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Chapter 1

Limit

1.1 Limit of Sequence

A sequence is an infinite list

x1, x2, . . . , xn, . . . .

The n-th term of the sequence is xn, and n is the index of the term. In this course,
we will always assume that all the terms are real numbers. Here are some examples

xn = n : 1, 2, 3, . . . , n, . . . ;

yn = 2: 2, 2, 2, . . . , 2, . . . ;

zn =
1

n
: 1,

1

2
, . . . ,

1

n
, . . . ;

un = (−1)n : 1, −1, 1, . . . , (−1)n, . . . ;

vn = sinn : sin 1, sin 2, sin 3, . . . , sinn, . . . .

Note that the index does not have to start from 1. For example, the sequence
vn actually starts from n = 0 (or any even integer). Moreover, a sequence does not
have to be given by a formula. For example, the decimal expansions of π give a
sequence

wn : 3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, . . . .

If n is the number of digits after the decimal point, then the sequence wn starts at
n = 0.

Now we look at the trend of the examples above as n gets bigger. We find that
xn gets bigger and can become as big as we want. On the other hand, yn remains
constant, zn gets smaller and can become as small as we want. This means that
yn approaches 2 and zn approaches 0. Moreover, un and vn jump around and do
not approach anything. Finally, wn is equal to π up to the n-th decimal place, and
therefore approaches π.
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8 CHAPTER 1. LIMIT

n

xn

yn

zn
un

vn

wn

Figure 1.1.1: Sequences.

Definition 1.1.1 (Intuitive). If xn approaches a finite number l when n gets bigger
and bigger, then we say that the sequence xn converges to the limit l and write

lim
n→∞

xn = l.

A sequence diverges if it does not approach a specific finite number when n gets
bigger.

The sequences yn, zn, wn converge respectively to 2, 0 and π. The sequences
xn, un, vn diverge. Since the limit describes the behavior when n gets very big, we
have the following property.

Proposition 1.1.2. If yn is obtained from xn by adding, deleting, or changing finitely
many terms, then limn→∞ xn = limn→∞ yn.

The equality in the proposition means that xn converges if and only if yn con-
verges. Moreover, the two limits have equal value when both converge.

Example 1.1.1. The sequence
1√
n+ 2

is obtained from
1√
n

by deleting the first

two terms. By limn→∞
1√
n

= 0 and Proposition 1.1.2, we get limn→∞
1√
n

=

limn→∞
1√
n+ 2

= 0.

In general, we have limn→∞ xn+k = limn→∞ xn for any integer k.

The example assumes limn→∞
1√
n

= 0, which is supposed to be intuitively obvi-

ous. Although mathematics is inspired by intuition, a critical feature of mathematics
is rigorous logic. This means that we need to be clear what basic facts are assumed
in any argument. For the moment, we will always assume that we already know
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limn→∞ c = c and limn→∞
1

np
= 0 for p > 0. After the two limits are rigorously

established in Examples 1.2.2 and 1.2.3, the conclusions based on the two limits
become solid.

1.1.1 Arithmetic Rule

Intuitively, if x is close to 3 and y is close to 5, then the arithmetic combinations
x+y and xy are close to 3+5 = 8 and 3 ·5 = 15. The intuition leads to the following
property of limit.

Proposition 1.1.3 (Arithmetic Rule). Suppose limn→∞ xn = l and limn→∞ yn = k.
Then

lim
n→∞

(xn + yn) = l + k, lim
n→∞

cxn = cl, lim
n→∞

xnyn = kl, lim
n→∞

xn
yn

=
l

k
,

where c is a constant and k 6= 0 in the last equality.

The proposition says limn→∞(xn + yn) = limn→∞ xn + limn→∞ yn. However, the
equality is of different nature from the equality in Proposition 1.1.2, because the
convergence of the limits on two sides are not equivalent: If the two limits on the
right converge, then the limit on the left also converges and the two sides are equal.
However, for xn = (−1)n and yn = (−1)n+1, the limit limn→∞(xn + yn) = 0 on the
left converges, but both limits on the right diverge.

Exercise 1.1.1. Explain that limn→∞ xn = l if and only if limn→∞(xn − l) = 0.

Exercise 1.1.2. Suppose xn and yn converge. Explain that limn→∞ xnyn = 0 implies either
limn→∞ xn = 0 or limn→∞ yn = 0. Moreover, explain that the conclusion fails if xn and
yn are not assumed to converge.

Example 1.1.2. We have

lim
n→∞

2n2 + n

n2 − n+ 1
= lim

n→∞

2 +
1

n

1− 1

n
+

1

n2

=

limn→∞

(
2 +

1

n

)
limn→∞

(
1− 1

n
+

1

n2

)

=
limn→∞ 2 + limn→∞

1

n

limn→∞ 1− limn→∞
1

n
+ limn→∞

1

n
· limn→∞

1

n

=
2 + 0

1− 0 + 0 · 0
= 2.
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The arithmetic rule is used in the second and third equalities. The limits limn→∞ c =

c and limn→∞
1

n
= 0 are used in the fourth equality.

Exercise 1.1.3. Find the limits.

1.
n+ 2

n− 3
.

2.
n+ 2

n2 − 3
.

3.
2n2 − 3n+ 2

3n2 − 4n+ 1
.

4.
n3 + 4n2 − 2

2n3 − n+ 3
.

5.
(n+ 1)(n+ 2)

2n2 − 1
.

6.
2n2 − 1

(n+ 1)(n+ 2)
.

7.
(n2 + 1)(n+ 2)

(n+ 1)(n2 + 2)
.

8.
(2− n)3

2n3 + 3n− 1
.

