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4.3 Fundamental Theorem of Calculus
4.3.1 Newton-Leibniz’s formula

In previous sections we have established the rigorous definition of Riemann integrals. In particular,
we proved that any continuous function on [a, b] must be Riemann integrable. However, it is rather

impractical to compute
ˆ b

a

f(x) dx via taking a sequence of partitions {Pn}, as we have seen that

even the computation of
ˆ 1

0

xp dx where p ∈ N could involve some summation formulae.

The Fundamental Theorem of Calculus links the Riemann integral of a continuous function
with its anti-derivatives, and provides us a very effective way of computing the value of the
integral.

Theorem 4.11 — Fundamental Theorem of Calculus. Let f be continuous on [a, b], then we
have

d

dx

ˆ x

a

f(t) dt = f(x) for any x ∈ [a, b]. (4.2)

Furthermore, if F is a differentiable function such that F ′(x) = f(x) for any x ∈ [a, b], then

ˆ b

a

f(x) dx = F (b)− F (a). (4.3)

(4.3) is known as the Newton-Leibniz’s Formula. The function F is called an anti-derivative,
or a primitive function, of f .

i Note that
´ x

a
f(t) dt is a function of x, not of t. We use t inside the integral

´ x

a
f(t) dt because

x has appeared as the upper bound of the integral
´ x

a
. You can use any other variable too

(except x). We usually call t as the dummy variable.

Proof. To prove (4.2), we consider the definition of derivatives

d

dx

ˆ x

a

f(t) dt = lim
h→0

ˆ x+h

a

f(t) dt−
ˆ x

a

f(t) dt

h

= lim
h→0

1

h

ˆ x+h

x

f(t) dt.

The last step follows from (1) of Proposition 4.10.
By the result of Example 4.7, there exists c between x and x+ h such that

1

h

ˆ x+h

x

f(t) dt =
1

(x+ h)− x

ˆ x+h

x

f(t) dt = f(c).

Note that this c depends on both x and h.
Letting h → 0 (keeping x fixed), by c ∈ [x, x + h] or [x + h, x], we have c → x and so by

continuity of f we get
lim
h→0

f(c) = f(x).

This proves (4.2).
For (4.3), we consider

d

dx

(ˆ x

a

f(t) dt− F (x)

)
= f(x)− f(x) = 0 for any x ∈ [a, b]

according to (4.2) and the given condition about F .
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The only functions with derivatives are constant function (a consequence of the mean value
theorem). Therefore, there exists C ∈ R such that

ˆ x

a

f(t) dt− F (x) = C for any x ∈ [a, b].

In particular, putting x = a we get:
ˆ a

a

f(t) dt︸ ︷︷ ︸
=0

−F (a) = C =⇒ C = −F (a).

Therefore, we have
ˆ x

a

f(t) dt = F (x) + C = F (x)− F (a) for any x ∈ [a, b],

and in particular by putting x = b, we get (4.3). �

i We often denote F (b)− F (a) by [F (x)]ba, F (x)|ba.

Using (4.3), we can compute the integrals appeared in the previous section very easily –
simply find an anti-derivative.

d

dx

xp+1

p+ 1
= xp where p ≥ 0 =⇒

ˆ 1

0

xp dx =

[
xp+1

p+ 1

]1

0

=
1p+1

p+ 1
− 0p+1

p+ 1
=

1

p+ 1

d

dx
(− cosx) = sinx =⇒

ˆ π

0

sinx dx = [− cosx]π0 = (− cosπ)− (− cos 0) = 2

d

dx
ex = ex =⇒

ˆ b

a

ex dx = [ex]ba = eb − ea

Continuity is crucial when applying the Newton-Leibniz’s formula. The following absurd
result would come up if one applies (4.3) blindly on a discontinuous function:

ˆ 1

−1

1

x2
dx =

[
− 1

x

]1

−1

= −2 (WRONG!)

Clearly 1
x2 > 0, so it is absurd for its Riemann integral being negative! The pitfall is that 1

x2 is not
continuous at 0 which lies in the interval [−1, 1]. We cannot apply (4.3) directly!

