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4.5 Integration by Parts
“Integration by parts” is another important technique of doing integrations. It is a consequence of
the product rule.

Proposition 4.18 — Integration by Parts. Let f, g : [a, b]→ R be two C1 functions, then

ˆ b

a

f(x)g′(x) dx = [f(x)g(x)]ba −
ˆ b

a

g(x)f ′(x) dx.

Proof. First recall that
d

dx
f(x)g(x) = f ′(x)g(x) + g′(x)f(x).

By the Newton-Leibniz’s formula (4.3), we have:

ˆ b

a

(
f ′(x)g(x) + g′(x)f(x)

)
dx = [f(x)g(x)]ba.

The desired result follows immediately by rearrangement. �

i If we let u = f(x) and v = g(x), then f ′(x) dx can be regarded as du, and g′(x) dx as dv.
The integration by parts formula is often expressed as

ˆ x=b

x=a

u dv = [uv]x=b
x=a −

ˆ x=b

x=a

v du.

i With almost the same proof, the integration by parts formula has an indefinite integral
version: ˆ

f(x)g′(x) dx = f(x)g(x)−
ˆ
g(x)f ′(x) dx.

Using Proposition 4.18, we can now integrate log x. Letting f(x) = log x and g(x) = x, then
on an interval of all positive numbers, we have

ˆ
log x dx = x log x−

ˆ
xd(log x)

= x log x−
ˆ
x · 1

x
dx

= x log x−
ˆ

1 dx

= x log x− x+ C.

� Exercise 4.38 Using integration by parts, find the integrals:

ˆ 2

1

log x

x2
dx,

ˆ
tan−1 x dx,

ˆ
x3ex

2

dx.

� Example 4.11 Let’s integrate sec3 x – there is a small trick that is often useful when integrating
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trigonometric functions.
ˆ

sec3 x dx =

ˆ
secx · sec2 dx

=

ˆ
secxd(tanx)

= secx tanx−
ˆ

tanxd(secx)

= secx tanx−
ˆ

tan2 x secx dx

= secx tanx−
ˆ

(sec2 x− 1) secx dx

= secx tanx−
ˆ

sec3 x dx+

ˆ
secx dx.

Now we see that
ˆ

sec3 x dx appears again but fortunately with a “good” sign in front. By

rearrangement, we get

2

ˆ
sec3 x dx = secx tanx+

ˆ
secx dx = secx tanx+ log |secx+ tanx|+ C.

We conclude that
ˆ

sec3 x dx =
1

2
secx tanx+

1

2
log |secx+ tanx|+ C

where C ′ is any constant.

� Exercise 4.39 Compute the integrals:
ˆ
ex cosx dx,

ˆ
tan3 x dx.

4.5.1 Irrationality of e, again
Here we give “another” proof of e being irrational using integrals. For each n ∈ N ∪ {0}, we
define

In :=

ˆ 1

0

xne−x dx.

First of all, we argue that 0 < In <
1

e
for any n ∈ N and x ∈ [0, 1] . Clearly In ≥ 0. Note that

In 6= 0 since the integrand xne−x is non-negative and not identically 0 on [0, 1]. The function
xne−x is strictly increasing on x ∈ [0, 1] for any n ∈ N (as (xne−x)′ = xn−1(n − 1)e−x ≥ 0).
Therefore, we have xne−x ≤ 1ne−1 = 1

e for any x ∈ [0, 1] and n ∈ N, and so

In =

ˆ 1

0

xne−x dx ≤
ˆ 1

0

1

e
dx =

1

e
.

Next we derive a relation between In+1 and In using integration by parts:

In+1 =

ˆ 1

0

xn+1e−x dx =

ˆ 1

0

xn+1d(−e−x)

= [−xn+1e−x]10 −
ˆ 1

0

(−e−x)(n+ 1)xn dx

= −1

e
+ (n+ 1)

ˆ 1

0

xne−x dx = −1

e
+ (n+ 1)In.
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Let Jn :=
In
n!

for any n ∈ N ∪ {0}, then

Jn+1 =
In+1

(n+ 1)!
=

1

(n+ 1)!

(
−1

e
+ (n+ 1)In

)
= − 1

(n+ 1)!e
+ Jn.