9.
(n2 + 3)3

(n3 − 2)2
.

Exercise 1.1.4. Find the limits.

1.

√
n+ 2√
n− 3

.

2.

√
n+ 2

n− 3
.

3.
2
√
n− 3n+ 2

3
√
n− 4n+ 1

.

4.
3
√
n+ 4

√
n− 2

2 3
√
n− n+ 3

.

5.
(
√
n+ 1)(

√
n+ 2)

2n− 1
.

6.
2n− 1

(
√
n+ 1)(

√
n+ 2)

.

7.
(
√
n+ 1)(n+ 2)

(n+ 1)(
√
n+ 2)

.

8.
(2− 3

√
n)3

2 3
√
n+ 3n− 1

.

9.
( 3
√
n+ 3)3

(
√
n− 2)2

.

Exercise 1.1.5. Find the limits.

1.
n+ a

n+ b
.

2.

√
n+ a

n+ b
.

3.
n+ a

n2 + bn+ c
.

4.

√
n+ a

n+ b
√
n+ c

.

5.
(
√
n+ a)(

√
n+ b)

cn+ d
.

6.
cn+ d

(
√
n+ a)(

√
n+ b)

.

7.
an3 + b

(c
√
n+ d)6

.

8.
(a 3
√
n+ b)2

(c
√
n+ d)3

.

9.
(a
√
n+ b)2

(c 3
√
n+ d)3

.

Exercise 1.1.6. Show that

lim
n→∞

apn
p + ap−1n

p−1 + · · ·+ a1n+ a0

bqnq + bq−1nq−1 + · · ·+ b1n+ b0
=

0, if 0 < p < q,
ap
bq
, if 0 < p = q and bq 6= 0.

Exercise 1.1.7. Find the limits.

1.
1010n

n2 − 10
. 2.

55(2n+ 1)2 − 1010

10n2 − 5
. 3.

55(2
√
n+ 1)2 − 1010

10n− 5
.

Exercise 1.1.8. Find the limits.
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1.
n

n+ 1
− n

n− 1
.

2.
n2

n+ 1
− n2

n− 1
.

3.
n√
n+ 1

− n√
n− 1

.

4.
n+ a

n+ b
− n+ c

n+ d
.

5.
n2 + a

n+ b
− n2 + c

n+ d
.

6.
n+ a√
n+ b

− n+ c√
n+ d

.

7.
n3 + a

n2 + b
− n3 + c

n2 + d
.

8.
n2 + a

n3 + b
− n2 + c

n3 + d
.

9.

√
n+ a

3
√
n+ b

−
√
n+ c

3
√
n+ d

.

Exercise 1.1.9. Find the limits.

1.
n2 + a1n+ a0

n+ b
− n2 + c1n+ c0

n+ d
.

2.
n2 + a1n+ a0

n2 + b1n+ b0
− n2 + c1n+ c0

n2 + d1n+ d0
.

3.

(
n+ a

n+ b

)2

−
(
n+ c

n+ d

)2

.

4.

(
n2 + a

n+ b

)2

−
(
n2 + c

n+ d

)2

.

Exercise 1.1.10. Find the limits, p, q > 0.

1.
np + a

nq + b
.

2.
anp + bnq + c

anq + bnp + c
.

3.
np + a

nq + b
− np + c

nq + d
.

4.
n2p + a1n

p + a2

n2q + b1nq + b2
.

1.1.2 Sandwich Rule

The following property reflects the intuition that if x and z are close to 3, then
anything between x and z should also be close to 3.

Proposition 1.1.4 (Sandwich Rule). Suppose xn ≤ yn ≤ zn for sufficiently big n. If
limn→∞ xn = limn→∞ zn = l, then limn→∞ yn = l.

Note that something holds for sufficiently big n is the same as something fails
for only finitely many n.

Example 1.1.3. By 2n − 3 > n for sufficiently big n (in fact, n > 3 is enough), we
have

0 <
1√

2n− 3
<

1√
n
.

Then by limn→∞ 0 = limn→∞
1√
n

= 0 and the sandwich rule, we get limn→∞
1√

2n− 3
=

0.
On the other hand, for sufficiently big n, we have n + 1 < 2n and n − 1 >

n

2
,

and therefore

0 <

√
n+ 1

n− 1
<

√
2n
n

2

=
2
√

2√
n
.
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By limn→∞
2
√

2√
n

= 2
√

2 limn→∞
1√
n

= 0 (arithmetic rule used) and the sandwich

rule, we get limn→∞

√
n+ 1

n− 1
= 0.

Example 1.1.4. By −1 ≤ sinn ≤ 1, we have

− 1

n
≤ sinn

n
≤ 1

n
,

1√
n+ 1

≤ 1√
n+ sinn

≤ 1√
n− 1

.

By limn→∞
1

n
= 0, − limn→∞

1

n
= 0 and the sandwich rule, we get limn→∞

sinn

n
= 0.

Moreover, by limn→∞
1√
n+ 1

= limn→∞
1√
n− 1

= 0 (see argument in Example

1.1.1) and the sandwich rule, we get limn→∞
1√

n+ sinn
= 0.

Exercise 1.1.11. Prove that limn→∞ |xn| = 0 implies limn→∞ xn = 0.

Exercise 1.1.12. Find the limits, a > 0.

1.
1√

3n− 4
. 2.

√
2n+ 3

4n− 1
. 3.

1√
an+ b

. 4.

√
an+ b

cn+ d
.

Exercise 1.1.13. Find the limits.

1.
cosn

n
.

2.
(−1)n

n
.

3.
sin
√
n

n
.

4.
cosn√
n− 2

.

