
4 — Integrations

4.1 Jordan Measure

You may have learned in high school that a definite integral of a function such as
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means the area under the graph y = x3 from x = 0 to x = 1, or more precisely, the area of the
region

{(x, y) : 0 ≤ x ≤ 1 and 0 ≤ y ≤ x3}.

You were probably told (but not explained) that a definite integral like this can be evaluated by

finding an anti-derivative of the function, namely
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This is known as the Fundamental Theorem of Calculus, or Newton-Leibniz formula that relates
the problem of finding area and differentiations.

We all learned about the concept of area in primary school (if not earlier), and know that the
area of a triangle is a half of the base times height, and the area of a circle with radius r is πr2.
However, it seems like we never learned about the rigorous definition of area! What is meant by
the area of a region? In this section, we introduce one definition of area, the Jordan measure –
which is will be used to give the rigorous definition of Riemann integrals.

4.1.1 Simple regions

Before introducing the Jordan measure of an arbitrary region in R2, we first focus on some simple
regions. We first declare that the area of a rectangle 〈a, b〉 × 〈c, d〉 ⊂ R2 to be (b − a)(d − c).
Here 〈 means ( or [, and 〉 means ) or ]. Intuitively, the intersection R1 ∩R2 of two overlapping
rectangles R1 and R2 is also a rectangle, whereas the union R1 ∪R2 needs not to be a rectangle.
However, one can break down R1 ∪R2 into three smaller rectangles R1 ∪R3 ∪R4 so that these
three rectangles are disjoint.
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It is then sensible to define the area of R1 ∪ R2 to be the sum of areas of R1, R3 and R4.
Inductively, one can see if we have finitely many rectangles, their union can be decomposed into
smaller rectangles which are disjoint, and hence we can define the area of such a union. To
summarize, we have:

Theorem 4.1 — Simple Regions. A set E ⊂ R2 is called a simple region if E is the union of
finitely many rectangles, i.e.

E =

N⋃
i=1

〈ai, bi〉 × 〈ci, di〉,

where ai ≤ bi and ci ≤ di, and they are all finite real numbers for any i.

i We allow ai = bi or ci = di in the above definition. In other words, we also count line
segments and points to be “rectangles”.

Proposition 4.2 Every simple regionE can be expressed as the union of finitely many rectangles
in R2 which are mutually disjoint.

Proof. By induction and the law that (
∐
iAi) ∪B =

∐
i(Ai ∪B). �

Definition 4.1 — Area of Simple Regions. Let E ⊂ R2 be a simple region so that, in view of the
above proposition, can be expressed as

E =
N∐
i=1

〈ai, bi〉 × 〈ci, di〉

where
(
〈ai, bi〉 × 〈ci, di〉

)
∩
(
〈aj , bj〉 × 〈cj , dj〉

)
= ∅ wherever i 6= j. We define the area of

E ⊂ R2 to be:

A(E) :=

N∑
i=1

(bi − ai)(di − ci).

i A simple region E can be expressed as the union of disjoint rectangles in many different
ways! It is possible to prove the definition of A(E) is independent of how we express E as
the union of disjoint rectangles. Again, it is an intuitive fact which cannot be easily proved.

4.1.2 General region in R2

Now consider a general region Ω in R2. In primary school, we probably have learned how to find
its approximate area by counting the number of little squares in a grid. The rigorous definition
of area of Ω is in fact motivated by the idea of counting squares. We approximate Ω by simple
regions from inside and also from outside (such as S and T in Figure 4.1).

As S and T are simple regions, it makes sense to talk about their areas A(S) and A(T ). It is
then sensible to expect that the area of Ω should be bounded between A(S) and A(T ). As we
approximate Ω by a pair of “closer”, more “refined” simple regions S and T , we expect the “area”
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Figure 4.1: Approximation of Ω by simple regions S and T

of Ω should be “something like” lim
S→Ω−

A(S) and lim
T→Ω+

A(T ). We learned about what is the limit

of a sequences or a function, but we never learn about limit of sets.
Instead of using “limits”, we define the area of Ω by taking it to be the “best” approximated

area by simple regions. If we approximate Ω by simple regions from inside (such as S), then the
“best” means the maximum possible A(S) among all possible simple regions S ⊂ Ω. Similarly,
if we approximate Ω by simple regions from outside (such as T ), then the “best” means the
minimum possible A(T ) among all simple regions T ⊃ Ω. That is exactly what Jordan measure
means. Precisely, we have:

