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4.2 Riemann Integrals

Given that we have defined rigorously the meaning of area in the previous section, we are now
ready to introduce the definition of Riemann integrals. We will use Jordan measure. This idea
is not originally from Riemann, but by Orrin Frink who related Jordan measure and Riemann
integrals together in his paper1 published in 1933.

Here we will exclusively discuss bounded function defined on a closed and bounded interval
[a, b]. If either one of the boundedness conditions is removed, the integral will be called an
improper integral which will be discussed later. Given such a function f : [a, b]→ R, we define

G+
[a,b](f) := {(x, y) : a ≤ x ≤ b, f(x) ≥ 0, and 0 ≤ y ≤ f(x)}

G−[a,b](f) := {(x, y) : a ≤ x ≤ b, f(x) < 0, and f(x) ≤ y ≤ 0}

G[a,b](f) := G+
[a,b](f) ∪G−[a,b](f)

Figure 4.4: G+
[a,b](f) and G−[a,b](f).

� Exercise 4.11 Show that the following are equivalent:
1. Both G+

[a,b](f) and G−[a,b](f) are Jordan measurable.
2. G[a,b](f) is Jordan measurable.

Definition 4.3 — Riemann Integrals. Let f : [a, b]→ R be a bounded function, then we say f is
Riemann integrable on [a, b] if and only if G[a,b](f) is Jordan measurable. In this case, we
define ˆ b

a

f(x) dx = µ
(
G+

[a,b](f)
)
− µ

(
G−[a,b](f)

)
.

See Figure 4.4.

i We assign negative value to the part below the x-axis. One reason for doing so is to guarantee
that if f(x) ≤ g(x) ≤ 0 on [a, b], we still have

´ b
a
f(x) dx ≤

´ b
a
g(x) dx.

1Orrin Frink, Jordan Measure and Riemann Integration, Annals of Mathematics, Second Series, Vol. 34, No. 3 (July
1933), pp. 518-526
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4.2.1 Non-negative functions
Let’s discuss how we could determine whether G+

[a,b](f) and G−[a,b](f) are Jordan measurable. For
simplicity, we label them by G+ and G− respectively.

We first consider bounded functions which are non-negative, so that we could only consider
G+. We need to consider the outer simple regions and inner simple regions of G+. One nice
property about a region like G+ is that any outer simple region containing G+ can be shrunk to
become a “bar chart” type region like below with each vertical bar barely hit the graph y = f(x):

Recall that the outer measure of G+ is defined as

µ∗(G+) := inf{A(T ) : G+ ⊂ T and T is simple}.

For each simple region T containing G+ there is always a smaller “bar chart” region T ′ (to be
more precisely defined soon) with G+ ⊂ T ′ ⊂ T , so the above infimum can be taken over all “bar
chart” regions containing G+ only. It is because dropping those non-bar-chart simple regions will
not affect the infimum. Here is an analogy: say in a test, you know that your test score is higher
than one of your friend, then you know that the lowest is not you!

Likewise, any inner simple region contained in G+ can also be expanded to become an inner
“bar chart” region like below:

The inner measure of G+ is defined as

µ∗(G+) := sup{A(S) : S ⊂ G+ and S is simple}.

By similar rationale as the outer measure, one can simply take the supremum over all ”bar chart”
regions contained in G+ only.

To describe these “bar chart” regions in a more precise way, we can define a partition of [a, b]:

P : a := x0 < x1 < · · · < xn =: b,
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and its associated outer and inner “bar chart” regions are respectively

TP :=

n⋃
i=1

[xi−1, xi]× [0,Mi] where Mi = sup{f(x) : x ∈ [xi−1, xi]},

SP :=

n⋃
i=1

[xi−1, xi]× [0,mi) where mi = inf{f(x) : x ∈ [xi−1, xi]}.

The areas of TP and SP are often called respectively the upper Darboux sum and lower
Darboux sum of f with respect to partition P , which are denoted by:

U(P, f) := A(TP ) =

n∑
i=1

Mi(xi − xi−1)

L(P, f) := A(SP ) =

n∑
i=1

mi(xi − xi−1).

As discussed, the outer and inner measures of G+ can be defined by taking the sup and inf
over all “bar chart” regions (which can be described using partitions of [a, b]), so we have:

µ∗(G+) = inf{U(P, f) : P is a partition of [a, b]},
µ∗(G

+) = sup{L(P, f) : P is a partition of [a, b]}.