This shows

Jn = J0 +

n∑
k=1

(Jk − Jk−1) = I0 −
n∑
k=1

1

k!e
= 1− 1

e
−

n∑
k=1

1

k!e
= 1− 1

e

n∑
k=0

1

k!
.

Therefore, for any n ∈ N ∪ {0},

In = n!

(
1− 1

e

n∑
k=0

1

k!

)
=
n!

e

(
e−

n∑
k=0

1

k!

)

Assume that e is rational, then there exist p, q ∈ N such that e = p
q . Recall that 0 < In <

1
e for

any n ≥ 1, and so

0 < n!

(
e−

n∑
k=0

1

k!

)
< 1.

Take n > q, then n!e = n!pq ∈ N. Clearly, n!

n∑
k=0

1

k!
=

n∑
k=0

n!

k!
∈ N too, so

n!

(
e−

n∑
k=0

1

k!

)
∈ Z,

but it is clearly absurd as (0, 1) ∩ Z = ∅. This shows e is irrational.

i We put “another” proof in quote because it is not really a new proof from what we have seen
in MATH 1023. The integral In actually came from the remainder of the Taylor’s series of ex.
We will discuss more in Proposition 4.19.

4.5.2 Reduction formulae
In the above proof of the irrationality of e, we derived a recurrence relation for In using
integration by parts. It is also a very common technique for evaluating complicated integrals.

� Example 4.12 For any m,n ∈ N ∪ {0}, we define

Im,n :=

ˆ
cosm x sinn x dx.

Show that

Im,n = − 1

m+ n
cosm+1 x sinn−1 x+

n− 1

m+ n
Im,n−2, ∀m ≥ 0, n ≥ 2 (4.4)

Im,n =
1

m+ n
cosm−1 x sinn+1 x+

m− 1

m+ n
Im−2,n, ∀m ≥ 2, n ≥ 0 (4.5)
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� Solution We just prove (4.4) and leave (4.5) as an exercise.

Im,n =

ˆ
cosm x sinn x dx =

ˆ
cosm x sinn−1 xd(− cosx)

= − cosm+1 x sinn−1 x+

ˆ
cosx d(cosm x sinn−1 x)

= − cosm+1 x sinn−1 x

+

ˆ
cosx

(
m cosm−1 x(− sinx) sinn−1 x+ cosm x · (n− 1) sinn−2 x · cosx

)
dx

= − cosm+1 x sinn−1 x−mIm,n + (n− 1)

ˆ
cosm+2 x sinn−2 x dx

= − cosm+1 x sinn−1 x−mIm,n + (n− 1)

ˆ
cosm x(1− sin2 x) sinn−2 x dx

= − cosm+1 x sinn−1 x−mIm,n + (n− 1)Im,n−2 + (n− 1)Im,n.

By rearrangement, we get (4.4).

� Exercise 4.40 Prove (4.5).

Using (4.4), one can then compute some complicated integrals such as
ˆ

cos4 x sin6 x dx = I4,6 = − 1

4 + 6
cos5 x sin4 x+

6− 1

4 + 6
I4,4

By applying (4.4) again on I4,4, we can reduce it to I4,2; and apply (4.4) again we get I4,0.
Next we apply (4.5) on I4,0 and reduce it to I2,0, which can be easily computed by half-angle

formula:
I2,0 =

ˆ
cos2 x dx =

ˆ
1 + cos 2x

2
dx =

1

x
+

1

4
sin 2x+ C.

� Exercise 4.41 Complete the above reduction procedure and find the full expression of
ˆ

cos4 x sin6 x dx.

� Exercise 4.42 For Im,n when at least one of m and n is odd, we could just use one of the
(4.4) and (4.5). Explain why?

Let’s also see an example of definite integrals

� Example 4.13 For any n ∈ N ∪ {0}, let

In :=

ˆ 1

0

xn
√

1− x dx.

Find a recurrence relation for {In}, and deduce its general term.
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� Solution Using integration by parts, we can prove that for any n ≥ 1:

In = −2

3

ˆ 1

0

xn d((1− x)3/2)

= −2

3

[
xn(1− x)3/2

]1
0

+
2

3

ˆ 1

0

(1− x)3/2 · nxn−1 dx

= 0 +
2n

3

ˆ 1

0

(1− x) · xn−1
√

1− x dx

=
2n

3

ˆ 1

0

xn−1
√

1− x dx− 2n

3

ˆ 1

0

xn
√

1− x dx

=
2n

3
In−1 −

2n

3
In.

By rearrangement, we get:

In =
2n

2n+ 3
In−1 ∀n ≥ 1.