Definition 4.2 — Jordan Measure in R2. Let Ω ⊂ R2 be a non-empty bounded set. We define
its inner Jordan measure µ∗(Ω) and outer Jordan measure µ∗(Ω) to be:

µ∗(Ω) := sup{A(S) : S ⊂ Ω and S is a simple region in R2}
µ∗(Ω) := inf{A(T ) : T ⊃ Ω and T is a simple region in R2}

(Reference: Figure 4.2).
If µ∗(Ω) = µ∗(Ω), then we say Ω is Jordan measurable, and define its Jordan measure

µ(Ω) by taking µ(Ω) := µ∗(Ω).

i Whenever S and T are simple regions such that S ⊂ Ω ⊂ T , it is intuitively clear (but not
easy to prove) that A(S) ≤ A(T ). Therefore, one must have µ∗(Ω) ≤ µ∗(Ω).

i Clearly, if µ∗(Ω) = 0, then Ω must be Jordan measurable and µ(Ω) = 0.

Let’s first get a sense of Jordan measure by some elementary examples:

Proposition 4.3 Any simple region E in R2 is Jordan measurable, and µ(E) = A(E).

Proof. Since E is a simple region, E satisfies the criterion:

E ⊂ E and E is a simple region in R2

in the definition of µ∗(E). Therefore, A(E) belongs to the set:

{A(S) : S ⊂ E and S is a simple region in R2}.

An element belonging to a set must be bounded above by its supremum (which is one of its upper
bound), so we have:

A(E) ≤ sup {A(S) : S ⊂ E and S is a simple region in R2}︸ ︷︷ ︸
A(E) belongs to this set

= µ∗(E).
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Figure 4.2: Outer and Inner Jordan Measures

The same argument, mutatis mutandis, proves that

A(E) ≥ inf {A(T ) : T ⊃ E and T is a simple region in R2}︸ ︷︷ ︸
A(E) belongs to this set

= µ∗(E).

In conclusion, we have proved:

A(E) ≤ µ∗(E) ≤ µ∗(E) ≤ A(E).

Therefore, the only possible is they are all equal to each other. It proves E is Jordan measurable
and µ(E) = µ∗(E) = A(E). �

� Exercise 4.1 Let X and Y be bounded sets in R such that X ⊂ Y . Show that supX ≤ supY
and inf X ≥ inf Y . Hence, show that if Ω1,Ω2 are bounded regions in R2 such that Ω1 ⊂ Ω2,
then we have µ∗(Ω1) ≤ µ∗(Ω2) and µ∗(Ω1) ≤ µ∗(Ω2).

The Jordan measure of a simple region can be found directly from the definition. For a general
region Ω, we typically calculate its Jordan measure by taking a pair of sequences {Sn} and {Tn}
of simple regions, with Sn ⊂ Ω and Tn ⊃ Ω for any n, such that lim

n→∞
A(Sn) = lim

n→∞
A(Tn). Let’s

look the example of a parallelogram:

� Example 4.1 Consider the parallelogram Ω with vertices

O(0, 0), A(b, 0), B(b+ c, h), C(c, h)

where b, c, h > 0, i.e. the parallelogram has base length b and height h. Show that Ω is Jordan
measurable and µ(Ω) = bh.

� Solution For each n ∈ N, we define the simple region:

Tn :=

n⋃
k=1

[
(k − 1)c

n
,
kc

n
+ b

]
×
[

(k − 1)h

n
,
kh

n

]
.

See Figure 4.3 for the illustration.



4.1 Jordan Measure 21

Figure 4.3: Parallelogram and its simple region approximations

The simple region Tn contains the parallelogram Ω, so by the definition of outer Jordan
measure (which is the infimum of all area of outer simple regions), we have

µ∗(Ω) ≤ A(Tn) = n ·
(
b+

c

n

)
· h
n

= h
(
b+

c

n

)
.

Similarly, one can also construct inner simple region Sn:

Sn :=

n⋃
k=1

[
kc

n
,

(k − 1)c

n
+ b

]
×
[

(k − 1)h

n
,
kh

n

]
.

Then, we have

µ∗(Ω) ≥ A(Sn) = n ·
(
b− c

n

)
· h
n

= h
(
b− c

n

)
.

In summary, we have proved that for each n ∈ N,

h
(
b− c

n

)
≤ µ∗(Ω) ≤ µ∗(Ω) ≤ h

(
b+

c

n

)
.

