4.3 Fundamental Theorem of Calculus

4.3.1 Newton-Leibniz's formula

In previous sections we have established the rigorous definition of Riemann integrals. In particular, we proved that any continuous function on $[a, b]$ must be Riemann integrable. However, it is rather impractical to compute $\int_{a}^{b} f(x) d x$ via taking a sequence of partitions $\left\{P_{n}\right\}$, as we have seen that even the computation of $\int_{0}^{1} x^{p} d x$ where $p \in \mathbb{N}$ could involve some summation formulae.

The Fundamental Theorem of Calculus links the Riemann integral of a continuous function with its anti-derivatives, and provides us a very effective way of computing the value of the integral.
Theorem 4.11 - Fundamental Theorem of Calculus. Let f be continuous on $[a, b]$, then we have

$$
\begin{equation*}
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) \quad \text { for any } x \in[a, b] \tag{4.2}
\end{equation*}
$$

Furthermore, if F is a differentiable function such that $F^{\prime}(x)=f(x)$ for any $x \in[a, b]$, then

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=F(b)-F(a) \tag{4.3}
\end{equation*}
$$

(4.3) is known as the Newton-Leibniz's Formula. The function F is called an anti-derivative, or a primitive function, of f.
(i) Note that $\int_{a}^{x} f(t) d t$ is a function of x, not of t. We use t inside the integral $\int_{a}^{x} f(t) d t$ because x has appeared as the upper bound of the integral \int_{a}^{x}. You can use any other variable too (except x). We usually call t as the dummy variable.

Proof. To prove (4.2), we consider the definition of derivatives

$$
\begin{aligned}
\frac{d}{d x} \int_{a}^{x} f(t) d t & =\lim _{h \rightarrow 0} \frac{\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t
\end{aligned}
$$

The last step follows from (1) of Proposition 4.10.
By the result of Example 4.7, there exists c between x and $x+h$ such that

$$
\frac{1}{h} \int_{x}^{x+h} f(t) d t=\frac{1}{(x+h)-x} \int_{x}^{x+h} f(t) d t=f(c)
$$

Note that this c depends on both x and h.
Letting $h \rightarrow 0$ (keeping x fixed), by $c \in[x, x+h]$ or $[x+h, x]$, we have $c \rightarrow x$ and so by continuity of f we get

$$
\lim _{h \rightarrow 0} f(c)=f(x)
$$

This proves (4.2).
For (4.3), we consider

$$
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t-F(x)\right)=f(x)-f(x)=0 \quad \text { for any } x \in[a, b]
$$

according to (4.2) and the given condition about F.

The only functions with derivatives are constant function (a consequence of the mean value theorem). Therefore, there exists $C \in \mathbb{R}$ such that

$$
\int_{a}^{x} f(t) d t-F(x)=C \quad \text { for any } x \in[a, b]
$$

In particular, putting $x=a$ we get:

$$
\underbrace{\int_{a}^{a} f(t) d t}_{=0}-F(a)=C \Longrightarrow C=-F(a)
$$

Therefore, we have

$$
\int_{a}^{x} f(t) d t=F(x)+C=F(x)-F(a) \text { for any } x \in[a, b]
$$

and in particular by putting $x=b$, we get (4.3).
(i) We often denote $F(b)-F(a)$ by $[F(x)]_{a}^{b},\left.F(x)\right|_{a} ^{b}$.

Using (4.3), we can compute the integrals appeared in the previous section very easily simply find an anti-derivative.

$$
\begin{aligned}
\frac{d}{d x} \frac{x^{p+1}}{p+1}=x^{p} \text { where } p \geq 0 & \Longrightarrow \int_{0}^{1} x^{p} d x=\left[\frac{x^{p+1}}{p+1}\right]_{0}^{1}=\frac{1^{p+1}}{p+1}-\frac{0^{p+1}}{p+1}=\frac{1}{p+1} \\
\frac{d}{d x}(-\cos x)=\sin x & \Longrightarrow \int_{0}^{\pi} \sin x d x=[-\cos x]_{0}^{\pi}=(-\cos \pi)-(-\cos 0)=2 \\
\frac{d}{d x} e^{x}=e^{x} & \Longrightarrow \int_{a}^{b} e^{x} d x=\left[e^{x}\right]_{a}^{b}=e^{b}-e^{a}
\end{aligned}
$$