Definition 4.4 — Upper and Lower Darboux Integrals. Let f : [a, b]→ R be a bounded function
(not necessarily non-negative), we define and denote the upper and lower Darboux integrals
as:

ˆ b

a

f(x) dx := inf{U(P, f) : P is a partition of [a, b]}
ˆ b

a

f(x) dx := sup{L(P, f) : P is a partition of [a, b]}

The upper and lower Darboux integrals can be defined on any bounded function f on [a, b],
not only on non-negative functions. But if f is non-negative and bounded on [a, b], we then have:

ˆ b

a

f(x) dx = µ∗(G+)

ˆ b

a

f(x) dx = µ∗(G
+).

� Example 4.2 Show that f(x) = x2 is Riemann integrable on [0, 1] and find
ˆ 1

0

x2 dx from

the definition.

� Solution Similar to proving a region in R2 is Jordan measurable, we will construct a sequence
of partitions Pn of [0, 1] such that U(Pn, f) and L(Pn, f) converge to the same limit.

For each n ∈ N, consider the partition

Pn : x0 := 0 <
1

n︸︷︷︸
x1

<
2

n︸︷︷︸
x2

< · · · < n− 1

n︸ ︷︷ ︸
xn−1

< 1 =: xn.
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Then, for any i ∈ {1, · · · , n}, we have

Mi := sup
x∈[ i−1

n , in ]

x2 =
i2

n2
,

mi := inf
x∈[ i−1

n , in ]
x2 =

(i− 1)2

n2
.

Hence,

U(Pn, f) =

n∑
i=1

Mi(xi − xi−1) =

n∑
i=1

i2

n2
· 1

n
=

1

n3
· n(n+ 1)(2n+ 1)

6
=

1

6
· n+ 1

n
· 2n+ 1

n
,

L(Pn, f) =

n∑
i=1

mi(xi − xi−1) =

n−1∑
i=0

i2

n3
=

1

n3
· (n− 1)n(2n− 1)

6
=

1

6
· n− 1

n
· 2n− 1

n
.

It is easy to see that

lim
n→∞

U(Pn, f) = lim
n→∞

L(Pn, f) =
1

3
.

By applying squeeze theorem on the inequality:

L(Pn, x
2) ≤

ˆ 1

0

x2 dx = µ∗(G
+) ≤ µ∗(G+) =

ˆ 1

0

x2 dx ≤ U(Pn, x
2), ∀n ∈ N,

we get ˆ 1

0

x2 dx =

ˆ 1

0

x2 dx =
1

3
.

Hence, x2 is integrable on [0, 1] and we have

ˆ 1

0

x2 dx =
1

3
.

� Exercise 4.12 Let f : [a, b]→ R be a non-negativea, bounded function. Suppose there exists
a sequence of partitions Pn of [a, b] such that

lim
n→∞

U(Pn, f) = lim
n→∞

L(Pn, f) = I,

then f is Riemann integrable on [a, b] and
ˆ b

a

f(x) dx = I.

aWe will extend the result to any bounded function later.

� Exercise 4.13 Show that ex is Riemann integrable on any closed and bounded interval [a, b],

and find
ˆ b

a

ex dx.

� Exercise 4.14 The following classic formula was discovered by Jacob Bernoulli in 1713:

1p + 2p + · · ·+ np =
1

p+ 1

p∑
j=0

(−1)jCp+1
j Bjn

p+1−j , p ∈ N
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where Bj ’s are so-called Bernoulli’s numbers given by:

B0 = 1, B1 =
1

2
, B2 =

1

6
, · · ·

The proof of the above formula can be found in some standard number theory or complex
analysis textbooks. Using this formula without proof, show that xp (where p ∈ N) is Riemann
integrable on [0, 1] and that:

ˆ 1

0

xp dx =
1

p+ 1
, where p is a positive integer

from the definition of integrals.

� Exercise 4.15 First prove the formula:

2 sin
x

2
· (sinx+ sin 2x+ · · ·+ sinnx) = cos

x

2
− cos

(
n+

1

2

)
x

for any x ∈ R and n ∈ N. Hence, show that sinx is Riemann integrable on [0, π], and find the
value of ˆ π

0

sinx dx.

� Example 4.3 Consider the function f : [0, 1]→ R by:

f(x) =


0 if x is irrational
1 if x = 0
1
n if x = m

n ∈ Q in the most simplified form (m,n ∈ N)

For instance, we have f( 2
3 ) = 1

3 , f( 8
14 ) = f( 4

7 ) = 1
7 . Show that f is Riemann integrable on

[0, 1] and
ˆ 1

0

f(x) dx = 0.