Letting n→∞, we conclude that:

hb ≤ µ∗(Ω) ≤ µ∗(Ω) ≤ hb,

and therefore µ∗(Ω) = µ∗(Ω) = hb, so Ω is Jordan measurable and µ(Ω) = hb.

� Exercise 4.2 Show that any straight line segment has Jordan measure zero. Note that a
straight line may not be horizontal or vertical.

� Exercise 4.3 Show that any right-angled triangle with one side vertical and one side horizontal
is Jordan measurable and its Jordan measure is given by 1

2 × base× height.

In general, if there exist sequences of inner simple regions {Sn} and outer simple regions
{Tn} such that A(Tn) and A(Sn) converge to the same limit, we can conclude that the region is
Jordan measure. In fact, the converse is also true. Let’s state it as a proposition:

Proposition 4.4 Let Ω be a non-empty bounded region in R2. Then the following are equiva-
lent:

1. there exist sequences of inner simple regions {Sn} and outer simple regions {Tn} of Ω
such that lim

n→∞
A(Sn) = lim

n→∞
A(Tn) = m.

2. Ω is Jordan measurable and µ(Ω) = m.

Proof. For (1) =⇒ (2), the proof is similar to the parallelogram example. By the definition of
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µ∗ and µ∗, we have
A(Sn) ≤ µ∗(Ω) ≤ µ∗(Ω) ≤ A(Tn) ∀n ∈ N.

Letting n→∞ and by lim
n→∞

A(Sn) = lim
n→∞

A(Tn) = m, we conclude that µ∗(Ω) = µ∗(Ω) = m.

For (2) =⇒ (1), we recall that the definition of µ∗(Ω) is given by

µ∗(Ω) = inf{A(T ) : T ⊃ Ω and T is a simple region in R2}

“Infimum” means the greatest lower bound, so for any n ∈ N, there must exist a simple region
Tn ⊃ Ω such that

µ∗(Ω) ≤ A(Tn) < µ∗(Ω) +
1

n
,

otherwise µ∗(Ω) + 1
n would also be a lower bound of the set

{A(T ) : T ⊃ Ω and T is a simple region in R2}.

By squeeze theorem, it is clear that

lim
n→∞

A(Tn) = µ∗(Ω).

Similarly, for each n ∈ N, there exists a simple region Sn ⊂ Ω such that

µ∗(Ω)− 1

n
< A(Sn) ≤ µ∗(Ω).

Letting n→∞, we also have
lim
n→∞

A(Sn) = µ∗(Ω).

Since Ω is Jordan measurable, we have

lim
n→∞

A(Tn) = µ∗(Ω) = m = µ∗(Ω) = lim
n→∞

A(Sn).

�

� Exercise 4.4 Prove using Proposition 4.4 that the trapezium Ω with vertices:

O(0, 0), A(a, 0), B(b+ c, h), C(c, h)

where a, b, c, h > 0, is Jordan measurable and µ(Ω) = 1
2 (a+ b)h.

� Exercise 4.5 Prove that for a non-empty bounded region Ω in R2, the following is also
equivalent to (1) and (2) in Proposition 4.4:

“∀ε > 0, ∃ simple regions S ⊂ Ω and T ⊃ Ω such that A(T\S) < ε.”

[Hint: You can use the fact that if X ⊂ Y ⊂ Z are all simple regions, then Z\Y , Z\X and
Y \X are simple regions too, with A(Z\Y ) ≤ A(Z\X) and A(Y \X) ≤ A(Z\X).]

4.1.3 Finite additivity and isometric invariance
Next we prove two good properties about Jordan measure:

• If Ω1 and Ω2 are two disjoint bounded Jordan measurable regions in R2, then so is Ω1 ∪Ω2

and µ(Ω1 ∪ Ω2) = µ(Ω1) + µ(Ω2).
• If Φ : R2 → R2 is a distance-preserving map (e.g. rotations, reflections, translations

and their compositions), then µ∗(Φ(Ω)) = µ∗(Ω) and µ∗(Φ(Ω)) = µ∗(Ω) for any bounded
region Ω in R2.

These sound intuitive, but it is not very obvious from the definition of Jordan measures (which
involve sup and inf).
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Proposition 4.5 — Finite Additivity. Suppose Ω1 and Ω2 are two bounded Jordan measurable
regions in R2, then so is Ω1∪Ω2. Furthermore, if Ω1∩Ω2 = ∅, then µ(Ω1∪Ω2) = µ(Ω1)+µ(Ω2).