One can then apply this recurrence relation inductively and get for any n ∈ N:

In =
2n

2n+ 3
In−1 =

2n

2n+ 3
· 2n− 2

2n+ 1
In−2 = · · · = (2n)(2n− 2)(2n− 4) · · · (4)(2)

(2n+ 3)(2n+ 1)(2n− 1) · · · (7)(5)
I0.

We can compute that

I0 =

ˆ 1

0

√
1− x dx =

[
−2

3
(1− x)3/2

]1

0

=
2

3
.

This concludes that for any n ∈ N:

In = 2× (2n)!!

(2n+ 3)!!
.

� Exercise 4.43 For any m,n ∈ N ∪ {0}, we define:

Im,n :=

ˆ π

0

emx sinn x dx.

Find a recurrence relation between Im,n and Im,n−2, and show that:

Im,n =
n!(emπ − 1)

m(m2 + 4)(m2 + 16) · · · (m2 + n2)

for any m ∈ N ∪ {0} and even n ∈ N.

� Exercise 4.44 — Source: HKAL 1996 Paper II Q12. For non-negative integers k and m, define

F (k,m) =

ˆ 1

0

uk(1− u2)m du.

(a) Show that

F (k, 0) =
1

k + 1

F (k,m) =
2m

k + 1
F (k + 2,m− 1) for m ≥ 1.
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(b) Show that

F (k,m) =
2m(m!)

(k + 1)(k + 3) · · · (k + 2m+ 1)
.

(c) Using (b), prove that
ˆ π/2

0

cos2m+1 θ dθ =

(
2m(m!)

)2
(2m+ 1)!

.

(d) Show that F (k,m) =

m∑
r=0

(−1)rCmr
2r + k + 1

.

� Exercise 4.45 — Source: HKAL 2010 Paper II Q9 (restructured). Answer the following ques-
tions:

(a) Prove that lim
n→∞

2n

n!
= 0.

(b) For any positive integer n, define In :=

ˆ e

1

x−3(log x)n dx. Prove that for any n ∈ N:

In = n!

(
1

2n+1
− 1

e2

n∑
k=0

1

(n− k)!2k+1

)
.

(c) Prove that e−2x−1(log x)n ≤ x−3(log x)n ≤ x−1(log x)n for all x ∈ [1, e]. Hence prove
that

1

e2(n+ 1)
≤ In ≤

1

n+ 1
.

(d) Using the above results, evaluate
∞∑
k=0

2k

k!
.

4.5.3 Taylor’s remainder in integral form

Using integration by parts, one can derive a new form of remainder to the Taylor series (in
addition to the Cauchy’s and Lagrange’s forms discussed in MATH 1023).

Proposition 4.19 — Taylor’s Remainder in Integral Form. Suppose f is Cn+1 on an interval I
containing a, then we have:

f(x) =

n∑
k=0

f (k)(a)

k!
(x− a)k +

1

n!

ˆ x

a

(x− t)nf (n+1)(t) dt

for any x ∈ I.

Proof. The key idea is to use integration by parts repeatedly. For each m,n ∈ N and m ≥ n, we
have:

Im,n :=

ˆ x

a

(x− t)mf (n+1)(t) dt

=

ˆ x

a

(x− t)md
(
f (n)(t)

)
=
[
(x− t)mf (n)(t)]t=xt=a −

ˆ x

a

f (n)(t) ·m(x− t)m−1 · (−1) dt

= −(x− a)mf (n)(a) +mIm−1,n−1.
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Apply this recurrence relation repeatedly, we get

Im,n = −(x− a)mf (n)(a) +m
(
−(x− a)m−1f (n−1)(a) + (m− 1)Im−2,n−2

)
= −(x− a)mf (n)(a)−m(x− a)m−1f (n−1)(a)

+m(m− 1)
(
−(x− a)m−2f (n−2)(a) + (m− 2)Im−3,n−3

)
= · · ·
= −(x− a)mf (n)(a)−m(x− a)m−1f (n−1)(a)

−m(m− 1)(x− a)m−2f (n−2)(a)−m(m− 1)(m− 2)(x− a)m−3f (n−3)(a)

− · · · −m(m− 1)(m− 2) · · · (m− n+ 2)(x− a)m−n+1f ′(a)

+m(m− 1)(m− 2) · · · (m− n+ 1)Im−n,0

=
m!