� Solution Let Pn be the partition 0 < 1
n <

2
n < · · · <

n−1
n < n

n = 1 where n ≥ 5 is prime. For
any i = 0, 1, . . . , n− 1, the interval [i/n, (i+ 1)/n] must contain at least one irrational number,
so we must have:

inf
[i/n,(i+1)/n]

f = 0.

This immediately shows L(Pn, f) = 0.
Next we estimate U(Pn, f) from above. The rational numbers r in [0, 1] that give the largest

output f(r) are given in descending order by:

{rj}∞j=1 =

{
0, 1,

1

2
,

1

3
,

2

3
,

1

4
,

3

4
,

1

5
,

2

5
,

3

5
,

4

5
, · · ·

}
as the outputs are:

{f(rj)}∞j=1 =

{
1, 1,

1

2
,

1

3
,

1

3
,

1

4
,

1

4
,

1

5
,

1

5
,

1

5
,

1

5
, · · ·

}
The worst scenario for U(Pn, f) is there is exactly one of {r1, r2, · · · , rn} in each [i/n, (i+1)/n],
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i = 0, 1, · · · , n− 1, and so

U(Pn, f) ≤ 1

n
(f(r1) + · · ·+ f(rn)).

Here is why we want n to be a prime: note that when n ≥ 5 is a prime, it is impossible for
i
n = rj for any i = 0, 1, · · · , n− 1 and j = 1, 2, · · · , n. That avoids rj , where 1 ≤ j ≤ n, to be
contained in both [(i− 1)/n, i/n] and [i/n, (i+ 1)/n].

Let k = k(n) be the denominator of rn, i.e. k is the unique integer such that:

1 + ϕ(1) + ϕ(2) + · · ·+ ϕ(k − 1) ≤ n < 1 + ϕ(1) + ϕ(2) + · · ·+ ϕ(k),

where ϕ(j) is the number of positive integers coprime to j. Then, we have

U(Pn, f) ≤ 1

n

(
1 +

ϕ(1)

1
+
ϕ(2)

2
+ · · ·+ ϕ(k)

k

)
≤

1 + ϕ(1)
1 + ϕ(2)

2 + · · ·+ ϕ(k)
k

1 + ϕ(1) + ϕ(2) + · · ·+ ϕ(k − 1)
.

From number theory, we have the following results:

ϕ(1)

1
+
ϕ(2)

2
+ · · ·+ ϕ(k)

k
=

6k

π2
+O

(
(log k)2/3(log log k)4/3

)
,

ϕ(1) + ϕ(2) + · · ·+ ϕ(k − 1) =
3(k − 1)2

π2
+O

(
(k − 1)(log(k − 1))2/3 log log(k − 1))4/3

)
.

Using these asymptotics, one can easily show that

lim
n→∞

U(Pn, f) = 0,

as U(Pn, f) behaves like ∼ 1
k as n→∞.

4.2.2 Non-Riemann integrable function: an example
The function below can be shown to be not Riemann integrable on [0, 1]:

χQ :=

{
1 if x ∈ Q
0 otherwise

.

To prove this, we consider an arbitrary partition P of [0, 1] with partition points denoted by xi’s.
As each closed interval (with positive length) contains a rational number, so we have for any i

sup
[xi−1,xi]

χQ = 1,

which implies

U(P, χQ) =

n∑
i=1

(xi − xi−1) = xn − x0 = 1− 0 = 1.

However, each closed interval [xi−1, xi] must also contain an irrational number, so for any i we
also have

inf
[xi−1,xi]

χQ = 0,

and so L(P, χQ) = 0.
This proves

µ∗(G+(χQ)
)

=

ˆ 1

0

χQ(x) dx = inf{U(P, χQ) : P is a partition of [0, 1]} = 1

while

µ∗
(
G+(χQ)

)
=

ˆ 1

0

χQ(x) dx = sup{L(P, χQ) : P is a partition of [0, 1]} = 0.
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Therefore, χQ is not Riemann integrable on [0, 1].ˆ 1

0

χQ(x) dx is therefore undefined in Riemann’s sense. However, in MATH 3033/3043, we

will introduce a more refined type of integrals, called Lebesgue integrals, that would allow us to
integrate χQ over [0, 1] in some other sense.

4.2.3 General bounded functions

Now we discuss the definition of Riemann integral for general bounded functions on [a, b] which
are not necessarily non-negative. It is not simply repeating our treatment for G+ and applying
similar rationale on G−, because the regions G+ and G− must be too complicated for a general
function. Consider the function

f(x) =

{
sin 1

x if x > 0

0 if x = 0
.