Continuity is crucial when applying the Newton-Leibniz's formula. The following absurd result would come up if one applies (4.3) blindly on a discontinuous function:

$$
\int_{-1}^{1} \frac{1}{x^{2}} d x=\left[-\frac{1}{x}\right]_{-1}^{1}=-2 \quad(\mathrm{WRONG}!)
$$

Clearly $\frac{1}{x^{2}}>0$, so it is absurd for its Riemann integral being negative! The pitfall is that $\frac{1}{x^{2}}$ is not continuous at 0 which lies in the interval $[-1,1]$. We cannot apply (4.3) directly!

However, it is perfectly fine to use (4.3) on

$$
\int_{1}^{2} \frac{1}{x^{2}} d x=\left[-\frac{1}{x}\right]_{1}^{2}=-\frac{1}{2}-(-1)=\frac{1}{2}
$$

as $\frac{1}{x^{2}}$ is continuous on $[1,2]$. We will discuss $\int_{0}^{1} \frac{1}{x^{2}} d x$ later as the function is unbounded on $[0,1]$. It is an improper integral.

- Exercise 4.23 Find the value of each integral below using Newton-Leibniz's formula:

1. $\int_{0}^{1} \frac{e^{x}}{1+e^{x}} d x$
2. $\int_{0}^{\pi} x \cos \left(x^{2}\right) d x$
3. $\int_{a}^{b} \sin (A x+B) d x$ where $A \neq 0$ and B are constants.

4.3.2 More uses of the Fundamental Theorem of Calculus

Let's discuss more about the use of (4.2). First note that we stated (4.2) as

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

the lower bound a of the integral can be replaced by any other constant c as

$$
\int_{c}^{x} f(t) d t=\int_{a}^{x} f(t) d t-\int_{a}^{c} f(t) d t
$$

and $\int_{a}^{c} f(t) d t$ is a constant.
However, one should note that the upper bound of the integral must be \int^{x} otherwise one should consider using the chain rule. Another issue is that (4.2) requires the integrand $f(t)$ to be independent of the differentiate variable x. Let's see some examples:

- Example 4.8 Find the derivative with respect to x of each function below. Assume that f is continuous on \mathbb{R}.

1. $F(x)=\int_{0}^{x^{2}} f(t) d t$
2. $G(x)=\int_{a}^{x} x f(t) d t$
3. $H(x)=\int_{x}^{x^{2}} f(t) d t$

- Solution The upper bound of the integral for $F(x)$ is $\int^{x^{2}}$, we should use the chain rule:

$$
\begin{aligned}
F^{\prime}(x) & =\frac{d}{d x} \int_{0}^{x^{2}} f(t) d t \\
& =\frac{d}{d\left(x^{2}\right)} \int_{0}^{x^{2}} f(t) d t \cdot \frac{d}{d x} x^{2} \\
& =f\left(x^{2}\right) \cdot 2 x=2 x f\left(x^{2}\right)
\end{aligned}
$$

For $G(x)$, the integrand $x f(t)$ depends on x, so one must take it out from the integral first before applying (4.2):

$$
\int_{a}^{x} x f(t) d t=x \int_{a}^{x} f(t) d t
$$

The above holds because x is independent of the integration variable t. Then,

$$
\begin{aligned}
G^{\prime}(x) & =\frac{d}{d x}\left(x \int_{a}^{x} f(t) d t\right) \\
& =\frac{d x}{d x} \int_{a}^{x} f(t) d t+x \frac{d}{d x} \int_{a}^{x} f(t) d t \\
& =\int_{a}^{x} f(t) d t+x f(x)
\end{aligned}
$$