However, it is perfectly fine to use (4.3) on

ˆ 2

1

1

x2
dx =

[
− 1

x

]2

1

= −1

2
− (−1) =

1

2
,

as 1
x2 is continuous on [1, 2]. We will discuss

ˆ 1

0

1

x2
dx later as the function is unbounded on

[0, 1]. It is an improper integral.

� Exercise 4.23 Find the value of each integral below using Newton-Leibniz’s formula:

1.
ˆ 1

0

ex

1 + ex
dx

2.
ˆ π

0

x cos(x2) dx

3.
ˆ b

a

sin(Ax+B) dx where A 6= 0 and B are constants.
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4.3.2 More uses of the Fundamental Theorem of Calculus
Let’s discuss more about the use of (4.2). First note that we stated (4.2) as

d

dx

ˆ x

a

f(t) dt = f(x),

the lower bound a of the integral can be replaced by any other constant c as
ˆ x

c

f(t) dt =

ˆ x

a

f(t) dt−
ˆ c

a

f(t) dt

and
ˆ c

a

f(t) dt is a constant.

However, one should note that the upper bound of the integral must be
´ x otherwise one

should consider using the chain rule. Another issue is that (4.2) requires the integrand f(t) to be
independent of the differentiate variable x. Let’s see some examples:

� Example 4.8 Find the derivative with respect to x of each function below. Assume that f is
continuous on R.

1. F (x) =

ˆ x2

0

f(t) dt

2. G(x) =

ˆ x

a

xf(t) dt

3. H(x) =

ˆ x2

x

f(t) dt

� Solution The upper bound of the integral for F (x) is
´ x2

, we should use the chain rule:

F ′(x) =
d

dx

ˆ x2

0

f(t) dt

=
d

d(x2)

ˆ x2

0

f(t) dt · d
dx
x2

= f(x2) · 2x = 2xf(x2).

For G(x), the integrand xf(t) depends on x, so one must take it out from the integral first
before applying (4.2): ˆ x

a

xf(t) dt = x

ˆ x

a

f(t) dt.

The above holds because x is independent of the integration variable t. Then,

G′(x) =
d

dx

(
x

ˆ x

a

f(t) dt

)
=
dx

dx

ˆ x

a

f(t) dt+ x
d

dx

ˆ x

a

f(t) dt

=

ˆ x

a

f(t) dt+ xf(x).

We cannot proceed further because f is not explicitly given.
For H(x), note that the lower bound is also a function of x, so we first rewrite the integral

as:

H(x) =

ˆ x2

x

f(t) dt =

ˆ x2

0

f(t) dt︸ ︷︷ ︸
G(x)

−
ˆ x

0

f(t) dt.
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You can replace 0 by any other number provided that f is continuous on the interval of
integration. Then we have:

H ′(x) = G′(x)− f(x) = 2xf(x2)− f(x).

� Exercise 4.24 Derive a formula for:

d

dx

ˆ α(x)

β(x)

f(t) dt

where f is continuous on R, and α, β are differentiable on R.

� Exercise 4.25 Let f : R→ (0,∞) be continuous function, and consider

g(x) :=

(ˆ x

0

tf(t) dt

)2

ˆ x

0

f(t) dt

.

Prove that g is strictly increasing on (0,∞).

� Exercise 4.26 — Source: HKAL 1994. Let f(x) =

ˆ x

1

sin(cos t) dt.

(a) Show that f is injective on [0, π/2).

(b) Find
d

dx
f−1(x)

∣∣∣∣
x=0

� Exercise 4.27 — Source: HKAL 1997. Evaluate

lim
x→0+

(
1

x3

ˆ x

0

et
2

dt− 1

x2

)
.

� Exercise 4.28 Let f : R→ R be a continuous function. Show that f satisfies the differential
equation

f ′(x) = sin
(
1 + f(x)2

)
and f(0) = a

if and only if f satisfies the integral equation

f(x) = a+

ˆ x

0

sin
(
1 + f(t)2

)
dt.