(m− n)!
Im−n,0 −

n∑
k=1

m!

(m− n+ k)!
(x− a)m−n+kf (k)(a)

In particular, when m = n, we have:

1

n!
In,n =

ˆ x

a

f ′(t) dt−
n∑
k=1

f (k)(a)

k!
(x− a)k

= f(x)− f(a)−
n∑
k=1

f (k)(a)

k!
(x− a)k.

By rearrangement, we can see that

f(x) =

n∑
k=0

f (k)(a)

k!
(x− a)k +

1

n!

ˆ x

a

(x− t)nf (n+1)(t) dt

as desired. �

Combining Proposition 4.19 with Exercise 4.7, one can give another proof of the Cauchy’s
remainder theorem. Proposition 4.19 asserts that the remainder of Rn(x) = f(x)−Tn(x) is given
by:

Rn(x) =
1

n!

ˆ x

a

(x− t)nf (n+1)(t) dt,

and Exercise (4.7) shows that exists c between a and x such that
ˆ x

a

(x− t)nf (n+1)(t) dt = (x− a) · (x− c)nf (n+1)(c).

It shows

Rn(x) =
f (n+1)(c)

n!
(x− c)n(x− a)

which is exactly the Cauchy’s remainder.

� Example 4.14 Prove that for any n ∈ N, we have∣∣∣∣∣
(
e+

1

e

)
− 2

n∑
k=0

1

(2k)!

∣∣∣∣∣ < 2

(2n)!
.
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� Solution Applying Proposition 4.19 with f(x) = ex, a = 0 and order 2n, we have

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · ·+ x2n−1

(2n− 1)!
+

x2n

(2n)!
+

1

(2n)!

ˆ x

0

(x− t)2net dt,

e−x = 1− x

1!
+
x2

2!
− x3

3!
+ · · · − x2n−1

(2n− 1)!
+

x2n

(2n)!
+

1

(2n)!

ˆ x

0

(x− t)2n(−e−t) dt.

Putting x = 1 and adding the above results, we get:

e+
1

e
= 2

(
1 +

x2

2!
+
x4

4!
+ · · ·+ x2n

(2n)!

)
+

1

(2n)!

ˆ 1

0

(1− t)2n(et − e−t) dt.

Next we proceed to estimate:∣∣∣∣∣
(
e+

1

e

)
− 2

n∑
k=0

1

(2k)!

∣∣∣∣∣
=

1

(2n)!

∣∣∣∣ˆ 1

0

(1− t)2n(et − e−t) dt
∣∣∣∣

≤ 1

(2n)!

ˆ 1

0

∣∣(1− t)2n
∣∣ ∣∣et − e−t∣∣ dt

≤ 1

(2n)!

ˆ 1

0

(et − e−t) dt as
∣∣(1− t)2n

∣∣ ≤ 1 when t ∈ [0, 1]

=
1

(2n)!
[et + e−t]10

=
1

(2n)!
(e1 + e−1 − 2).

It is well-known that 2 < e < 3, so e+ 1
e − 2 < 3 + 1

2 − 2 < 2. It proves:∣∣∣∣∣
(
e+

1

e

)
− 2

n∑
k=0

1

(2k)!

∣∣∣∣∣ < 2

(2n)!

as desired.

� Exercise 4.46 Assume all conditions given in Proposition 4.19. Use the proposition to prove
that if |f(x)| ≤M on any interval I containing a, then

|Rn(x)| ≤ M

(n+ 1)!
|x− a|n+1

for any x ∈ I.

� Exercise 4.47 — Source: HKAL 1993 Paper II Q12 (modified). (a) Show that

tan−1 x = x− x3

3
+
x5

5
− · · ·+ (−1)n−1

2n− 1
x2n−1 +

ˆ x

0

(−1)nt2n

1 + t2
dt

for all x ∈ R and n = 1, 2, 3, · · · .
(b) Using (a), or otherwise, show that∣∣∣∣tan−1 x−

(
x− x3

3
+
x5

5
− · · ·+ (−1)n−1

2n− 1
x2n−1

)∣∣∣∣ ≤ x2n+1

2n+ 1
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for all x ≥ 0 and n = 1, 2, 3, · · · . Hence find
∞∑
k=0

(−1)k

2k + 1
.