Both G+ and G− have infinitely many disjoint regions (try to sketch a graph to see this!).
Consider f : [a, b]→ R which is bounded, and so one can make sense of infx∈[a,b] f(x) =: m.

Here we assume m < 0 otherwise the function f is non-negative – we have discussed that before.
Note that then f(x)−m ≥ 0 for any x ∈ [a, b]. One good observation is that

µ
(
G+(f)

)
− µ

(
G−(f)

)
= µ

(
G+(f −m)

)
+m(b− a). (4.1)

From now on we will abbreviate G+
[a,b] and G−[a,b] by G+ and G− if the interval involved is clear

from the context.
Equation (4.1) can be proved by first using the translation invariance of Jordan measure, so

that

µ
(
G+(f −m)

)
= µ {(x, y) : m ≤ y ≤ f(x)}︸ ︷︷ ︸

G+(f−m)+m=:Ω

.

Note that Ω = G+(f) t
((

[a, b]× [m, 0)
)
\G−(f)

)
, so we have

µ(Ω) = µ
(
G+(f)

)
+ |m| (b− a)− µ

(
G−(f)

)
,

and so (4.1) follows. Note that m < 0 in our case.

As the Riemann integral
ˆ b

a

f(x) dx is defined as µ
(
G+(f)

)
− µ

(
G−(f)

)
, and (4.1) relates

this integral with
´ b
a
f(x)−mdx where f(x)−m ≥ 0, we can carry over many results we proved

for non-negative bounded functions to general bounded functions via (4.1).
Given any partition P : a := x0 < x1 < · · · < xn := b, we define just as in the non-negative
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case the upper and lower Darboux sums by:

U(P, f) :=

n∑
i=1

sup
[xi−1,xi]

f · (xi − xi−1),

L(P, f) :=

n∑
i=1

inf
[xi−1,xi]

f · (xi − xi−1).

Then, by observing that

sup
I

(f −m) = (sup
I
f)−m and inf

I
(f −m) = (inf

I
f)−m,

we can easily deduce that

U(P, f −m) =

n∑
i=1

(
sup

[xi−1,xi]

f −m

)
(xi − xi−1) = U(P, f)−m

n∑
i=1

(xi − xi−1)

= U(P, f)−m(b− a),

L(P, f −m) =

n∑
i=1

(
inf

[xi−1,xi]
f −m

)
(xi − xi−1) = L(P, f)−m

n∑
i=1

(xi − xi−1)

= L(P, f)−m(b− a)

Using (4.1) and the above relations, one can then extend the result of Exercise 4.12 to general
bounded functions:

Proposition 4.7 Let f : [a, b]→ R be a bounded function. Suppose there exists a sequence of
partitions {Pn}∞n=1 of [a, b] such that

lim
n→∞

U(Pn, f) = lim
n→∞

L(Pn, f) = I,

then f is Riemann integrable and
ˆ b

a

f(x) dx = I.

Proof. Denote m = inf [a,b] f . Recall that

U(Pn, f −m) = U(Pn, f)−m(b− a) and L(Pn, f −m) = L(Pn, f)−m(b− a),

so we have
lim
n→∞

U(Pn, f −m) = lim
n→∞

L(Pn, f −m) = I −m(b− a).

Note that f(x)−m ≥ 0 for any x ∈ [a, b], so by Exercise 4.12 we conclude f(x)−m is Riemann
integrable on [a, b], and so G+(f −m) is Jordan measurable and we have

ˆ b

a

(f(x)−m) dx = µ
(
G+(f −m)

)
= I −m(b− a).

By translational invariance, Ω := G+(f − m) + m is also Jordan measurable with µ(Ω) =
I − m(b − a). Then, G+(f) = Ω ∩ ([a, b] × [0, sup f ]) is also Jordan measurable (here sup f
means sup[a,b] f), and G−(f) = Ω ∩ ([a, b] × [m, 0]) is also Jordan measurable. This shows, by
the definition of Riemann integrals, that f is Riemann integrable on [a, b]. As for the value of the
integral, we can use (4.1) to prove that:

ˆ b

a

f(x) dx = µ
(
G+(f)

)
− µ

(
G−(f)

)
= µ

(
G+(f −m)

)
+m(b− a) = I.

�
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� Example 4.4 Show that x3 is Riemann integrable on [−1,
√

2], and find the value of the
integral over [−1, 2].

� Solution Here we choose non-uniform partitions so that we can always make 0 as one of the
partition points. For each n ∈ N, we define

Pn : −1 < −1+
1

n
< −1+

2

n
< · · · < −1+

n− 1

n
< 0 <

1

n

√
2 <

2

n

√
2 < · · · < n− 1

n

√
2 <
√

2.