Proof. We use Proposition 4.4. Given that Ω1 and Ω2 are Jordan measurable, there exist sequences
of inner simple regions

{
S

(i)
n

}∞
n=1

and outer simple regions
{
T

(i)
n

}∞
n=1

, where i = 1, 2, such that

S
(i)
n ⊂ Ωi ⊂ T (i)

n for each n ∈ N and i ∈ {1, 2}, and

lim
n→∞

A
(
S(i)
n

)
= lim
n→∞

A
(
T (i)
n

)
= µ(Ωi).

From elementary set theory, we know(
T (1)
n ∪ T (2)

n

)
\
(
S(1)
n ∪ S(2)

n

)
⊂
(
T (1)
n \S(1)

n

)
∪
(
T (2)
n \S(2)

n

)
.

Therefore, we get

A
((
T (1)
n ∪ T (2)

n

)
\
(
S(1)
n ∪ S(2)

n

))
≤ A

((
T (1)
n \S(1)

n

))
+A

((
T (2)
n \S(2)

n

))
.

For two simple regions X ⊂ Y , it is intuitive (yet tricky to prove) that 0 ≤ A(Y \X) = A(Y )−
A(X), so it follows that

0 ≤ A
(
T (1)
n ∪ T (2)

n

)
−A

(
S(1)
n ∪ S(2)

n

)
≤ A

(
T (1)
n

)
−A

(
S(1)
n

)︸ ︷︷ ︸
→0

+A
(
T (2)
n

)
−A

(
S(2)
n

)︸ ︷︷ ︸
→0

.

By squeeze theorem, we conclude that

lim
n→∞

A
(
T (1)
n ∪ T (2)

n

)
= lim
n→∞

A
(
S(1)
n ∪ S(2)

n

)
.

Noting that T (1)
n ∪ T (2)

n and S
(1)
n ∪ S(2)

n are simple regions such that S(1)
n ∪ S(2)

n ⊂ Ω1 ∪ Ω2 ⊂
T

(1)
n ∪ T (2)

n , we conclude by Proposition 4.4 that Ω1 ∪ Ω2 is Jordan measurable with

µ(Ω1 ∪ Ω2) = lim
n→∞

A
(
S(1)
n ∪ S(2)

n

)
.

To find µ(Ω1 ∪ Ω2) when Ω1 ∩ Ω2 = ∅, we observe that S(1)
n ∩ S(2)

n = ∅ for any n (while it is
not true for the outer simple regions). Therefore,

µ(Ω1 ∪ Ω2) = lim
n→∞

A
(
S(1)
n ∪ S(2)

n

)
= lim
n→∞

(
A
(
S(1)
n

)
+A

(
S(2)
n

))
= µ(Ω1) + µ(Ω2).

�

� Exercise 4.6 Prove by induction that for any finitely many bounded Jordan measurable
regions Ω1, · · · ,ΩN in R2, then the union Ω1 ∪ · · · ∪ ΩN is also Jordan measurable. Also, if
Ωi ∩ Ωj = ∅ for any i 6= j, then

µ(Ω1 ∪ · · · ∪ ΩN ) = µ(Ω1) + · · ·+ µ(ΩN ).

� Exercise 4.7 Prove that if Ω1 and Ω2 are two bounded Jordan measurable regions in R2, then
so are Ω1 ∩ Ω2 and Ω1\Ω2.

1. Prove that µ(Ω1 ∪ Ω2) = µ(Ω1) + µ(Ω2)− µ(Ω1 ∩ Ω2).
2. Assume further that Ω1 ⊂ Ω2, prove that µ(Ω2\Ω1) = µ(Ω2)− µ(Ω1).

In Exercise 4.3, we proved that the area of a triangle with its base being horizontal and height
being vertical is given by:

1

2
× base× height.

Then, how about a general triangle? Using finite additivity, this formula can be extended to
triangles with one of the side being horizontal by considering the following diagrams:
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For a general triangle, we need to prove that the Jordan measure is invariant under isometries
(a.k.a. distance-preserving maps) such as rotations, reflections, translations. It suffices to prove
the measure of a rectangle is invariant under isometries. According to the diagram below, finite
additivity of Jordan measures and Exercise 4.3, one can show that the measure of any rectangle
is always base times height. The base and height are preserved under isometry, so is the measure
of the rectangle.

