xi−1 = b−a
n .

The proof for the right-hand sum is similar, mutatis mutandis. �

i In the above proof, you may use instead the mean-value theorem instead of integral
remainder of Taylor series. We use the latter because it may result in a sharper estimate in
some other error estimations.

� Exercise 4.57 Write up the proof of Proposition 4.23 using mean-value theorem instead.

� Exercise 4.58 Write up the proof of the right-hand sum part in Proposition 4.23. Clearly
point out what are the essential differences from the proof of the left-hand sum.

� Example 4.15 To see how large n need to be in order estimate
ˆ 3

1

e−x
2

dx up to 4 decimal

places, we need to find an n so that

(3− 1)2

2n
sup
[1,3]

∣∣∣(e−x2

)′
∣∣∣ < 0.00001.

By straight-forwarding differentiation, we get

d

dx
e−x

2

= −2xe−x
2

=⇒
∣∣∣2xe−x2

∣∣∣ ≤ 2× 3× e−1 ∀x ∈ [1, 3] =⇒ sup
[1,3]

∣∣∣(e−x2

)′
∣∣∣ ≤ 6

e
.

So we need an n such that
4

2n
· 6

e
< 0.00001.

It can be achieved when n ≥ 441456.
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� Exercise 4.59 Find an n such that the left-hand sum Ln gives an approximation of
ˆ 1

−2

sin(x2) dx

with accuracy up to 5 decimal places.

i Note that the n that we find above may not be the least possible n.

Next we discuss the error estimation of the mid-point sum. We want to prove a more general
result, that is taking the sample point x∗i in any sub-interval [xi−1, xi] of a uniform partition so
that it makes the ratio of 1− λ : λ with the end points xi−1 and xi.

Proposition 4.24 Let f(x) : [a, b] → R be a C1 function defined on a bounded interval [a, b].
Fix a constant λ ∈ [0, 1] and a large positive integer n. Consider the uniform partition of [a, b]:

{a = x0 < x1 < · · · < xn−1 < xn = b}

and define a numerical approximation of
ˆ b

a

f(x) dx by:

An :=

n∑
i=1

f(x∗i ) · (xi − xi−1), where x∗i := (1− λ)xi−1 + λxi.

Then we have: ∣∣∣∣∣
ˆ b

a

f(x) dx−An

∣∣∣∣∣ ≤ (1− 2λ+ 2λ2)(b− a)2

2n
sup
[a,b]

|f ′| .

Proof. The proof is a modification of that of Proposition 4.23. Since we have demonstrated the
use of integral remainder when proving Proposition 4.23, we use mean-value theorem this time.

For any x ∈ [xi−1, xi], the mean-value theorem shows there exists ci (depending on i and x)
between x and x∗i such that

f(x) = f(x∗i ) + f ′(ci)(x− x∗i ).

Then,

ˆ b

a

f(x) dx =

n∑
i=1

ˆ xi

xi−1

f(x) dx =

n∑
i=1

f(x∗i )(xi − xi−1)︸ ︷︷ ︸
=An

+

n∑
i=1

ˆ xi

xi−1

f ′(ci)(x− x∗i ) dx.

The first term is An, so the second term gives the error between the integral
ˆ b

a

f(x) dx and An.

Next we estimate the second integral:

∣∣∣∣∣
n∑
i=1

ˆ xi

xi−1

f ′(ci)(x− x∗i ) dx

∣∣∣∣∣
≤

n∑
i=1

ˆ xi

xi−1

|f ′(ci)| |x− x∗i | dx

≤
n∑
i=1

sup
[a,b]

|f ′|
ˆ xi

xi−1

|x− x∗i | dx.