We cannot proceed further because f is not explicitly given.
For $H(x)$, note that the lower bound is also a function of x, so we first rewrite the integral as:

$$
H(x)=\int_{x}^{x^{2}} f(t) d t=\underbrace{\int_{0}^{x^{2}} f(t) d t}_{G(x)}-\int_{0}^{x} f(t) d t
$$

You can replace 0 by any other number provided that f is continuous on the interval of integration. Then we have:

$$
H^{\prime}(x)=G^{\prime}(x)-f(x)=2 x f\left(x^{2}\right)-f(x)
$$

- Exercise 4.24 Derive a formula for:

$$
\frac{d}{d x} \int_{\beta(x)}^{\alpha(x)} f(t) d t
$$

where f is continuous on \mathbb{R}, and α, β are differentiable on \mathbb{R}.

- Exercise 4.25 Let $f: \mathbb{R} \rightarrow(0, \infty)$ be continuous function, and consider

$$
g(x):=\frac{\left(\int_{0}^{x} t f(t) d t\right)^{2}}{\int_{0}^{x} f(t) d t}
$$

Prove that g is strictly increasing on $(0, \infty)$.

- Exercise 4.26 - Source: HKAL 1994. Let $f(x)=\int_{1}^{x} \sin (\cos t) d t$.
(a) Show that f is injective on $[0, \pi / 2)$.
(b) Find $\left.\frac{d}{d x} f^{-1}(x)\right|_{x=0}$

■ Exercise 4.27 - Source: HKAL 1997. Evaluate

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x^{3}} \int_{0}^{x} e^{t^{2}} d t-\frac{1}{x^{2}}\right)
$$

■ Exercise 4.28 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Show that f satisfies the differential equation

$$
f^{\prime}(x)=\sin \left(1+f(x)^{2}\right) \text { and } f(0)=a
$$

if and only if f satisfies the integral equation

$$
f(x)=a+\int_{0}^{x} \sin \left(1+f(t)^{2}\right) d t .
$$

Let's discuss more use of (4.2):
Proposition 4.12 Let $f:[a, b] \rightarrow \mathbb{R}$ be a non-negative continuous function. Suppose

$$
\int_{a}^{b} f(x) d x=0
$$

then $f(x) \equiv 0$ on $[a, b]$.
Proof. It is quite an expected result since $\int_{a}^{b} f(x) d x$ is the area under the graph $y=f(x)$ for a non-negative function f. If the area is zero, the only possibility is the function is 0 . As we also assume f is continuous, we rule out those function which is 0 except a finite number of point too.

To prove it rigorously, we consider the function

$$
F(t):=\int_{a}^{t} f(x) d x
$$

By (4.2), we have $F^{\prime}(t)=f(t) \geq 0$. Hence F is increasing on $[a, b]$. However, we also note that

$$
F(a)=\int_{a}^{a} f(x) d x=0 \quad \text { and } \quad F(b)=\int_{a}^{b} f(x) d x=0 \quad \text { (given). }
$$

Therefore, $F(t)$ is identically zero on $[a, b]$ since:

$$
0=F(a) \leq F(t) \leq F(b)=0 \forall t \in[a, b] .
$$

This prove $f(t)=F^{\prime}(t)=0$ on $[a, b]$.

- Exercise 4.29 - Source: HKAL 1998. Answer the following questions:
(a) [This part just asked for the proof of Proposition 4.12, hence omitted here.]
(b) Let g be a continuous function on $[a, b]$. Suppose

$$
\int_{a}^{b} g(x) u(x) d x=0
$$

for any continuous function u on $[a, b]$, show that $g(x)=0$ for all $x \in[a, b]$.
(c) Let h be a continuous function on $[a, b]$. Define

$$
A=\frac{1}{b-a} \int_{a}^{b} h(t) d t
$$

(i) If $v(x)=h(x)-A$ for all $x \in[a, b]$, show that $\int_{a}^{b} v(x) d x=0$.
(ii) If $\int_{a}^{b} h(x) w(x) d x=0$ for any continuous function w on $[a, b]$ satisfying $\int_{a}^{b} w(x) d x=$ 0 , show that $h(x)=A$ for all $x \in[a, b]$.