One can then compute that

U(Pn, x
3) =

1

n

((
−1 +

1

n

)3

+

(
−1 +

2

n

)3

+ · · ·+
(
−1 +

n− 1

n

)3

+ 03

)

+
1

n

((
1

n

√
2

)3

+

(
2

n

√
2

)3

+ · · ·+
(
n− 1

n

√
2

)3

+
(n
n

√
2
)3
)

= − 1

n4
(03 + 13 + 23 + · · ·+ (n− 1)3) +

23/2

n4
(13 + 23 + · · ·+ n3)

= − 1

n4
· (n− 1)2n2

4
+

23/2

n4
· n

2(n+ 1)2

4
→ −1

4
+

23/2

4

as n→∞.
Similarly, we have

L(Pn, x
3) = − 1

n4
(13 + 23 + · · ·+ n3) +

23/2

n4
(03 + 13 + 23 + · · ·+ (n− 1)3)

= − 1

n4
· n

2(n+ 1)2

4
+

23/2

n4
· (n− 1)2n2

4
→ −1

4
+

23/2

4

as n→∞.
Using Proposition 4.7, we conclude that x3 is Riemann integrable on [−1,

√
2] and

ˆ √2

−1

x3 dx =
23/2 − 1

4
.

� Exercise 4.16 Show that for any p ∈ N, the function f(x) := xp is Riemann integrable on
[a, b] for any real a < b. [Split the case into 0 ≤ a < b, a < 0 ≤ b and a < b ≤ 0.]

� Exercise 4.17 Let f : [a, b] → R be a bounded function. Prove that the following are
equivalent:

1. for any ε > 0, there exists a partition P of [a, b] such that

U(P, f)− L(P, f) < ε.

2. there exists a sequence of partitions {Pn}∞n=1 of [a, b] such that

lim
n→∞

(U(Pn, f)− L(Pn, f)) = 0.

3. there exists a sequence of partitions {Pn}∞n=1 of [a, b] so that U(Pn, f) and L(Pn, f)
converge, and

lim
n→∞

U(Pn, f) = lim
n→∞

L(Pn, f)

4. f is Riemann integrable on [a, b] (i.e. G[a,b](f) is Jordan measurable)
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5.
ˆ b

a

f(x) dx =

ˆ b

a

f(x) dx (see Definition 4.4)

Suppose any one of the above (and hence all) holds, show that then any sequence of partition
{Pn} of [a, b], such that both U(Pn, f) and L(Pn, f) converge, must satisfy:

lim
n→∞

L(Pn, f) =

ˆ b

a

f(x) dx =

ˆ b

a

f(x) dx =

ˆ b

a

f(x) dx = lim
n→∞

U(Pn, f).

� Exercise 4.18 Show that any monotone bounded function on [a, b] must be Riemann inte-
grable on [a, b].

i In view of Exercise 4.17, some textbooks would take one of (1)-(5) in that exercise to be the
definition of Riemann integrability. The most common one seems to be (5).

4.2.4 Continuous functions
Using the results in Exercise 4.17, one can prove that continuous functions on [a, b] must be
Riemann integrable. For that we need to introduce a concept of uniform continuity.

To give some motivation, let’s consider the function f(x) = ex. It is well-known to be
continuous at every a ∈ R, meaning that ∀ε > 0, ∃δ > 0 such that whenever |x− a| < δ,
|ex − ea| < ε. Let’s think about what δ depends on? Certainly the smaller ε is, the smaller δ is
needed. Furthermore, δ also depends on a because the larger the a, the steeper the graph y = ex

near a, so a smaller δ is needed. This can be seen using the mean value theorem:

|ex − ea| ≤ eb |x− a|

where b ∈ (a, x) or (x, a). If |x− a| < δ, then we have

eb |x− a| ≤ emax{a,x}δ ≤ emax{a,a+δ}δ.

To choose δ such that emax{a,a+δ}δ < ε, it is impossible to make it independent of a.
Uniform continuity is a stronger notion of continuity in which the choice of δ does not depend

on a specific point in the domain. Precisely, we have:
Definition 4.5 — Uniform Continuity. Let f : I → R be a function defined on an interval
I = 〈a, b〉. We say f is uniformly continuous on I if ∀ε > 0, there exists δ > 0 which does not
depend on x, y ∈ I, such that whenever x, y ∈ I and |x− y| < δ, we have |f(x)− f(y)| < ε.