Let’s discuss more use of (4.2):

Proposition 4.12 Let f : [a, b]→ R be a non-negative continuous function. Suppose

ˆ b

a

f(x) dx = 0,

then f(x) ≡ 0 on [a, b].

Proof. It is quite an expected result since
ˆ b

a

f(x) dx is the area under the graph y = f(x) for a

non-negative function f . If the area is zero, the only possibility is the function is 0. As we also
assume f is continuous, we rule out those function which is 0 except a finite number of point too.
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To prove it rigorously, we consider the function

F (t) :=

ˆ t

a

f(x) dx.

By (4.2), we have F ′(t) = f(t) ≥ 0. Hence F is increasing on [a, b]. However, we also note that

F (a) =

ˆ a

a

f(x) dx = 0 and F (b) =

ˆ b

a

f(x) dx = 0 (given).

Therefore, F (t) is identically zero on [a, b] since:

0 = F (a) ≤ F (t) ≤ F (b) = 0 ∀t ∈ [a, b].

This prove f(t) = F ′(t) = 0 on [a, b]. �

� Exercise 4.29 — Source: HKAL 1998. Answer the following questions:
(a) [This part just asked for the proof of Proposition 4.12, hence omitted here.]
(b) Let g be a continuous function on [a, b]. Suppose

ˆ b

a

g(x)u(x) dx = 0

for any continuous function u on [a, b], show that g(x) = 0 for all x ∈ [a, b].
(c) Let h be a continuous function on [a, b]. Define

A =
1

b− a

ˆ b

a

h(t) dt.

(i) If v(x) = h(x)−A for all x ∈ [a, b], show that
ˆ b

a

v(x) dx = 0.

(ii) If
ˆ b

a

h(x)w(x) dx = 0 for any continuous functionw on [a, b] satisfying
ˆ b

a

w(x) dx =

0, show that h(x) = A for all x ∈ [a, b].

4.3.3 Indefinite integrals

In view of the Newton-Leibniz’s formula (4.3), we can evaluate a Riemann integral
ˆ b

a

f(x) dx

by finding an anti-derivative of f . This relates the problem of finding area with (the reverse
process of) differentiations. Because of this connection, we introduce the notion of indefinite
integrals which symbolically looks like a Riemann integral but conceptually different:

Definition 4.6 — Indefinite Integrals. Suppose f is a function defined on an interval I, then the
indefinite integral of f is defined to be:

ˆ
f(x) dx := {F (x) : F ′(x) = f(x) on I}.

If F0 is a particular anti-derivative of f , then any other anti-derivative F of f on I would
differ from F0 by a constant, then we also have

ˆ
f(x) dx := {F0(x) + C : C is a real constant}.

Usually, we abbreviate the above by
ˆ
f(x) dx = F0(x) + C so that students who are not

taking honor calculus could understand the notation.
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i Naturally,
ˆ b

a

f(x) dx will then be called a definite integral of f . It is computationally

similar to the indefinite integral
ˆ
f(x) dx in view of the Newton-Leibniz formula, but as a

math major, you should be very clear about their conceptual difference. You should regardsˆ
f(x) dx as (

d

dx

)−1

f

where d
dx

is regarded as an operator.

Here are some examples:

d

dx
sinx = cosx =⇒

ˆ
cosx dx = sinx+ C

d

dx

(
xp

p+ 1

)
= xp where p 6= −1 =⇒

ˆ
xp dx =

xp

p+ 1
+ C

d

dx

1√
1− x2

= sin−1 x =⇒
ˆ

1√
1− x2

dx+ sin−1 x+ C

When writing an indefinite integral, we often implicitly assume that the domain of both f
and F is an interval I which is connected. Consider a function f defined on a disjoint union of
two intervals:

f(x) =

{
x3 if x ∈ (0, 1)

x4 if x ∈ (2, 3)
.