4.3.3 Indefinite integrals

In view of the Newton-Leibniz's formula (4.3), we can evaluate a Riemann integral $\int_{a}^{b} f(x) d x$ by finding an anti-derivative of f. This relates the problem of finding area with (the reverse process of) differentiations. Because of this connection, we introduce the notion of indefinite integrals which symbolically looks like a Riemann integral but conceptually different:

Definition 4.6 - Indefinite Integrals. Suppose f is a function defined on an interval I, then the indefinite integral of f is defined to be:

$$
\int f(x) d x:=\left\{F(x): F^{\prime}(x)=f(x) \text { on } I\right\} .
$$

If F_{0} is a particular anti-derivative of f, then any other anti-derivative F of f on I would differ from F_{0} by a constant, then we also have

$$
\int f(x) d x:=\left\{F_{0}(x)+C: C \text { is a real constant }\right\} .
$$

Usually, we abbreviate the above by $\int f(x) d x=F_{0}(x)+C$ so that students who are not taking honor calculus could understand the notation.
(i) Naturally, $\int_{a}^{b} f(x) d x$ will then be called a definite integral of f. It is computationally similar to the indefinite integral $\int f(x) d x$ in view of the Newton-Leibniz formula, but as a math major, you should be very clear about their conceptual difference. You should regards $\int f(x) d x$ as

$$
\left(\frac{d}{d x}\right)^{-1} f
$$

where $\frac{d}{d x}$ is regarded as an operator.
Here are some examples:

$$
\begin{aligned}
\frac{d}{d x} \sin x=\cos x & \Longrightarrow \int \cos x d x=\sin x+C \\
\frac{d}{d x}\left(\frac{x^{p}}{p+1}\right)=x^{p} \quad \text { where } p \neq-1 & \Longrightarrow \int x^{p} d x=\frac{x^{p}}{p+1}+C \\
\frac{d}{d x} \frac{1}{\sqrt{1-x^{2}}}=\sin ^{-1} x & \Longrightarrow \int \frac{1}{\sqrt{1-x^{2}}} d x+\sin ^{-1} x+C
\end{aligned}
$$

When writing an indefinite integral, we often implicitly assume that the domain of both f and F is an interval I which is connected. Consider a function f defined on a disjoint union of two intervals:

$$
f(x)= \begin{cases}x^{3} & \text { if } x \in(0,1) \\ x^{4} & \text { if } x \in(2,3)\end{cases}
$$

One anti-derivative of f is certainly

$$
F_{0}(x)= \begin{cases}\frac{x^{4}}{4} & \text { if } x \in(0,1) \\ \frac{x^{5}}{5} & \text { if } x \in(2,3)\end{cases}
$$

but the others may be of the form

$$
F(x)= \begin{cases}\frac{x^{4}}{4}+C_{1} & \text { if } x \in(0,1) \\ \frac{x^{5}}{5}+C_{2} & \text { if } x \in(2,3)\end{cases}
$$

where C_{1} and C_{2} are two real constants, so it is not necessarily of the form $F_{0}(x)+C$. Therefore it would be problematic to say

$$
\int f(x) d x=F_{0}(x)+C
$$

When writing

$$
\int \frac{1}{x^{2}} d x=-\frac{1}{x}+C
$$

we should implicitly assume the domain involved is an interval not containing 0 , such as $(-2,-1)$ or $[1,3)$, but not $(-1,1]$.

