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4.4 Integration by Substitutions
In this and the next sections we discuss some common techniques of doing integrations, including
method of substitutions and integration by parts. Let’s start with the method of substitu-
tions:

Proposition 4.13 Suppose u = g(x) : [a, b] → I is C1 function on x ∈ [a, b], and f(u) is
continuous on u ∈ I with an anti-derivative F , then

ˆ b

a

f(g(x))g′(x) dx =

ˆ g(b)

g(a)

f(u) du.

Proof. By the chain rule, we have

d

dx
F (g(x)) = F ′(g(x))g′(x) = f(g(x))g′(x)

Therefore, F (g(x)) is an antiderivative of f(g(x))g′(x) on x ∈ [a, b], and we have

ˆ x=b

x=a

f(g(x))g′(x) dx = F (g(b))− F (g(a)).

Moreover, ˆ u=g(b)

u=g(a)

f(y) dy = F (g(b))− F (g(a)).

Combining the results, we have

ˆ b

a

f(g(x))g′(x) dx =

ˆ g(b)

g(a)

f(u) du.

�

i An easy to remember this rule is to regard g′(x) dx as du (by the virtue of du = du
dx
dx, and

f(g(x)) as f(u). Also x = a, b corresponds to u = g(a), g(b) respectively.

� Exercise 4.31 Prove the indefinite integral version of the substitution rule:
ˆ
f(g(x))g′(x) dx =

ˆ
f(u) du.

Here we implicitly assume that x and u lie on some intervals on which the conditions in
Proposition 4.13 hold.

� Example 4.9 Consider ˆ 2

0

x(2x2 + 3)2 dx.

We let f(u) = u2 and g(x) := 2x2 + 3, then g′(x) = 4x, so we write

ˆ 2

0

x(2x2 + 3)2 dx =
1

4

ˆ 2

0

(2x2 + 3)2︸ ︷︷ ︸
=f(g(x))

· 4x︸︷︷︸
=g′(x)

dx =
1

4

ˆ g(2)

g(0)

u2︸︷︷︸
=f(u)

du =
1

4

[
u3

3

]11

3

=
113 − 33

12
.
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Very often, we would write the above solution without defining so many functions f and g
but simply let u = 2x2 + 3. Instead of “creating” a term g′(x) dx, we compute

du =
du

dx
dx = 4x dx =⇒ x dx =

1

4
du,

and when x = 0, u = 3; whereas when x = 2, u = 11. These combine to give:

ˆ 2

0

x(2x2 + 3)2 dx =

ˆ 2

0

(2x2 + 3)2︸ ︷︷ ︸
=u2

· x dx︸︷︷︸
= 1

4 du

=

ˆ 11

3

1

4
u2 du =

113 − 33

12
.

For a simple integral like this example, we may even save the use of the letter u and just
write:

x dx =
1

2
d(x2) =

1

4
d(2x2 + 3),

and so we have ˆ 2

0

x(2x2 + 3)2 dx =
1

4

ˆ x=2

x=0

(2x2 + 3)2 d(2x2 + 3).

Then we just regard 2x2 + 3 as the integration variable, and simply integrate the square
function:

1

4

ˆ x=2

x=0

(2x2 + 3)2 d(2x2 + 3) =
1

4

[
(2x2 + 3)3

3

]x=2

x=0

=
113 − 33

4
.

Comparing the three ways of maneuvering the integration by substitution, the first one is
seldom used – it is only good for giving the precise statement of Proposition 4.13. The second
and third ones are more common, and the third one is often used for simple substitutions.

� Exercise 4.32 Compute the following integrals:

1.
ˆ b

a

x cos(x2 + 1) dx

2.
ˆ b

a

x3ex
4

dx

3.
ˆ b

a

x

1 + x2
dx

4.4.1 Trigonometric functions

Many integration formulae of some trigonometric functions are derived using substitutions.
Below we will state the indefinite integral version. They can be applied to definite integrals as
long as the integrand is continuous on the integration interval.

Proposition 4.14
ˆ

tanx dx = − log |cosx|+ C = log |secx|+ C

ˆ
cotx dx = log |sinx|+ C

ˆ
secx dx = log |secx+ tanx|+ C

ˆ
cscx dx = − log |cscx+ cotx|+ C
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Proof. We prove only the formulae for tanx and secx, and leave the other two as an exercise.ˆ
tanx dx =

ˆ
sinx

cosx
dx

= −
ˆ

1

cosx
d(cosx) (implicitly letting u = cosx)

= − log |cosx|+ C

= log

∣∣∣∣ 1

cosx

∣∣∣∣+ C = log |secx|+ C.

The formula for secx involves a somewhat clever observation:ˆ
secx dx =

ˆ
secx(secx+ tanx)

secx+ tanx
dx

=

ˆ
sec2 x+ secx tanx

secx+ tanx
dx

=

ˆ
1

secx+ tanx
d(tanx+ secx)

= log |secx+ tanx|+ C.