(c) Show that tan−1 1

2
+ tan−1 1

3
=
π

4
. Deduce that∣∣∣∣∣π4 −

n∑
k=1

(−1)k−1

2k − 1

(
1

22k−1
+

1

32k−1

)∣∣∣∣∣ ≤ 1

n · 22n+1

for n = 1, 2, 3, · · · .

4.5.4 Young’s and Hölder’s inequalities
In this subsection we use integration by parts and by substitutions to derive the Young’s inequality,
which is a generalization of the trivial result ab ≤ a2

2 + b2

2 for a, b ≥ 0. We first prove the following
integral inequality:

Proposition 4.20 Given c > 0, f : [0, c]→ R is a strictly increasing differentiable function on
[0, c], and f(0) = 0. Then, for all a ∈ [0, c] and b ∈ [0, f(c)],

ab ≤
ˆ a

0

f(x) dx+

ˆ b

0

f−1(y) dy

with equality holds if and only if b = f(a). The geometric meaning of the inequality can be
found in Figure 4.5.

Figure 4.5: Graphical meaning of Proposition 4.20

Proof. By intermediate value theorem, we can take b = f(ϕ) for some ϕ ∈ [0, c]. Consider the
right integral and let z = f−1(y), then when y = 0, z = 0; and when y = b = f(ϕ), z = ϕ. Also,
we have

f(z) = y =⇒ f ′(z) dz = dy.

Using integration by substitution and then by parts, we get:

ˆ b

0

f−1(y) dy =

ˆ z=ϕ

z=0

zf ′(z) dz =

ˆ x=ϕ

x=0

xf ′(x) dx

= [xf(x)]ϕ0 −
ˆ ϕ

0

f(x) dx = ϕb−
ˆ ϕ

0

f(x) dx.

We first assume ϕ ≤ a, then as f is increasing, we have f(x) ≥ f(ϕ) = b for any x ∈ [ϕ, a], and so
ˆ a

0

f(x) dx =

ˆ ϕ

0

f(x) dx+

ˆ a

ϕ

f(x) dx

≥
ˆ ϕ

0

f(x) dx+

ˆ a

ϕ

b dx =

ˆ ϕ

0

f(x) dx+ b(a− ϕ).
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Adding both results, we get:

ˆ a

0

f(x) dx+

ˆ b

0

f−1(x) dx ≥ ϕb+ (a− ϕ)b = ab.

Equality holds if and only if f(x) = b for all x ∈ [ϕ, a]. However, f is strictly increasing, so it
would happen only when a = ϕ (equivalently, f(a) = f(ϕ) = b).

We leave it as an exercise for readers to prove the case ϕ > a. �

� Exercise 4.48 Complete the proof of the case ϕ > a. Hint: draw a diagram to get some
geometric idea.

� Exercise 4.49 — Source: MATH1024 Spring 2018 Midterm. Consider a bijective function f :
[a, b]→ [f(a), f(b)] where b > a > 0 and f(b) > f(a) > 0, and given that f is differentiable on
[a, b] and f ′(x) > 0 on (a, b).

(a) By sketching a diagram, guess the value of:

ˆ b

a

f(x) dx+

ˆ f(b)

f(a)

f−1(y) dy

in terms of a, b, f(a), f(b).
(b) Prove your claim in (a) using integration by substitution.
(c) Let g(x) = 5

√
x− 6. Show that the definite integral:

ˆ 9

4

g(g(g(g(g(x))))) dx

is a rational number.

Corollary 4.21 — Young’s Inequality. For any a, b ≥ 0 and p, q > 1 such that 1
p + 1

q = 1, we
have:

ab ≤ ap

p
+
bq

q
.

Equality holds if and only if b = a1/p.

Proof. Note that the result is trivial if one of a, b is zero. We now assume a, b > 0. We just apply
Proposition 4.20 on the function f(x) = xp, whose derivative is f ′(x) = pxp−1 > 0 on (0,∞).
The inverse function is given by f−1(x) = x1/p = x1−1/q. It can be shown easily that:

ˆ a

0

f(x) dx =
ap

p
and

ˆ b

0

f−1(x) dx =
bq

q
.