Jordan measure of the yellow rectangle

= (h cos θ + b sin θ)(h sin θ + b cos θ)︸ ︷︷ ︸
Jordan measure of the blue rectangle

−2 · 1

2
h2 sin θ cos θ

− 2 · 1

2
b2 sin θ cos θ = hb(cos2 θ + sin2 θ) = hb.

Now the invariance under isometry of Jordan measures can be extended to general Jordan
measurable regions in R2:

Proposition 4.6 — Isometric Invariance. Let Φ : R2 → R2 be a distance-preserving map, and
Ω be a bounded Jordan measurable region in R2. Then Φ(Ω) is also Jordan measurable and
µ(Φ(Ω)) = µ(Ω).

Proof. As per the above discussion, the measure of a rectangle is preserved under such a map Φ,
so the measure of simple regions (which are disjoint unions of rectangles) is also preserved too.

Take a sequence of outer simple regions {Tn} with Ω ⊂ Tn for any n, and lim
n→∞

A(Tn) = µ∗(Ω).

Then, by Φ(Ω) ⊂ Φ(Tn), we have from Exercise 4.1

µ∗(Φ(Ω)) ≤ µ∗(Φ(Tn)) = µ∗(Tn) = A(Tn).
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Similarly, take a sequence {Sn} of inner simple regions (i.e. Sn ⊂ Ω) such that A(Sn)→ µ∗(Ω)
as n→∞. By Exercise 4.1 and Φ(Sn) ⊂ Φ(Ω), we also have

A(Sn) = µ∗(Φ(Sn)) ≤ µ∗(Φ(Ω)).

To summarize, we have for any n ∈ N that

A(Sn) ≤ µ∗(Φ(Ω)) ≤ µ∗(Φ(Ω)) ≤ A(Tn) ∀n ∈ N.

Letting n→∞, we proved:

µ∗(Ω) ≤ µ∗(Φ(Ω)) ≤ µ∗(Φ(Ω)) ≤ µ∗(Ω).

Since Ω is Jordan measurable, the above is in fact an equality. This proves our desired results.
�

Using finite additivity and isometric invariance, we can find the Jordan measure of polygon
figures by splitting it into disjoint triangles, rectangles, etc.

� Exercise 4.8 Suppose Ω ⊂ R2 is a bounded region such that there exist sequences {En} and
{Fn} of bounded Jordan measurable sets with En ⊂ Ω ⊂ Fn for any n, and

lim
n→∞

µ(En) = lim
n→∞

µ(Fn) = m.

Show that Ω is also Jordan measurable and µ(Ω) = m.

� Exercise 4.9 Using the previous exercises, show that a circle with radius r is Jordan measur-
able and has measure πr2. [Hint: take En’s and Fn’s to be regular polygons.]

4.1.4 Examples of non-measurable sets
There does exist some “strange” sets in R2 which are not Jordan measurable. Here is one example:

Ω := {(x, y) : x, y ∈ Q, 0 ≤ x, y ≤ 1}.

Any inner simple region S contained inside Ω must be a finite set of points, since the only
“rectangles” contained inside Ω are single points. This shows µ∗(Ω) = 0.

However, for any outer simple region T containing Ω, we claim that the closure T (i.e. the
union of T and its boundary) contains [0, 1]× [0, 1]. It is by the density of rational numbers. For
any (a, b) ∈ [0, 1]× [0, 1] one can take a sequence xn ∈ Q→ a and yn ∈ Q→ b as n→∞. Then
(xn, yn) ∈ Ω ⊂ T for any n. By order rule, the limit (a, b) of the points (xn, yn) must be in T or
on its boundary. Therefore, [0, 1]× [0, 1] ⊂ T , so A(T ) = A(T ) ≥ 1. This concludes that

µ∗(Ω) = inf {A(T ) : T ⊃ Ω and T is a simple region in R2}︸ ︷︷ ︸
all elements ≥ 1

≥ 1.

Therefore, µ∗(Ω) 6= µ∗(Ω). The set Ω is not Jordan measurable.

� Exercise 4.10 Show that (Q ∩ [0, 1])× [0, 1] is not Jordan measurable.

In MATH 3033/3043, we will study an even more important type of measure called Lebesgue
measure, which is an improved version of measure that makes these rational sets to be measurable.
The Lebesgue measure also enjoys an even better additivity called countable additivity.