Then we need to compute the integral of |x− x∗i | over [xi−1, xi]. Note that x − x∗i ≤ 0 on



4.6 Numerical Methods of Integrations 73

[xi−1, x
∗
i ] and x− x∗i ≥ 0 on [x∗i , xi], so we have

ˆ xi

xi−1

|x− x∗i | dx =

ˆ x∗i

xi−1

(x∗i − x) dx+

ˆ xi

x∗i

(x− x∗i ) dx

=
1

2
(x∗i − xi−1)2 +

1

2
(xi − x∗i )2

=
1

2
λ2(xi − xi−1)2 +

1

2
(1− λ)2(xi − xi−1)2

=
(b− a)2

2n2
(2λ2 − 2λ+ 1).

That shows∣∣∣∣∣
ˆ b

a

f(x) dx−An

∣∣∣∣∣ ≤
n∑
i=1

sup
[a,b]

|f ′| · (b− a)2

2n2
(2λ2 − 2λ+ 1) = sup

[a,b]

|f ′| · (b− a)2

2n
(2λ2 − 2λ+ 1)

as desired. �

The quadratic function 2λ2 − 2λ+ 1 achieves its minimum at λ = 1
2 . Therefore, the mid-point

sum tends to give a slightly better estimate among all other λ-sums.

� Exercise 4.60 — Source: MATH1024 Spring 2018 Midterm. Let f : [a, b]→ R be a C2 function
on [a, b], and let An be as in Proposition 4.24. Show that:∣∣∣∣∣

ˆ b

a

f(x) dx−An

∣∣∣∣∣ ≤ |1− 2λ| (b− a)2

2n
sup
[a,b]

|f ′|+ (1− 3λ+ 3λ2)(b− a)3

6n2
sup
[a,b]

|f ′′| .

[Hint: Consider second-order Taylor’s approximation and its remainder.]

4.6.2 Trapezoidal Rule
The trapezoidal rule, as the name implies, approximates the area under the graph of a function by
trapeziums. It typically give a better approximation than left-hand and right-hand sums because
the trapeziums form a piecewise linear graph that fix the function better than step functions.

Given a function f : [a, b] → R, we again consider uniform partitions {xi = a + i∆x}ni=0

where ∆x = b−a
n . Then, the total area of these trapeziums (as show in Figure ??) is given by

Tn =

(
f(x0) + f(x1)

2
+
f(x1) + f(x2)

2
+
f(x2) + f(x3)

2
+ · · ·+ f(xn−1) + f(xn)

2

)
·∆x

=

(
f(x0) + f(xn)

2
+ f(x1) + f(x2) + · · ·+ f(xn−1)

)
·∆x

=

(
f(a) + f(b)

2
+ f(x1) + f(x2) + · · ·+ f(xn−1)

)
· b− a

n
.

With this formula, the trapezium sum Tn can be easily computed using spreadsheet apps. As
before, we are more interested in its error estimation:

Proposition 4.25 Let f : [a, b]→ R be a C2 function on [a, b], and Tn be the n-th trapezoidal

sum of the integral
ˆ b

a

f(x) dx then we have

∣∣∣∣∣
ˆ b

a

f(x) dx− Tn

∣∣∣∣∣ ≤ (b− a)3

12n2
sup
[a,b]

|f ′′| .

Proof. Denote the partition points by xi = a+ i∆x where ∆ = b−a
n . First, we denote

Ai = −xi+1 + xi
2

and B = −
(
xi+1 − xi

2

)2

= − (∆x)2

4
.
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It can be verified easily that: [
(x+Ai)f(x)

]xi+1

xi

=
f(xi) + f(xi+1)

2
·∆x[(

(x+Ai)
2 +B

)
f ′(x)

]xi+1

xi

= 0

for any i = 0, 1, 2, . . . , n− 1. Then, by the fact that

d

dx

(
(x+Ai)f(x)− 1

2
((x+Ai)

2 +B)f ′(x)

)
= f(x) + (x+Ai)f

′(x)− 1

2
· 2(x+Ai)f

′(x)− 1

2
((x+Ai)

2 +B)f ′′(x)

= f(x)− 1

2
(x+Ai)

2 +B)f ′′(x).