�

Young’s inequality can be used to prove another (even more important) inequality, the Hölder’s
inequality, which plays a crucial role in functional analysis. For simplicity, we first denote for
each p ≥ 1 the lp-norm of a finite sequence {xn}Nn=1 and the Lp-norm of a continuous function f
on [a, b] by:

‖{xn}‖p :=

(
N∑
n=1

|xn|p
) 1

p

‖f‖p :=

(ˆ b

a

|f(x)|p dx

) 1
p
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It is clear that for any c ∈ R, ‖{cxn}‖p = |c| ‖{xn}‖p and ‖cf‖p = |c| ‖f‖p, and so {xn}
‖{xn}‖p

and
f
‖f‖p

have unit lp- and Lp-norms. The Hölder’s inequality is the following:

Proposition 4.22 — Hölder’s Inequality. Given p, q > 1 such that 1
p + 1

q = 1, then we have:

‖{xnyn}‖1 ≤ ‖{xn}‖p ‖{yn}‖q
‖fg‖1 ≤ ‖f‖p ‖g‖q

for any finite sequences {xn} and {yn} and any continuous functions f and g on [a, b].

Proof. We prove the Hölder’s inequality for functions and leave the sequence’s version as an
exercise for readers. Using the Young’s inequality with a = |f(x)|

‖f‖p
and b = |g(x)|

‖g‖q
, we have:

|f(x)|
‖f‖p

|g(x)|
‖g‖q

≤ 1

p

(
|f(x)|
‖f‖p

)p
+

1

q

(
|g(x)|
‖g‖q

)q
∀x ∈ [a, b].

Therefore, by integrating both sides over [a, b], we get:

ˆ b

a

|f(x)|
‖f‖p

|g(x)|
‖g‖q

dx ≤
ˆ b

a

1

p

(
|f(x)|
‖f‖p

)p
dx+

ˆ b

a

1

q

(
|g(x)|
‖g‖q

)q
dx.

Note that the norms are all constants, so we have:

‖fg‖1
‖f‖p ‖g‖q

≤ 1

p ‖f‖pp

ˆ b

a

|f(x)|p dx+
1

q ‖g‖q

ˆ b

a

|g(x)|q dx.

Note that

‖f‖pp =

ˆ b

a

|f(x)|p dx

and similarly for g, so we get
‖fg‖1
‖f‖p ‖g‖q

≤ 1

p
+

1

q
= 1,

and so our desired result holds.
Note that we assumed f and g are not identically 0 in the above proof. In one of them is

identically zero, the result is trivial. �

� Exercise 4.50 Prove the sequence version of the Hölder’s inequality.

� Exercise 4.51 When does the equality hold for the Hölder’s inequality?

i Clearly, the Hölder’s inequality is a generalization of the well-known Cauchy-Schwarz’s
inequality. The latter is a special case p = q = 2.

� Exercise 4.52 — Source: HKAL 2002 Paper I Q8. Answer the following questions:
(a) Proof of the Cauchy-Schwarz’s inequality (omitted here).
(b) (i) Prove that (∑n

i=1 xi
n

)2

≤
∑n
i=1 x

2
i

n
,

where x1, x2, · · · , xn are real.
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(ii) Prove that (
n∑
i=1

λixi

)2

≤

(
n∑
i=1

λi

)(
n∑
i=1

λix
2
i

)
,

where x1, x2, · · · , xn are real numbers and λ1, λ2, · · · , λn are positive numbers.
When does the equality hold?

(iii) Prove that (y1

t
+
y2

t2
+ · · ·+ yn

tn

)2

<
y2

1

t
+
y2

2

t2
+ · · ·+ y2

n

tn
,

where y1, · · · , yn are real numbers, not all zero, and t ≥ 2.

4.5.5 Basel Problem
The Basel Problem is about finding the exact value of

1 +
1

22
+

1

32
+ · · · =

∞∑
n=1

1

n2
.

It was first posed by Pietro Mengoli in 1644, and was first solved by Euler in 1734 using infinite
products. He found that the exact value of this infinite sum is π2

6 . The name of the problem,
Basel, is the name of a city in Switzerland near the border with France and Germany. The city is
the hometown of Euler and the Bernoulli’s family.