� Example 4.5 Any differentiable function f : I → R with bounded f ′ on I is uniformly
continuous on I. To prove this, we let |f ′(x)| ≤ M for any x ∈ I, then for any x, y ∈ I, with
x 6= y, the mean value theorem shows there exists ξ ∈ (x, y) or (y, x) such that

|f(x)− f(y)| ≤ |f ′(ξ)| |x− y| ≤M |x− y| .

∀ε > 0, we choose δ = ε
M+1 , then whenever x, y ∈ I and |x− y| < δ, we have

|f(x)− f(y)| ≤Mδ <
Mε

M + 1
< ε.

Note that this δ does not depend on x and y. Therefore, f is uniformly continuous on I.

� Example 4.6 The function f(x) = ex is not uniformly continuous on R. To see this, we
assume on the contrary that it is so. Then, by taking ε = 1, there exists δ > 0 such that
whenever |x− y| < δ, we have |ex − ey| < 1. Consider the sequences xn = n and yn = n+ 1

n .

For any n > 1
δ , we have |xn − yn| = 1

n < δ, and so
∣∣∣en − en+ 1

n

∣∣∣ < 1. By mean value theorem,
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there exists zn ∈ (xn, yn) such that∣∣∣en − en+ 1
n

∣∣∣ = ezn · 1

n
≥ en

n
.

However, this would show
en

n
< 1

for any n > 1
δ . It is a contradiction as en

n → +∞ as n → ∞. Therefore, ex is not uniformly
continuous on R.

However, ex is uniformly continuous on any bounded interval by the previous example, as
it has bounded derivative on any bounded interval.

i This above example of ex shows that whether a function is uniform continuous depends
on the domain. A function can be uniformly continuous on a smaller domain but not on a
larger one. Therefore, it is crucial the specify the domain, such as f is uniformly continuous
on (a, b], when we mention about uniform continuity.

� Exercise 4.19 Show that x2 is uniformly continuous on any bounded interval, but not on R.

One important fact relating Riemann integrals of continuous functions is that continuous
functions on any closed and bounded interval must be uniformly continuous on that interval.

Proposition 4.8 Any continuous function f : [a, b]→ R on a closed and bounded interval [a, b]
must be uniformly continuous on [a, b].

Proof. The proof is to use Bolzano-Weierstrass’s Theorem. Assume it is not true that f is uniformly
continuous on [a, b], then ∃ε0 > 0 such that ∀δ > 0, there exists xδ, yδ ∈ [a, b] with |xδ − yδ| < δ
but |f(xδ)− f(yδ)| ≥ ε0.

In particular, for any n ∈ N, there exists xn, yn ∈ [a, b] with |xn − yn| < 1
n but |f(xn)− f(yn)| ≥

ε0.
As [a, b] is closed and bounded, there exist convergent subsequences {xnk

}∞k=1 and {ynk
}∞k=1.

Since |xnk
− ynk

| < 1
nk

for any k, we have lim
k→∞

xnk
= lim
k→∞

ynk
. Denote the limit by L, and by

closedness of [a, b] we have L ∈ [a, b] too.
Recall that f is continuous on [a, b], and in particular at L, so we have

lim
k→∞

f(xnk
) = f(L) and lim

k→∞
f(ynk

) = f(L).

However, that would imply

0 < ε0 ≤ lim
k→∞

|f(xnk
)− f(ynk

)| = |f(L)− f(L)| = 0

which is clearly absurd.
This proves f must be uniformly continuous on [a, b]. �

Proposition 4.9 Any continuous function f on a closed and bounded interval [a, b] must be
Riemann integrable on [a, b].

Proof. By Proposition 4.8, f is uniformly continuous on [a, b]. Hence, for any ε > 0, there exists
δ > 0 such that whenever x, y ∈ [a, b] and |x− y| < δ, we have |f(x)− f(y)| < ε.

Now, take a partition P , with partition points {xi}ni=0 of [a, b] such that each subdivision
[xi−1, xi] has length < δ, then we have for any x, y ∈ [xi−1, xi], |f(x)− f(y)| < ε

2(b−a) . This
shows

sup
[xi−1,xi]

f − inf
[xi−1,xi]

f ≤ ε

2(b− a)
.
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Then, we have

U(P, f)− L(P, f) =

n∑
i=1

(
sup

[xi−1,xi]

f − inf
[xi−1,xi]

f

)
(xi − xi−1) <

ε

b− a

n∑
i=1

(xi − xi−1) = ε.