Hence, using the Newton-Leibniz’s Formula and by our choice of Ai and B, we get
ˆ xi+1

xi

f(x)dx−
ˆ xi+1

xi

1

2
((x+Ai)

2 +B)f ′′(x) dx

=

[
(x+Ai)f(x)− 1

2
((x+Ai)

2 +B)f ′(x)

]xi+1

xi

=
f(xi) + f(xi+1)

2
·∆x.

Note that
f(xi) + f(xi+1)

2
·∆x is the area of the i-th trapezium, so we conclude that

ˆ b

a

f(x) dx

=

n−1∑
i=0

ˆ xi+1

xi

f(x) dx =

n−1∑
i=0

f(xi) + f(xi+1)

2
·∆x+

n−1∑
i=0

ˆ xi+1

xi

1

2
((x+Ai)

2 +B)f ′′(x) dx

= Tn +

n−1∑
i=0

ˆ xi+1

xi

1

2
((x+Ai)

2 +B)f ′′(x) dx

Hence, the integral terms give the error between
ˆ b

a

f(x) dx and Tn. It worths noting that

(x+Ai)
2 +B = (x− xi+1)(x− xi) ≤ 0 on [xi, xi+1].

Therefore the error term is given by∣∣∣∣∣
ˆ b

a

f(x) dx− Tn

∣∣∣∣∣ ≤ 1

2

n−1∑
i=0

ˆ xi+1

xi

(xi+1 − x)(x− xi) |f ′′(x)| dx

≤ 1

2

n−1∑
i=0

ˆ xi+1

xi

(xi+1 − x)(x− xi) dx · sup
[a,b]

|f ′′|

=
1

2

n−1∑
i=0

1

6
(∆x)3 · sup

[a,b]

|f ′′| = (b− a)3

12n2
sup
[a,b]

|f ′′| .

The third step follows from direct computation of the integral
ˆ xi+1

xi

(xi+1 − x)(x− xi) dx (left

as an exercise for readers). It completes the proof. �
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� Exercise 4.61 From the above proof, what can you say about the integral
ˆ b

a

f(x) dx and Tn

when f ′′ > 0 on [a, b]?

4.6.3 Simpson’s Rule
The Simpson’s rule approximates the graph of a function by quadratic curves. Given a continuous
function f : [a, b] → R, we consider a sequence of uniform partitions {P2n} of [a, b] with 2n
subintervals. Denote the partition points to be {xi}2ni=0, then on each interval [x2i, x2i+2] where
i = 0, 1, · · · , n − 1, we approximate f by a quadratic function Qi(x) so that Qi(x2i) = f(x2i),
Qi(x2i+1) = f(x2i+1) and Qi(x2i+2) = f(x2i+2). One can find that that such an Qi(x) can be
written as:

Qi(x) = f(x2i) ·
(x− x2i+1)(x− x2i+2)

(x2i − x2i+1)(x2i − x2i+2)
+ f(x2i+1) · (x− x2i)(x− x2i+2)

(x2i+1 − x2i)(x2i+1 − x2i+2)

+ f(x2i+2) · (x− x2i)(x− x2i+1)

(x2i+2 − x2i)(x2i+2 − x2i+1)
.

One easy way to see this is to observe that

(x− x2i+1)(x− x2i+2)

(x2i − x2i+1)(x2i − x2i+2)

equals 1 when x = x2i, and equals 0 when x = x2i+1 or x2i+2. Similar for the second and third
terms.

� Exercise 4.62 Given n distinct numbers x1 < x2 < · · · < xn, and a set of n numbers
y1, · · · , yn (not necessarily distinct), find an n-th degree polynomial P (x) such that P (xi) = yi
for any i = 1, 2, · · · , n.