5.
1

n+ (−1)n
.

6.
cosn

n+ (−1)n
.

7.
cosn√

n+ (−1)n2
.

8.
cosn√

n+ sin
√
n

.

9.
(−1)n√
n+ (−1)n

.

10.
2 + (−1)n3

3
√
n2 − 2 cosn

.

11.
sinn+ (−1)n cosn√

n+ (−1)n
.

12.
| sinn+ cosn|

n
.

13.
3
√
n+ 2

2n+ (−1)n3
.

14.

√
n sinn+ cosn

n− 1
.

15.
n+ sin

√
n

n+ cos 2n
.

16.

√
n+ sinn√
n− cosn

.

17.
(−1)n(n+ 1)

n2 + (−1)n+1
.

18.
(−1)n(n+ 10)2 − 1010

10(−1)nn2 − 5
.

Exercise 1.1.14. Find the limits.
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1.

√
n+ a

n+ (−1)nb
.

2.
1

3
√
n2 + an+ b

.

3.

√
n+ c+ d

3
√
n2 + an+ b

.

4.
n+ (−1)na

n+ (−1)nb
.

5.
(−1)n(an+ b)

n2 + c(−1)n+1n+ d
.

6.
(−1)n(an+ b)2 + c

(−1)nn2 + d
.

7.
cos
√
n+ a

n+ b sinn
.

8.
cos
√
n+ a√

n+ b sinn
.

9.
an+ b sinn

cn+ d sinn
.

Exercise 1.1.15. Find the limits, p > 0.

1.
sin
√
n

np
. 2.

sin(n+ 1)

np + (−1)n
. 3.

a sinn+ b

np + c
. 4.

a cos(sinn)

np − b sinn
.

Example 1.1.5. For a > 0, the sequence
√
n+ a−

√
n satisfies

0 <
√
n+ a−

√
n =

(
√
n+ a−

√
n)(
√
n+ a+

√
n)√

n+ a+
√
n

=
a√

n+ a+
√
n
<

a√
n
.

By limn→∞
a√
n

= 0 and the sandwich rule, we get limn→∞(
√
n+ a −

√
n) = 0. Similar

argument also shows the limit for a < 0.

Example 1.1.6. The sequence

√
n+ 2

n
satisfies

1 <

√
n+ 2

n
<
n+ 2

n
= 1 + 2

1

n
.

By limn→∞

(
1 + 2

1

n

)
= 1 + 2 · 0 = 1 and the sandwich rule, we get limn→∞

√
n+ 2

n
= 1.

Exercise 1.1.16. Show that limn→∞(
√
n+ a−

√
n) = 0 for a < 0.

Exercise 1.1.17. Use the idea of Example 1.1.5 to estimate

√
n+ 2

n
− 1 and then find

limn→∞

√
n+ 2

n
.

Exercise 1.1.18. Show that limn→∞

√
n+ a

n+ b
= 1. You may need separate argument for

a > b and a < b.

Exercise 1.1.19. Find the limits.

1.
√
n+ a−

√
n+ b. 2.

√
n+ a

√
n+ c+

√
n+ d

.
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3.

√
n+ a+

√
n+ b

√
n+ c+

√
n+ d

.

4.

√
n+ a

√
n+ b

√
n+ c

√
n+ d

.

5.

√
n+ a+ b√
n+ c+ d

.

6.
√
n(
√
n+ a−

√
n+ b).

7.
√
n+ c(

√
n+ a−

√
n+ b).

8.
√
n+ a+

√
n+ b− 2

√
n+ c.

9.

√
n

n2 + n+ 1
.

10.

√
n+ a

n2 + bn+ c
.

11.
√
n2 + an+ b−

√
n2 + cn+ d.

12.
√
n+ a

√
n+ b−

√
n+ c

√
n+ d.

13.
n√

n2 + n+ 1
.

14.
n+ a√

n2 + bn+ c
.

15.

√
n2 + an+ b

n2 + cn+ d
.

Exercise 1.1.20. Find the limits.

1.
√
n+ a sinn−

√
n+ b cosn.

2.

√
n+ a sinn

n+ b cosn
.

3.

√
n+ (−1)na

n+ (−1)nb
.

4.

√
n+ a+ sinn√
n+ c+ (−1)n

.

5.
√
n+ (−1)n(

√
n+ a−

√
n+ b).

6.
√
n2 + an+ sinn−

√
n2 + bn+ cosn.

7.

√
n2 + an+ sinn

n2 + bn+ cosn
.

8.

√
n2 + an+ b

n+ (−1)nc
.

Exercise 1.1.21. Find the limits.

1. 3
√
n+ a− 3

√
n+ b.

2. 3

√
n+ a

n+ b
.

3.
3
√
n2( 3
√
n+ a− 3

√
n+ b).

4. 3
√
n( 3
√√

n+ a− 3
√√

n+ b).

Exercise 1.1.22. Find the limits.

1.

(
n− 2

n+ 1

)5

. 2.

(
n− 2

n+ 1

)5.4

. 3.

(
n− 2

n+ 1

)−√2

. 4.

(
n+ a

n+ b

)p
.

Exercise 1.1.23. Find the limits.

1.

( √
n+ a sinn√
n+ b cos 2n

)p
. 2.

(
n2 + an+ b

n2 + (−1)nc

)p
. 3.

(
n+ a

n2 + bn+ c

)p
.

Exercise 1.1.24. Suppose limn→∞ xn = 1. Use the arithmetic rule and the sandwich rule
to prove that, if xn ≤ 1, then limn→∞ x

p
n = 1. Of course we expect the condition xn ≤ 1

to be unnecessary. See Example 1.1.21.
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1.1.3 Some Basic Limits

Using limn→∞
1

n
= 0 and the sandwich rule, we may establish some basic limits.