�

� Exercise 4.33 Prove that
ˆ

cotx dx = log |sinx|+ C

ˆ
cscx dx = − log |cscx+ cotx|+ C

To apply the above integral formulae on definite integrals, we need to make sure the function
is continuous on interval of integration.

ˆ π/4

0

tanx dx = [log |secx|]π/40 = log
√

2 (RIGHT)
ˆ π

0

tanx dx = [log |secx|]π0 = 0 (WRONG!)

4.4.2 Trigonometric substitutions
Below are more examples of integration formulae:

Proposition 4.15
ˆ

1√
a2 − x2

dx = sin−1 x

a
+ C

ˆ
1

a2 + x2
dx =

1

a
tan−1 x

a
+ C

where a > 0.

Proof. For the 1√
a2−x2

integral, we write x = a sinu, which means we let u = sin−1 x
a . The range

of u is then (−π/2, π/2). Then, we have

dx = d(a sinu) = a cosu du.

The integrand becomes

1√
a2 − x2

=
1√

a2 − a2 sin2 u
=

1√
a2 cos2 u

=
1

|a cosu|
=

1

a cosu
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as a > 0 and cosu > 0 when u ∈ (−π/2, π/2). These show
ˆ

1√
a2 − x2

dx =

ˆ
1

a cosx
a cosu du =

ˆ
1 du = u+ C = sin−1 x

a
+ C.

For the 1
a2+x2 integral, we write x = a tanu, which means u = tan−1 x

a . Then, we have

dx = a sec2 u du and
1

a2 + x2
=

1

a2(1 + tan2 u)
=

1

a2 sec2 u
.

Combining both, we get:
ˆ

1

a2 + x2
dx =

ˆ
1

a2 sec2 u
a sec2 u du =

ˆ
1

a
du =

1

a
u+ C =

1

a
tan−1 x

a
+ C.

�

i The choice of the trigonometric functions above is motivated by the formulae sin2 x+cos2 = 1
and 1 + tan2 x = sec2 x.

� Exercise 4.34 Prove that integration formula below:
ˆ

1√
x2 + a2

dx = log
∣∣∣x+

√
x2 + a2

∣∣∣+ C

ˆ
1

x2 − a2
dx =

1

2a
log

∣∣∣∣x− ax+ a

∣∣∣∣+ C

� Exercise 4.35 Show that for any r > 0, we have
ˆ r

0

√
r2 − x2 dx =

πr2

4
.

This shows the area of the circle with radius r is πr2.

4.4.3 More uses of integration by substitutions
One can also use the integration by substitution to prove some general results about definite
integrals.

Proposition 4.16 Let f : R→ R be a periodic continuous function of period T , i.e. f(x+ T ) =
f(x) for any x ∈ R. Show that

ˆ b

a

f(x) dx =

ˆ b+T

a+T

f(x) dx.

Proof. Let u = x + T , then dx = du. When x = a, u = a + T ; and when x = b, u = b + T .
Therefore, we have

ˆ b

a

f(x) dx =

ˆ b

a

f((x+ T )− T ) dx =

ˆ u=b+T

u=a+T

f(u− T ) du =

ˆ u=b+T

u=a+T

f(u) du.

Here we have used the fact that f(u − T ) = f(u − T + T ) = f(u). Note that the u in the last
integral is dummy, so we can change it back to x:

ˆ u=b+T

u=a+T

f(u) du =

ˆ x=b+T

x=a+T

f(x) dx.

This completes our proof. �
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Proposition 4.17 For any continuous odd function f , i.e. f(−x) = −f(x) for any x ∈ R, we
have: ˆ a

−a
f(x) dx = 0 for any a > R.

For any continuous even function g, i.e. g(−x) = g(x) for any x ∈ R, we have:
ˆ a

−a
g(x) dx = 2

ˆ a

0

g(x) dx for any a > 0.

Proof. For the odd function result, we need to show

ˆ 0

−a
f(x) dx = −

ˆ a

0

f(x) dx.

We let u = −x, then when x = 0, u = 0; and when x = −a, u = a. Therefore,
ˆ x=0

x=−a
f(x) dx =

ˆ u=0

u=a

f(−u)(− du) =

ˆ 0

a

−f(u)(− du) = −
ˆ a

0

f(u) du = −
ˆ a

0

f(x) dx.

For the even function result, we need to show
ˆ 0

−a
g(x) dx =

ˆ a

0

g(x) dx.

The proof is very similar: let u = −x, then

ˆ x=0

x=−a
g(x) dx =

ˆ u=0

u=a

g(−u)(− du) =

ˆ 0

a

g(u)(− du) =

ˆ a

0

g(u) du =

ˆ a

0

g(x) dx.