Qi is simply a quadratic function, so the integral below can be found easily:
ˆ x2i+2

x2i

Qi(x) dx =
b− a
6n

(f(x2i) + 4f(x2i+1) + f(x2i+2))

using the fact that P2n is a uniform partition so that x2i+2 − x2i+1 = x2i+1 − x2i = b−a
2n . This is

left as an exercise for readers.

� Exercise 4.63 Compute
ˆ x2i+2

x2i

Qi(x) dx.

Summing up the area of Qi’s, we get the following approximated value of
ˆ b

a

f(x) dx:

Sn :=

n−1∑
i=0

ˆ x2i+2

x2i

Qi(x) dx =
b− a
6n

(
f(a) + f(b) + 2

n−1∑
i=1

f(x2i) + 4

n−1∑
i=0

f(x2i+1)

)

For the error estimation of the Simpson’s rule, it can be shown to be of order O(1/n4) provided
that f is C4 on [a, b]:

Proposition 4.26 Let f : [a, b] → R be a C4 function, then there exists a universal constant
C > 0 such that ∣∣∣∣∣

ˆ b

a

f(x) dx− Sn

∣∣∣∣∣ ≤ (b− a)5

Cn4
sup
[a,b]

∣∣∣f (4)
∣∣∣ .

Outline of Proof. The key idea is to use the Lagrange’s remainder theorem, which asserts that for
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each i = 0, 1, · · · , n− 1 and any x ∈ [x2i, b], there exists h1(x) ∈ [x2i, x] such that:

f(x) = f(x2i) + f ′(x2i)(x− x2i) +
f ′′(x2i)

2
(x− x2i)

2 +
f ′′′(x2i)

3!
(x− x2i)

3︸ ︷︷ ︸
=:Pi(x)

+
f (4)(h1(x))

4!
(x−x2i)

4.

That would give the error estimation of∣∣∣∣∣
ˆ x2i+2∆x

x2i

f(x) dx−
ˆ x2i+2∆x

x2i

Pi(x) dx

∣∣∣∣∣
in terms of sup[a,b]

∣∣f (4)
∣∣. Here ∆x = b−a

2n .
Next we estimate the error of∣∣∣∣∣

ˆ x2i+2∆x

x2i

Pi(x) dx−
ˆ x2i+2∆x

x2i

Qi(x) dx

∣∣∣∣∣ .
Recall that

ˆ x2i+2

x2i

Qi(x) dx =
b− a
6n

(f(x2i) + 4f(x2i + ∆x) + f(x2i + 2∆x)).

Writing

f(x2i + ∆x) = Pi(x2i + ∆x) +
f (4)(h1(x2i + ∆x))

4!
(∆x)4

and similarly for f(x2i + 2∆x), one can see there is a lot of cancellations within

ˆ x2i+2∆x

x2i

Pi(x) dx−
ˆ x2i+2∆x

x2i

Qi(x) dx,

and the only terms left are the 4th derivatives of f .
By considering∣∣∣∣∣
ˆ x2i+2∆x

x2i

f(x) dx−
ˆ x2i+2∆x

x2i

Qi(x) dx

∣∣∣∣∣
≤

∣∣∣∣∣
ˆ x2i+2∆x

x2i

f(x) dx−
ˆ x2i+2∆x

x2i

Pi(x) dx

∣∣∣∣∣+

∣∣∣∣∣
ˆ x2i+2∆x

x2i

Pi(x) dx−
ˆ x2i+2∆x

x2i

Pi(x) dx

∣∣∣∣∣ ,
we get the error estimate on each subinterval [x2i, x2i+2] in terms of 4th derivatives of f . One
could sum up these error to yield the desired result.

�

� Exercise 4.64 Fill in the detail of the above outline of proof.

i It is interesting to note that if f(x) is a cubic polynomial, then f (4) ≡ 0 so the Simpson’s

rule indeed gives the exact value of
ˆ b

a

f(x) dx. Of course, practically speaking we wouldn’t

integrate a cubic polynomial in this way.