Example 1.1.7. We show that

lim
n→∞

n
√
a = 1, for a > 0.

First assume a ≥ 1. Then xn = n
√
a− 1 ≥ 0, and

a = (1 + xn)n = 1 + nxn +
n(n− 1)

2
x2
n + · · ·+ xnn > nxn.

This implies

0 ≤ xn <
a

n
.

By the sandwich rule and limn→∞
a

n
= 0, we get limn→∞ xn = 0. Then by the

arithmetic rule, this further implies

lim
n→∞

n
√
a = lim

n→∞
(xn + 1) = lim

n→∞
xn + 1 = 1.

For the case 0 < a ≤ 1, let b =
1

a
≥ 1. Then by the arithmetic rule,

lim
n→∞

n
√
a = lim

n→∞

1
n
√
b

=
1

limn→∞
n
√
b

=
1

1
= 1.

Example 1.1.8. Example 1.1.7 can be extended to

lim
n→∞

n
√
n = 1.

Let xn = n
√
n − 1. Then we have xn > 0 for sufficiently large n (in fact, n ≥ 2 is

enough), and

n = (1 + xn)n = 1 + nxn +
n(n− 1)

2
x2
n + · · ·+ xnn >

n(n− 1)

2
x2
n.

This implies

0 ≤ xn <

√
2√

n− 1
.

By limn→∞

√
2√

n− 1
= 0 (see Example 1.1.1 or 1.1.3) and the sandwich rule, we get

limn→∞ xn = 0. This further implies

lim
n→∞

n
√
n = lim

n→∞
xn + 1 = 1.



16 CHAPTER 1. LIMIT

Example 1.1.9. The following “n-th root type” limits can be compared with the
limits in Examples 1.1.7 and 1.1.8

1 < n
√
n+ 1 <

n
√

2n =
n
√

2 n
√
n,

1 < n
1

n+1 < n
√
n,

1 < (n2 − n)
n

n2−1 < (n2)
n

n2/2 = ( n
√
n)4.

By Examples 1.1.7, 1.1.8 and the arithmetic rule, the sequences on the right converge
to 1. Then by the sandwich rule, we get

lim
n→∞

n
√
n+ 1 = lim

n→∞
n

1
n+1 = lim

n→∞
(n2 − n)

n
n2−1 = 1.

Example 1.1.10. We have

3 =
n
√

3n < n
√

2n + 3n < n
√

3n + 3n = 3
n
√

2.

By Example 1.1.7, we have limn→∞ 3 n
√

2 = 3. Then by the sandwich rule, we get
limn→∞

n
√

2n + 3n = 3.
For another example, we have

3n > 3n − 2n = 3n−1 + 2 · 3n−1 − 2 · 2n−1 > 3n−1.

Taking the n-th root, we get

3 > n
√

3n − 2n > 3
1
n
√

3
.

By limn→∞ 3
1
n
√

3
= 3 and the sandwich rule, we get limn→∞

n
√

3n − 2n = 3.

Exercise 1.1.25. Prove that if a ≤ xn ≤ b for some constants a, b > 0 and sufficiently big
n, then limn→∞ n

√
xn = 1.

Exercise 1.1.26. Find the limits, a > 0.

1. n
1

2n .

2. n
2
n .

3. n
c
n .

4. (n+ 1)
c
n .

5. (an+ b)
c
n .

6. (an2 + b)
c
n .

7. (
√
n+ 1)

c
n .

8. (n− 2)
1

n+3 .

9. (an+ b)
c

n+d .

10. (an+ b)
cn

n2+dn+e .

11. (an2 + b)
c

n+d .

12. (an2 + b)
cn+d

n2+en+f .

Exercise 1.1.27. Find the limits, a > 0.
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1. n
√
n+ sinn.

2. n
√
an+ b sinn.

3. n
√
n+ (−1)n sinn.

4. n
√
an+ (−1)nb sinn.

5. (n− cosn)
1

n+sinn .

6. (an+ b sinn)
n

n2+c cosn .

Exercise 1.1.28. Find the limits, p, q > 0.

1. n
√
np + sinn. 2. n

√
np + nq. 3. n+2

√
np + nq. 4. n−2

√
np + nq.

Exercise 1.1.29. Find the limits.

1. n
√

5n − 4n.

2. n
√

5n − 3 · 4n.

3. n
√

5n − 3 · 4n + 2n.

4. n
√

5n − 3 · 4n − 2n.

5. n
√

42n−1 − 5n.

6. n
√

42n−1 + (−1)n5n.

7. (5n − 4n)
1

n+1 .

8. (5n − 4n)
1

n−2 .

9. (5n − 4n)
n+1

n2+1 .

Exercise 1.1.30. Find the limits, a > b > 0.

1. n
√
an + bn.

2. n
√
an − bn.

3. n
√
an + (−1)nbn.

4.
n
√
anb2n+1.

5. n+2
√
an + bn.

6. n−2
√
an − bn.

7. (an + bn)
n

n2−1 .

8. (an − bn)
n

n2−1 .

9. (an − (−1)nbn)
n

n2−1 .

Exercise 1.1.31. For a, b, c > 0, find limn→∞
n
√
an + bn + cn.

Exercise 1.1.32. For a ≥ 1, prove limn→∞ n
√
a = 1 by using

a− 1 = ( n
√
a− 1)

(
( n
√
a)n−1 + ( n

√
a)n−2 + · · ·+ n

√
a+ 1

)
.

Example 1.1.11. We show that

lim
n→∞

an = 0, for |a| < 1.