By Exercise 4.17, f is Riemann integrable on [a, b]. �

4.2.5 Properties of Riemann integrals
There are several properties about Riemann integrals that we will frequently use:

Proposition 4.10 — Properties of Riemann Integrals. Let f : [a, b] → R and g : [a, b] → R be
bounded functions. Then,

1. Fix any c ∈ (a, b). If f is Riemann integrable on [a, c] and on [c, b], then f is Riemann
integrable on [a, b] and

ˆ b

a

f(x) dx =

ˆ c

a

f(x) dx+

ˆ b

c

f(x) dx.

2. If f is Riemann integrable on [a, b], then so does cf for any c ∈ R and

ˆ b

a

cf(x) dx = c

ˆ b

a

f(x) dx.

3. If f and g are both Riemann integrable on [a, b], then so does f + g and we have

ˆ b

a

(f(x) + g(x)) dx =

ˆ b

a

f(x) dx+

ˆ b

a

g(x) dx.

4. If f and g are Riemann integrable on [a, b] and f(x) ≤ g(x) for any x ∈ [a, b], then

ˆ b

a

f(x) dx ≤
ˆ b

a

g(x) dx.

5. If f is Riemann integrable on [a, b], then so does |f | and∣∣∣∣∣
ˆ b

a

f(x) dx

∣∣∣∣∣ ≤
ˆ b

a

|f(x)| dx.

Proof. (1) follows from the fact that G±[a,b](f) = G±[a,c](f) ∪ G±[c,b](f), and so if G±[a,c](f) and
G±[c,b](f) are Jordan measurable, then the union G±[a,b](f) is also Jordan measurable. The
intersection G±[a,c](f) ∩G±[c,b](f) is a line segment, so it has Jordan measure zero. This proves

µ
(
G±[a,b](f)

)
= µ

(
G±[a,c](f) ∪G±[c,b](f)

)
= µ

(
G±[a,c](f)

)
+ µ

(
G±[c,b](f)

)
,

which implies
ˆ b

a

f(x) dx = µ
(
G+

[a,b](f)
)
− µ

(
G−[a,b](f)

)
= µ

(
G+

[a,c](f)
)

+ µ
(
G+

[c,b](f)
)
− µ

(
G−[a,c](f)

)
− µ

(
G−[c,b](f)

)
=

ˆ c

a

f(x) dx+

ˆ b

c

f(x) dx.

(2) follows directly from

U(P, cf) =

{
cU(P, f) if c ≥ 0

cL(P, f) if c < 0
and L(P, cf) =

{
cL(P, f) if c ≥ 0

cU(P, f) if c < 0
,
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and the results proved in Exercise 4.17.
To prove (3), we make sure of the fact that

sup
I

(f + g) ≤ sup
I
f + sup

I
g, and inf

I
(f + g) ≥ inf

I
f + inf

I
g.

[The proof of these is trivial: supI f + supI g is an upper bound of f + g, and infI f + infI g is a
lower bound of f + g.]

This shows for any partition P of [a, b], we have:

U(P, f + g) ≤ U(P, f) + U(P, g),

L(P, f + g) ≥ L(P, f) + L(P, g).

Given that both f and g are Riemann integrable on [a, b], by Exercise 4.17, there exist sequences
of partitions {Pn}∞n=1 and {Qn}∞n=1 of [a, b] such that

lim
n→∞

(
U(Pn, f)− L(Pn, f)

)
= 0 and lim

n→∞

(
U(Qn, g)− L(Qn, g)

)
.

Consider the sequence of partition Rn := Pn ∪Qn (i.e. mixing the partition points of Pn and Qn
are create a more refined partition), one can show that U(Rn, f)−L(Rn, f) ≤ U(Pn, f)−L(Pn, f)
and U(Rn, g)− L(Rn, g) ≤ U(Qn, g)− L(Qn, g). See Exercise 4.20.

Combining with previous results, we get

U(Rn, f + g)− L(Rn, f + g) ≤ U(Rn, f) + U(Rn, g)− L(Rn, f)− L(Rn, g)

≤ U(Pn, f)− L(Pn, f)︸ ︷︷ ︸
→0

+U(Qn, g)− L(Qn, g)︸ ︷︷ ︸
→0

as n → ∞. By Exercise 4.17, f + g is Riemann integrable on [a, b]. To prove the additivity of
integrals, we take a subsequence {Rnk

}∞k=1 of {Rn}∞n=1 such that all of the following converge as
k →∞:

U(Rnk
, f), L(Rnk

, f), U(Rnk
, g), L(Rnk

, g), U(Rnk
, f + g), L(Rnk

, f + g).