The original proof of Euler used infinite products which will not be discussed in the course,
but there are some other proof using different techniques. Some used more advanced tools such
as Fourier series and complex analysis. Below are two of the proofs that can be understood with
some basic knowledge about integration by parts. They are restructured as two exercises below:

� Exercise 4.53 — Source: MATH1024 Spring 2018 Final Exam. For each integer n ≥ 0, we define

An :=

ˆ π/2

0

cos2n x dx Bn :=

ˆ π/2

0

x2 cos2n x dx.

(a) Show that for any integer n ≥ 1, we have 2

(
Bn−1

An−1
− Bn
An

)
=

1

n2
.
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(b) Show that there exists a constant C > 0, independent of n, such that

Bn ≤
C

n+ 1
An

for any integer n ≥ 1. [Hint: Compare sinx with a linear function on 0 ≤ x ≤ π
2 .]

(c) Using the above results, show that ζ(2) :=

∞∑
n=1

1

n2
=
π2

6
.

� Exercise 4.54 Define the sequence of functions {fn(x)}∞n=1 and the function g(x):

fn(x) :=
1

2
+ cosx+ cos 2x+ · · ·+ cosnx

g(x) :=

{
x/2

sin(x/2) if x 6= 0

1 if x = 0

Consider the integral:

En :=

ˆ π

0

xfn(x) dx.

(a) Show that

En =
π2

4
+

n∑
k=1

(−1)k − 1

k2
,

and so E2n−1 =
π2

4
− 2

n∑
k=1

1

(2k − 1)2
for any n ∈ N.

(b) Show that g is a C1 function, and that

E2n−1 =
1

4n− 1

(
2 + 2

ˆ π

0

g′(x) cos
(4n− 1)x

2
dx

)

(c) Prove that E2n−1 → 0 as n→∞, and show ζ(2) :=

∞∑
n=1

1

n2
=
π2

6
.

[Remark: We may need the fact that rearrangement of a convergent series of positive
numbers preserves its value. We will prove it later.]

4.5.6 Irrationality of π
In this subsection we present two proofs of irrationality of π. They are again restructured as two
exercises.

� Exercise 4.55 — Source: Exam at Cambridge University 1945, written by Mary Cartwright.
Consider the sequence of functions of x:

In(x) :=

ˆ 1

−1

(1− z2)n cos(xz) dz,

where n ∈ N ∪ {0}.
(a) Show that for any n ≥ 2 and x ∈ R, we have:

x2In(x) = 2n(2n− 1)In−1(x)− 4n(n− 1)In−2(x).

(b) Define Jn := x2n+1In(x). Prove that for any n ∈ N,

Jn(x) = n!(Pn(x) sin(x) +Qn(x) cos(x))
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where Pn and Qn are polynomials of integer coefficients and degPn,degQn ≤ n.
(c) Now assume π ∈ Q and write π = 2a

b where a, b ∈ N. Note that we do not assume 2a
b is

in the simplest form so we can assume that numerator is even. Verify the following:
(i) For any n ∈ N, we have

a2n+1

n!
In(π/2) = Pn(π/2)b2n+1.

(ii) Deduce a contradiction by showing that LHS→ 0 as n→∞ whereas RHS is always
a positive integer.

� Exercise 4.56 — Source: Exercise in a Bourbaki’s booka. For each n ∈ N ∪ {0} and b ∈ N, we
define

An(b) := bn
ˆ π

0

xn(π − x)n

n!
sinx dx.

(a) Prove that for each b ∈ N, we have 0 < An(b) < 1 for sufficiently large n.
(b) Now suppose π is rational and π = a

b for some a, b ∈ N. Consider the polynomial

f(x) :=
xn(a− bx)n

n!
, prove that:

An(b) = [−f(x) cosx]
π
0−[−f ′(x) sinx]

π
0 +· · ·±

[
f (2n)(x) cosx

]π
0
±
ˆ π

0

f (2n+1)(x) cosx dx.

(c) Hence, by showing An(b) is an integer, deduce a contradiction.

aBourbaki is a group of prominent mathematicians, including Cartan and Weil, who co-authored a huge collection
of books and treaties in various topics of pure mathematics. There is one related joke: “When did Bourbaki stop
writing books? Answer: After they realized that Serge Lang is a single person.”