First assume 0 < a < 1 and write a =
1

1 + b
. Then b > 0 and

0 < an =
1

(1 + b)n
=

1

1 + nb+
n(n− 1)

2
b2 + · · ·+ bn

<
1

nb
.

By limn→∞
1

nb
= 0 and the sandwich rule, we get limn→∞ a

n = 0.

If −1 < a < 0, then 0 < |a| < 1 and limn→∞ |an| = limn→∞ |a|n = 0. By Exercise
1.1.11, we get limn→∞ a

n = 0.

Example 1.1.12. Example 1.1.11 can be extended to

lim
n→∞

nan = 0, for |a| < 1.
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This follows from

0 < nan =
n

(1 + b)n
=

n

1 + nb+
n(n− 1)

2
b2 + · · ·+ bn

<
n

n(n− 1)

2
b2

=
2

(n− 1)b2
,

the limit limn→∞
2

(n− 1)b2
= 0 and the sandwich rule.

Exercise 1.1.58 gives further extension of the limit.

Example 1.1.13. We show that

lim
n→∞

an

n!
= 0, for any a

for the special case a = 4. For n > 4, we have

0 <
4n

n!
=

4 · 4 · 4 · 4
1 · 2 · 3 · 4

· 4

5
· 4

6
· · · 4

n
≤ 4 · 4 · 4 · 4

1 · 2 · 3 · 4
· 4

n
=

45

4!

1

n
.

By limn→∞
45

4!

1

n
= 0 and the sandwich rule, we get limn→∞

4n

n!
= 0.

Exercise 1.1.59 suggests how to show the limit in general.

Exercise 1.1.33. Show that limn→∞ n
2an = 0 for |a| < 1 in two ways. The first is by using

the ideas from Examples 1.1.11 and 1.1.12. The second is by using limn→∞ na
n = 0 for

|a| < 1.

Exercise 1.1.34. Show that limn→∞ n
5.4an = 0 for |a| < 1. What about limn→∞ n

−5.4an?
What about limn→∞ n

pan?

Exercise 1.1.35. Show that limn→∞
an

n!
= 0 for a = 5.4 and a = −5.4.

Exercise 1.1.36. Show that limn→∞
an√
n!

= 0 for a = 5.4 and a = −5.4.

Exercise 1.1.37. Show that limn→∞
n!an

(2n)!
= 0 for any a.

Exercise 1.1.38. Find the limits.

1.
n+ 1

2n
.

2.
n2

2n
.

3. n990.99n.

4.
(n2 + 1)1001

1.001n−2
.

5.
n+ 2n

3n
.

6.
n2n + (−3)n

4n
.

7.
n3n

(1 + 2n)2
.

8.
5n − n6n+1

32n−1 − 23n+1
.

Exercise 1.1.39. Find the limits. Some convergence depends on a and p. You may try
some special values of a and p first.
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1. npan.

2.
an

np
.

3.
np

an
.

4.
1

npan
.

5.
np

n!
.

6.
npan

n!
.

7.
np

n!an
.

8.
np√
n!

.

9.
npan√
n!

.

10.
npan

3
√
n!

.

11.
n!an

(2n)!
.

12.
n!npan

(2n)!
.

Exercise 1.1.40. Find the limits.

1.
n2 + 3n+ 5n

n!
.

2.
n2 + 3n+ 5n

n!− n2 + 2n
.

3.
n2 + n3n + 5!

n!
.

4.
n23n+5 + 5 · (n− 1)!

(n+ 1)!
.

5.
n2 + n! + (n− 1)!

3n − n! + (n− 1)!
.

6.
2nn! + 3n(n− 1)!

4n(2n− 1)!− 5nn!
.

Exercise 1.1.41. Prove n
√
n! >

√
n

2
. Then use this to prove limn→∞

1
n
√
n!

= 0.

Exercise 1.1.42. Prove
n!

nn
<

1

n
and

(n!)2

(2n)!
<

1

n+ 1
for n > 2. Then use this to prove

limn→∞
n!

nn
= limn→∞

(n!)2

(2n)!
= 0. What about limn→∞

(n!)k

(kn)!
where k ≥ 2 is an integer?

1.1.4 Order Rule

The following property reflects the intuition that bigger sequence should have bigger
limit.

Proposition 1.1.5 (Order Rule). Suppose limn→∞ xn = l and limn→∞ yn = k.

1. If xn ≤ yn for sufficiently big n, then l ≤ k.

2. If l < k, then xn < yn for sufficiently big n.

By taking yn = l, we get the following special cases of the property for a con-
verging sequence xn.

1. If xn ≤ l for sufficiently big n, then limn→∞ xn ≤ l.

2. If limn→∞ xn < l, then xn < l for sufficiently big n.

Similar statements with reversed inequalities also hold (see Exercise 1.1.43).
Note the non-strict inequality in the first statement of Proposition 1.1.5 and the

strict inequality the second statement. For example, we have xn =
1

n2
< yn =

1

n
,

but limn→∞ xn 6< limn→∞ yn. The example also satisfies limn→∞ xn ≥ limn→∞ yn
but xn 6≥ yn, even for sufficiently big n.
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Exercise 1.1.43. Explain how to get the following special cases of the order rule.

1. If xn ≥ l for sufficiently big n, then limn→∞ xn ≥ l.

2. If limn→∞ xn > l, then xn > l for sufficiently big n.

Example 1.1.14. By limn→∞
2n2 + n

n2 − n+ 1
= 2 and the order rule, we know 1 <

2n2 + n

n2 − n+ 1
< 3 for sufficiently big n. This implies 1 < n

√
2n2 + n

n2 − n+ 1
< n
√

3 for

sufficiently big n. By limn→∞
n
√

3 = 1 and the sandwich rule, we get

lim
n→∞

n

√
2n2 + n

n2 − n+ 1
= 1.