One anti-derivative of f is certainly

F0(x) =

{
x4

4 if x ∈ (0, 1)
x5

5 if x ∈ (2, 3)
,

but the others may be of the form

F (x) =

{
x4

4 + C1 if x ∈ (0, 1)
x5

5 + C2 if x ∈ (2, 3)
,

where C1 and C2 are two real constants, so it is not necessarily of the form F0(x) +C. Therefore
it would be problematic to say ˆ

f(x) dx = F0(x) + C.

When writing ˆ
1

x2
dx = − 1

x
+ C,

we should implicitly assume the domain involved is an interval not containing 0, such as (−2,−1)
or [1, 3), but not (−1, 1].

The indefinite integral
ˆ

1

x
dx worths some discussion. On the interval (0,∞), an anti-

derivative of 1
x is clearly log x, but log x is undefined if on the interval (−∞, 0). Instead, the

anti-derivative of 1
x on the interval (−∞, 0) is log(−x) because by chain rule:

d

dx
log(−x) =

d

d(−x)
log(−x) · d(−x)

dx
=

1

(−x)
· (−1) =

1

x
.

Therefore, we have
ˆ

1

x
dx = log x+ C when the domain interval in the context is a subset of

(0,∞), while
ˆ

1

x
dx = log(−x) + C when the domain is a subset of (−∞, 0). However, we often

write it in a unified way: ˆ
1

x
dx = log |x|+ C,



4.3 Fundamental Theorem of Calculus 47

so that it applies to both interval types. Again, if the domain in the context is an interval like

(−1, 1), it does not make sense to talk about
ˆ

1

x
dx as the integrand 1

x is undefined at 0.

Many of might have known that
ˆ

tanx dx = − log |cosx|+ C = log |secx|+ C.

Similarly, when writing this we implicitly assume the interval I involved is one that either
cosx > 0 on I, or cosx < 0 on I.

We should also be careful when the function f is piecewise defined, such as

f(x) =

{
ex if x ≥ 0

1 if x < 0
.

It is NOT true that
ˆ
f(x) dx =

{
ex + C if x ≥ 0

x+ C if x < 0
, where C is any real constant (WRONG!)

or
ˆ
f(x) dx =

{
ex + C1 if x ≥ 0

x+ C2 if x < 0
, where C1, C2 are any real constants (WRONG!)

The function

F (x) =

{
ex + C if x ≥ 0

x+ C if x < 0

is not even continuous at 0 as lim
x→0+

F (x) = C + 1 whereas lim
x→0−

F (x) = C. The same for func-

tions {
ex + C1 if x ≥ 0

x+ C2 if x < 0

unless C1 and C2 are some carefully chosen constants.
In fact, one of the anti-derivative of f should be

F0(x) =

{
ex if x ≥ 0

x+ 1 if x < 0
,

so we should write ˆ
f(x) dx = F0 + C =

{
ex if x ≥ 0

x+ 1 if x < 0
+ C

where C is any real constant.

� Exercise 4.30 Compute the indefinite integral of the function:

f(x) =

{
x2 if x ≥ 0

sinx if x < 0
.

Also, compute
ˆ
|x| dx (take the domain to be R)

Analogous results of (2) and (3) in Proposition 4.10 for Riemann (i.e. definite) integrals also
hold for indefinite integral, such as

ˆ
c

f(x) dx = c

ˆ
f(x) dx and

ˆ (
f(x) + g(x)

)
dx =

ˆ
f(x) dx+

ˆ
g(x) dx.
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The proof is much easier. To prove the second statement, we take anti-derivatives F of f , and G
of g. Then, we have

ˆ
f(x) dx+

ˆ
g(x) dx = F (x) + C1 +G(x) + C2

where C1, C2 are any real constants. Since (F +G)′ = f + g by the linearity of differentiations,
F +G is an anti-derivative of f + g and so

ˆ (
f(x) + g(x)

)
dx = F (x) +G(x) + C3

where C3 is any real constant. We are only left to show

{C1 + C2 : C1, C2 ∈ R} = {C3 : C3 ∈ R}

which is trivial (just prove both ⊂ and ⊃).