�

� Example 4.10 — Source: HKAL 2002 Paper II9, excerpt. Let f : R → [0,∞) be a periodic
function with period T .

(a) Prove that ˆ b+kT

a+kT

e−xf(x) dx = e−kT
ˆ b

a

e−xf(x) dx

for any k ∈ N.

(b) Let In =

ˆ nT

0

e−xf(x) dx. Prove that

In =
1− e−nT

1− e−T
I1

for any n ∈ N.
(c) If l > 0 and n is the positive integer such that nT ≤ l < (n+ 1)T , prove that

1− e−nT

1− e−T
I1 ≤

ˆ l

0

e−xf(x) dx ≤ 1− e−(n+1)T

1− e−T
I1.

� Solution (a) Consider the integral
ˆ b

a

e−xf(x) dx. Let u = x+ kT , then du = dx; and when
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x = a, u = a+ kT ; when x = b, u = b+ kT . Therefore,

ˆ b

a

e−xf(x) dx =

ˆ u=b+kT

u=a+kT

e−(u−kT )f(u− kT ) du

=

ˆ b+kT

a+kT

ekT e−uf(u) du (since f(u− kT ) = f(u)

= ekT︸︷︷︸
constant

ˆ b+kT

a+kT

e−xf(x) dx︸ ︷︷ ︸
change dummy vars

By rearrangement, we get:

ˆ b+kT

a+kT

e−xf(x) dx = e−kT
ˆ b

a

e−xf(x) dx.

(b) Note that

In =

ˆ T

0

e−xf(x) dx+

ˆ 2T

T

e−xf(x) dx+ · · ·+
ˆ nT

(n−1)T

e−xf(x) dx

= I1 +

ˆ T+T

0+T

e−xf(x) dx+ · · ·+
ˆ T+(n−1)T

0+(n−1)T

e−xf(x) dx

= I1 + e−T
ˆ T

0

e−xf(x) dx+ e−2T

ˆ T

0

e−xf(x) dx+ · · ·+ e−(n−1)T

ˆ T

0

e−xf(x) dx

= I1 + e−T I1 + e−2T I1 + · · ·+ e−(n−1)T I1

=
I1(1− (e−T )n)

1− e−T
.

The last step used the geometric series formula with common ratio e−T . This proves the result
in (b).
(c) Note that e−xf(x) ≥ 0 as given. Therefore,

ˆ nT

0

e−xf(x) dx︸ ︷︷ ︸
In

≤
ˆ l

0

e−xf(x) dx ≤
ˆ (n+1)T

0

e−xf(x) dx︸ ︷︷ ︸
In+1

From (b), we conclude that

1− e−nT

1− e−T
I1 ≤

ˆ l

0

e−xf(x) dx ≤ 1− e−(n+1)T

1− e−T
I1

as desired.

� Exercise 4.36 — Source: HKAL 2012 Paper II Q8. Answer the following questions:

(a) (i) Prove that
ˆ π/2

0

1

1 + sinx
dx = 1.

(ii) Evaluate
ˆ π/2

0

sinx

1 + sinx
dx.

(b) Let f : [0, π] → R be a continuous function such that f(π − x) = f(x) for all x ∈ [0, π].
Using integration by substitution, prove that

ˆ π

0

f(x) dx = 2

ˆ π/2

0

f(x) dx.
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(c) Let g : [0, π]→ R be a continuous function such that g(π − x) = −g(x) for all x ∈ [0, π].
Using the substitution u = π − x, prove that

ˆ π

0

g(x) log(1 + ecos x) dx =
1

2

ˆ π

0

g(x) cosx dx.

(d) Evaluate
ˆ π

0

cosx · log(1 + ecos x)

(1 + sinx)2
dx.

� Exercise 4.37 Consider the integral:

Ia :=

ˆ π

0

1− a cos θ

1− 2a cos θ + a2
dθ

where a ∈ (0,∞)\{1}. This integral appears in the calculation of electric flux across a unit
sphere with a point charge either inside (a < 1) or outside (a > 1) the sphere. One elegant
way of computing Ia is to use complex analysis. This exercise is about a less elegant, but more
elementary, approach of evaluating Ia.

(a) Show that for any a ∈ (0,∞)\{1} and θ ∈ (0, π).

1− a cos θ

1− 2a cos θ + a2
=

1

2
+

1− a
1 + a

·
1
2 sec2 θ

2(
1−a
1+a

)2

+ tan2 θ
2

(b) Note that sec2 θ
2 and tan2 θ

2 are not both well-defined at θ = 0, π, but 1−a cos θ
1−2a cos θ+a2 is

defined and is continuous on the whole interval [0, π]. Let α ∈ (0, π2 ) and β ∈ (π2 , π).
Using (a), compute ˆ β

α

1− a cos θ

1− 2a cos θ + a2
dθ.

(c) Hence, show that

Ia =

{
π if a < 1

0 if a > 1