Example 1.1.15. We showed limn→∞
n
√

3n − 2n = 3 in Example 1.1.10. Here we use
a different method, with the help of the order rule.

By n
√

3n − 2n = 3 n

√
1−

(
2

3

)n
, we only need to find limn→∞

n

√
1−

(
2

3

)n
. By

Example 1.1.11, we have limn→∞

(
1−

(
2

3

)n)
= 1. By the order rule, therefore,

we have
1

2
< 1−

(
2

3

)n
< 2

for sufficiently big n. This implies that

1
n
√

2
< n

√
1−

(
2

3

)n
<

n
√

2

for sufficiently big n. Then by Example 1.1.7 and the sandwich rule, we get

limn→∞
n

√
1−

(
2

3

)n
= 1, and we conclude that

lim
n→∞

n
√

3n − 2n = 3 lim
n→∞

n

√
1−

(
2

3

)n
= 3.

Exercise 1.1.44. Prove that if limn→∞ xn = l > 0, then limn→∞ n
√
xn = 1. Moreover, find

a sequence satisfying limn→∞ xn = 0 and limn→∞ n
√
xn = 1. Can we have xn converging

to 0 and n
√
xn converging to 0.32?

Exercise 1.1.45. Find the limits.
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1. n
√

5n − n4n.

2. n+2
√

5n − n4n.

3. n−2
√

5n − n4n.

4. n
√

5n − (−1)nn4n.

5. (5n − n4n)
n−1

n2+1 .

6. (5n−(−1)nn4n)
n+(−1)n

n2+1 .

Exercise 1.1.46. Find the limits.

1. n

√
1

n
5n − n4n.

2. n

√
1

n
5n − (−1)nn4n.

3. n+2

√
1

n
5n − n4n sinn.

4. (n242n−1 − 5n)
n−1

n2+1 .

5.
n

√
n2n + 4n+1 +

3n−1

n
.

6.
n−2

√
n23n +

32n−1

n2
.

7. n−2

√
23n +

n− 1

n2 + 1
32n−1.

8.

(
n23n +

32n−1

n2

)n−1

n2

.

9.

(
n23n +

32n−1

n2

) 1
n2

.

Exercise 1.1.47. Find the limits, a > b.

1. n
√
an+1 + bn.

2. n
√
an+1 + (−1)nbn.

3. n−2
√
an+1 + (−1)nbn.

4. n
√

4an − 5bn.

5. n
√

4an + 5b2n+1.

6. n
√
a+ bn.

7. n
√
an+ bn.

8. n−2
√
nan + (n2 + 1)bn.

9. n+2

√
1

n
an + nbn+1.

10. (an + bn)
n+1

n2+1 .

11. ((n+ 1)an + bn)
n

n2−1 .

12. (an + bn)
1

n2−1 .

13. (an + (−1)nbn)
(−1)n

n2−1 .

Exercise 1.1.48. Find the limits, a, b, c > 0.

1. n
√
n2an + nbn + 2cn.

2. n
√
an(bn + 1) + ncn.

3. n
√

(n+ sinn)an + bn + n2cn.

4. n
√
an(n+ bn(1 + ncn)).

Exercise 1.1.49. Suppose a polynomial p(n) = apn
p+an−1n

p−1 + · · ·+a1n+a0 has leading
coefficient ap > 0. Prove that p(n) > 0 for sufficiently big n.

Exercise 1.1.50. Suppose a, b, c > 0, and p, q, r are polynomials with positive leading coef-
ficients. Find the limit of n

√
p(n)an + q(n)bn + r(n)cn.

Exercise 1.1.51. Find the limits, a, b, p, q > 0.

1. n
√
anp + b sinn.

2. n
√
anp + bnq.

3. n+2
√
anp + bnq.

4. n−2
√
anp + bnq.

5. n2√
anp + bnq.

6. (anp + bnq)
1

n2−1 .
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Example 1.1.16. The sequence xn =
3n(n!)2

(2n)!
satisfies

lim
n→∞

xn
xn−1

= lim
n→∞

3n2

2n(2n− 1)
=

3

4
= 0.75.

By the order rule, we have
xn
xn−1

< 0.8 for sufficiently big n, say for n > N (in fact,

N = 8 is enough). Then for n > N , we have

0 < xn =
xn
xn−1

xn−1

xn−2

· · · xN+1

xN
xN < 0.8n−NxN = C · 0.8n, C = 0.8−NxN .

By Example 1.1.11, we have limn→∞ 0.8n = 0. Since C is a constant, by the sandwich
rule, we get limn→∞ xn = 0.

Exercises 1.1.52 and 1.1.53 summarise the idea of the example.

Exercise 1.1.52. Prove that if

∣∣∣∣ xnxn−1

∣∣∣∣ ≤ c for a constant c < 1, then xn converges to 0.

Exercise 1.1.53. Prove that if limn→∞
xn
xn−1

= l and |l| < 1, then xn converges to 0.

Exercise 1.1.54. Find a such that the sequence converges to 0, p, q > 0.

1.
(2n)!

(n!)2
an.

2.
(n!)2

(3n)!
an.

3.
(n!)3

(3n)!
an.

4.

√
(2n)!

n!
an.

5.
√
n!an

2
.

6.
an

2

n!
.

7.
an

2

√
n!

.

8. (n!)pan.

9.
an

(n!)p
.

10.
nqan

(n!)p
.

11.
(n!)p

((2n)!)q
an.