The indefinite integral $\int \frac{1}{x} d x$ worths some discussion. On the interval $(0, \infty)$, an antiderivative of $\frac{1}{x}$ is clearly $\log x$, but $\log x$ is undefined if on the interval $(-\infty, 0)$. Instead, the anti-derivative of $\frac{1}{x}$ on the interval $(-\infty, 0)$ is $\log (-x)$ because by chain rule:

$$
\frac{d}{d x} \log (-x)=\frac{d}{d(-x)} \log (-x) \cdot \frac{d(-x)}{d x}=\frac{1}{(-x)} \cdot(-1)=\frac{1}{x}
$$

Therefore, we have $\int \frac{1}{x} d x=\log x+C$ when the domain interval in the context is a subset of $(0, \infty)$, while $\int \frac{1}{x} d x=\log (-x)+C$ when the domain is a subset of $(-\infty, 0)$. However, we often write it in a unified way:

$$
\int \frac{1}{x} d x=\log |x|+C
$$

so that it applies to both interval types. Again, if the domain in the context is an interval like $(-1,1)$, it does not make sense to talk about $\int \frac{1}{x} d x$ as the integrand $\frac{1}{x}$ is undefined at 0 .

Many of might have known that

$$
\int \tan x d x=-\log |\cos x|+C=\log |\sec x|+C
$$

Similarly, when writing this we implicitly assume the interval I involved is one that either $\cos x>0$ on I, or $\cos x<0$ on I.

We should also be careful when the function f is piecewise defined, such as

$$
f(x)= \begin{cases}e^{x} & \text { if } x \geq 0 \\ 1 & \text { if } x<0\end{cases}
$$

It is NOT true that

$$
\int f(x) d x=\left\{\begin{array}{ll}
e^{x}+C & \text { if } x \geq 0 \\
x+C & \text { if } x<0
\end{array}, \quad \text { where } C \text { is any real constant } \quad\right. \text { (WRONG!) }
$$

or

$$
\int f(x) d x=\left\{\begin{array}{ll}
e^{x}+C_{1} & \text { if } x \geq 0 \\
x+C_{2} & \text { if } x<0
\end{array}, \quad \text { where } C_{1}, C_{2}\right. \text { are any real constants }
$$

(WRONG!)

The function

$$
F(x)= \begin{cases}e^{x}+C & \text { if } x \geq 0 \\ x+C & \text { if } x<0\end{cases}
$$

is not even continuous at 0 as $\lim _{x \rightarrow 0+} F(x)=C+1$ whereas $\lim _{x \rightarrow 0^{-}} F(x)=C$. The same for functions

$$
\begin{cases}e^{x}+C_{1} & \text { if } x \geq 0 \\ x+C_{2} & \text { if } x<0\end{cases}
$$

unless C_{1} and C_{2} are some carefully chosen constants.
In fact, one of the anti-derivative of f should be

$$
F_{0}(x)= \begin{cases}e^{x} & \text { if } x \geq 0 \\ x+1 & \text { if } x<0\end{cases}
$$

so we should write

$$
\int f(x) d x=F_{0}+C=\left\{\begin{array}{ll}
e^{x} & \text { if } x \geq 0 \\
x+1 & \text { if } x<0
\end{array}+C\right.
$$

where C is any real constant.

- Exercise 4.30 Compute the indefinite integral of the function:

$$
f(x)= \begin{cases}x^{2} & \text { if } x \geq 0 \\ \sin x & \text { if } x<0\end{cases}
$$

Also, compute $\int|x| d x$ (take the domain to be \mathbb{R})
Analogous results of (2) and (3) in Proposition 4.10 for Riemann (i.e. definite) integrals also hold for indefinite integral, such as

$$
\int_{c} f(x) d x=c \int f(x) d x \text { and } \int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x .
$$

The proof is much easier. To prove the second statement, we take anti-derivatives F of f, and G of g. Then, we have

$$
\int f(x) d x+\int g(x) d x=F(x)+C_{1}+G(x)+C_{2}
$$

where C_{1}, C_{2} are any real constants. Since $(F+G)^{\prime}=f+g$ by the linearity of differentiations, $F+G$ is an anti-derivative of $f+g$ and so

$$
\int(f(x)+g(x)) d x=F(x)+G(x)+C_{3}
$$

where C_{3} is any real constant. We are only left to show

$$
\left\{C_{1}+C_{2}: C_{1}, C_{2} \in \mathbb{R}\right\}=\left\{C_{3}: C_{3} \in \mathbb{R}\right\}
$$

which is trivial (just prove both \subset and \supset).