It is possible by Bolzano-Weierstrass’s Theorem (note that f and g are bounded). According to
Exercise 4.17, we have

ˆ b

a

f(x) dx = lim
k→∞

U(Rnk
, f) = lim

k→∞
L(Rnk

, f)

and the same for g.
Then by Exercise 4.20 below, we have for any k:

L(Rnk
, f) + L(Rnk

, g) ≤ L(Rnk
, f + g)

≤
ˆ b

a

(f(x) + g(x)) dx ≤
ˆ b

a

(f(x) + g(x)) dx

≤ U(Rnk
, f + g) ≤ U(Rnk

, f) + U(Rnk
, g).

Letting k →∞, we get

ˆ b

a

f(x) dx+

ˆ b

a

g(x) dx ≤
ˆ b

a

(f(x)+g(x)) dx ≤
ˆ b

a

(f(x)+g(x)) dx ≤
ˆ b

a

f(x) dx+

ˆ b

a

g(x) dx.

This proves (3) completely.
(4) is obvious by the fact that if f(x) ≤ g(x) for any x ∈ [a, b], then supI f ≤ supI g for any

interval I ⊂ [a, b] and so U(P, f) ≤ U(P, g) for any partition P of [a, b].
For (5), note that G(|f |) = G+(f) ∪ Rx

(
G−(f)

)
where Rx : R2 → R2 is the reflection

about the x-axis, which is an isometry. If f is Riemann integrable, then G+(f) and G−(f) are
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Jordan measurable, so Rx
(
G−(f)

)
and hence G(|f |) is also Jordan measurable. This shows |f | is

Riemann integrable on [a, b]. The inequality∣∣∣∣∣
ˆ b

a

f(x) dx

∣∣∣∣∣ ≤
ˆ b

a

|f(x)| dx

follows directly from − |f(x)| ≤ f(x) ≤ |f(x)| and the use of (4). �

i Combining (2) and (3) of Proposition 4.10, i.e. by taking c = −1 in (2), one can also prove
that if f and g are both Riemann integrable on [a, b], then so does f − g and we have

ˆ b

a

(f(x)− g(x)) dx =

ˆ b

a

f(x) dx−
ˆ b

a

g(x) dx.

i When a > b, we would define
ˆ b

a

f(x) dx := −
ˆ a

b

f(x) dx.

Using this definition, one can easily show that (1) of Proposition 4.10 also holds if even c is
not in (a, b).

� Example 4.7 Suppose f is continuous on [a, b], hence Riemann integrable on [a, b]. Show
that there exists c ∈ [a, b] such that

f(c) =
1

b− a

ˆ b

a

f(x) dx.

� Solution By extreme value theorem, f achieves its maximum and minimum on [a, b]. Let

M := sup
[a,b]

f = f(x1) and m := inf
[a,b]

f = f(x2)

for some x1, x2 ∈ [a, b].
Then by f(x) ≤M for any x ∈ [a, b], (4) in Proposition 4.10 shows

ˆ b

a

f(x) dx ≤
ˆ b

a

M dx = M(b− a).

Similarly by f(x) ≥ m for any x ∈ [a, b], we have

m(b− a) ≤
ˆ b

a

mdx ≤
ˆ b

a

f(x) dx.

This shows

f(x2) = m ≤ 1

b− a

ˆ b

a

f(x) dx ≤M = f(x1).

As f is continuous, intermediate value theorem shows there exists c between x1 and x2 such
that

f(c) =
1

b− a

ˆ b

a

f(x) dx.

� Exercise 4.20 Show that for any bounded function f : [a, b]→ R and any partition P of [a, b],
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if we add one partition point c to P , and denote P ′ = P ∪ {c}, then

L(P, f) ≤ L(P ′, f) ≤ U(P ′, f) ≤ U(P, f).

� Exercise 4.21 Let I be a closed and bounded interval, and J ⊂ I be another closed and
bounded interval. Show that if f is Riemann integrable on I, then it is also Riemann integrable
on J .

Assume further that f(x) ≥ 0 on [a, b], show that

ˆ β

α

f(x) dx ≤
ˆ η

γ

f(x) dx

if [α, β] ⊂ [γ, η] ⊂ [a, b].

� Exercise 4.22 Show that if |f(x)| ≤M for any x ∈ [a, b], then∣∣f(x)2 − f(y)2
∣∣ ≤ 2M |x− y| ∀x, y ∈ [a, b].

Hence, show that if f is Riemann integrable on [a, b], then so does f2.
Using this and the properties of Riemann integrabs proven, show that if f, g are bounded

Riemann integrable functions on [a, b], then so does fg.