12.
n5(n!)p

((2n)!)q
an.

1.1.5 Subsequence

A subsequence is obtained by choosing infinitely many terms from a sequence. We
denote a subsequence by

xnk : xn1 , xn2 , . . . , xnk , . . . ,

where the indices satisfy

n1 < n2 < · · · < nk < · · · .
The following are some examples

x2k : x2, x4, x6, x8, . . . , x2k, . . . ,

x2k−1 : x1, x3, x5, x7, . . . , x2k−1, . . . ,

x2k : x2, x4, x8, x16, . . . , x2k , . . . ,

xk! : x1, x2, x6, x24, . . . , xk!, . . . .
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If xn starts at n = 1, then n1 ≥ 1, which further implies nk ≥ k for all k.

Proposition 1.1.6. If a sequence converges to l, then any subsequence converges
to l. Conversely, if a sequence is the union of finitely many subsequences that all
converge to the same limit l, then the whole sequence converges to l.

Example 1.1.17. Since
1

n2
is a subsequence of

1

n
, limn→∞

1

n
= 0 implies limn→∞

1

n2
=

0. We also know limn→∞
1√
n

= 0 implies limn→∞
1

n
= 0 but not vice versa.

Example 1.1.18. The sequence
n+ (−1)n3

n− (−1)n2
is the union of the odd subsequence

(2k − 1)− 3

(2k − 1) + 2
=

2k − 4

2k + 1
and the even subsequence

2k + 3

2k − 2
. Both subsequences con-

verge to 1, either by direct computation, or by regarding them also as subsequences

of
n− 4

n+ 1
and

n+ 3

n− 2
, which converge to 1. Then we conclude limn→∞

n+ (−1)n3

n− (−1)n2
= 1.

Example 1.1.19. The sequence (−1)n has one subsequence (−1)2k = 1 converging to
1 and another subsequence (−1)2k−1 = −1 converging to −1. Since the two limits
are different, by Proposition 1.1.6, the sequence (−1)n diverges.

Example 1.1.20. The sequence sinna converges to 0 when a is an integer multiple of
π. Now assume 0 < a < π. For any natural number k, the interval [kπ, (k + 1)π]
of length π contains the following interval of length a (both intervals have the same
middle point)

[ak, bk] =

[
kπ +

π − a
2

, (k + 1)π − π − a
2

]
.

For even k, we have sinx ≥ sin

(
π − a

2

)
= cos

a

2
> 0 on [ak, bk]. For odd k, we

have sinx ≤ − cos
a

2
< 0 on [ak, bk].

Since the arithmetic sequence a, 2a, 3a, . . . has increment a, which is the length
of [ak, bk], we must have nka ∈ [ak, bk] for some natural number nk. Then sinn2ka is a

subsequence of sinna satisfying sinn2k ≥ cos
a

2
> 0, and sinn2k+1a is a subsequence

satisfying sinn2k ≤ − cos
a

2
. Therefore the two subsequences cannot converge to the

same limit. As a result, the sequence sinna diverges.

Now for general a that is not an integer multiple of π, we have a = 2Nπ ± b for
an integer N and b satisfying 0 < b < π. Then we have sinna = ± sinnb. We have
shown that sinnb diverges, so that sinna diverges.

We conclude that sinna converges if and only if a is an integer multiple of π.
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Exercise 1.1.55. Find the limit.

1.
√
n! + 1−

√
n!− 1.

2. (n!)
1
n! .

3. ((n+ 1)!)
1
n! .

4. ((n+ (−1)n)!)
1
n! .

5. (n!)
1

(n+1)! .

6. (2n
2−1 + 3n

2
)

1
n2 .

Exercise 1.1.56. Explain convergence or divergence.

1. 2(−1)n .

2. n
(−1)n

n .

3. n(−1)n .

4.
(−1)nn+ 3

n− (−1)n2
.

5.
(−1)nn2

n3 − 1
.

6.
√
n
(√

n+ (−1)n −
√
n
)

.

7. (2(−1)nn + 3n)
1
n .

8. (2n + 3(−1)nn)
1
n .

9. tan
nπ

3
.

10. (−1)n sin
nπ

3
.

11. sin
nπ

2
cos

nπ

3
.

12.
n sin

nπ

3

n cos
nπ

2
+ 2

.

13.
n− sin

nπ

3

n+ 2 cos
nπ

2

.

Exercise 1.1.57. Find all a such that the sequence cosna converges.

Example 1.1.21. We prove that limn→∞ xn = 1 implies limn→∞ x
p
n = 1. Exercises

1.1.58 and 1.1.59 extend the result.
The sequence xn is the union of two subsequences x′k and x′′k (short for xmk and

xnk) satisfying all x′k ≥ 1 and all x′′k ≤ 1. By Proposition 1.1.6, the assumption
limn→∞ xn = 1 implies that limk→∞ x

′
k = limk→∞ x

′′
k = 1.

Pick integers M and N satisfying M < p < N . Then x′k ≥ 1 implies x′k
M ≤

x′k
p ≤ x′k

N . By the arithmetic rule, we have limk→∞ x
′
k
M = (limk→∞ x

′
k)
M = 1M = 1

and similarly limk→∞ x
′
k
N = 1. Then by the sandwich rule, we get limk→∞ x

′
k
p = 1.

Similar proof shows that limk→∞ x
′′
k
p = 1. Since the sequence xpn is the union of

two subsequences x′k
p and x′′k

p, by Proposition 1.1.6 again, we get limn→∞ x
p
n = 1.

Exercise 1.1.58. Suppose limn→∞ xn = 1 and yn is bounded. Prove that limn→∞ x
yn
n = 1.

Exercise 1.1.59. Suppose limn→∞ xn = l > 0. By applying Example 1.1.21 to the sequence
xn
l

, prove that limn→∞ x
p
n = lp.

1.2 Rigorous Definition of Sequence Limit

The statement limn→∞
1

n
= 0 means that

1

n
gets smaller and smaller as n gets

bigger and bigger. To make the statement rigorous, we need to be more specific
about smaller and bigger.

Is 1000 big? The answer depends on the context. A village of 1000 people is
big, and a city of 1000 people is small (even tiny). Similarly, a rope of diameter less
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than one millimeter is considered thin. But the hair is considered thin only if the
diameter is less than 0.05 millimeter.

So big or small makes sense only when compared with some reference quantity.
We say n is in the thousands if n > 1000 and in the millions if n > 10000000.
The reference quantities 1000 and 1000000 give a sense of the scale of bigness. In

this spirit, the statement limn→∞
1

n
= 0 means the following list of infinitely many

implications

n > 1 =⇒
∣∣∣∣ 1n − 0

∣∣∣∣ < 1,

n > 10 =⇒
∣∣∣∣ 1n − 0

∣∣∣∣ < 0.1,

n > 100 =⇒
∣∣∣∣ 1n − 0

∣∣∣∣ < 0.01,

...

n > 1000000 =⇒
∣∣∣∣ 1n − 0

∣∣∣∣ < 0.000001,

...

For another example, limn→∞
2n

n!
= 0 means the following implications

n > 10 =⇒
∣∣∣∣2nn!
− 0

∣∣∣∣ < 0.0003,

n > 20 =⇒
∣∣∣∣2nn!
− 0

∣∣∣∣ < 0.0000000000005,

...

So the general shape of the implications is

n > N =⇒ |xn − l| < ε.

Note that the relation between N (measuring the bigness of n) and ε (measuring
the smallness of |xn − l|) may be different for different limits.

The problem with infinitely many implications is that our language is finite.
In practice, we cannot verify all the implications one by one. Even if we have
verified the truth of the first one million implications, there is no guarantee that
the one million and the first implication is true. To mathematically establish the
truth of all implications, we have to formulate one finite statement that includes the
consideration for all N and all ε.
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1.2.1 Rigorous Definition

Definition 1.2.1 (Rigorous). A sequence xn converges to a finite number l, and
denoted limn→∞ xn = l, if for any ε > 0, there is N , such that n > N implies
|xn − l| < ε.

In case N is a natural number (which can always be arranged if needed), the
definition means that, for any given horizontal ε-band around l, we can find N , such
that all the terms xN+1, xN+2, xN+3, . . . after N lie in the shaded area in Figure
1.2.1.

l
l + ε

l − ε

N
n

x1

x2

x3

x4

xN+1

xN+2 xN+3

xn xn+1

Figure 1.2.1: n > N implies |xn − l| < ε.

Example 1.2.1. For any ε > 0, choose N =
1

ε
. Then

n > N =⇒
∣∣∣∣ 1n − 0

∣∣∣∣ =
1

n
<

1

N
= ε.

This verifies the rigorous definition of limn→∞
1

n
= 0.

By applying the rigorous definition to ε = 0.1, 0.01, . . . , we recover the infinitely
many implications we wish to achieve. This justifies the rigorous definition of limit.

Example 1.2.2. For the constant sequence xn = c, we rigorously prove

lim
n→∞

c = c.

For any ε > 0, choose N = 0. Then

n > 0 =⇒ |xn − c| = |c− c| = 0 < ε.

In fact, the right side is always true, regardless of the left side.

Example 1.2.3. We rigorously prove

lim
n→∞

1

np
= 0, for p > 0.
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For any ε > 0, choose N =
1

ε
1
p

. Then

n > N =⇒
∣∣∣∣ 1

np
− 0

∣∣∣∣ =
1

np
<

1

Np
= ε.

We need to be more specific on the logical foundation for the arguments. We
will assume the basic knowledge of real numbers, which are the four arithmetic

operations x + y, x − y, xy, x
y

, the exponential operation xy (for x > 0), the order

x < y (or y > x, and x ≤ y means x < y or x = y), and the properties for these

operations. For example, we assume that we already know x > y > 0 implies
1

x
<

1

y
and xp > yp for p > 0. These properties are used in the example above.

More important about the knowledge assumed above is the knowledge that are
not assumed and therefore cannot be used until after the knowledge is established.
In particular, we do not assume any knowledge about the logarithm. The logarithm
and its properties will be rigorously established in Example 1.7.15 as the inverse of
exponential.

Example 1.2.4. To rigorously prove limn→∞
n2 − 1

n2 + 1
= 1, for any ε > 0, we have

n > N =

√
2

ε
− 1 =⇒

∣∣∣∣n2 − 1

n2 + 1
− 1

∣∣∣∣ =
2

n2 + 1
<

2

N2 + 1
=

2(
2

ε
− 1

)
+ 1

= ε.

Therefore the sequence converges to 1.

How did we choose N =

√
2

ε
− 1? We want to achieve

∣∣∣∣n2 − 1

n2 + 1
− 1

∣∣∣∣ < ε. Since

this is equivalent to
2

n2 + 1
< ε, which we can solve to get n >

√
2

ε
− 1, choosing

N =

√
2

ε
− 1 should work.

Example 1.2.5. To rigorously prove the limit in Example 1.1.5, we estimate the
difference between the sequence and the expected limit

|
√
n+ 2−

√
n− 0| = (n+ 2)− n√

n+ 2 +
√
n
<

2√
n
.

This shows that for any ε > 0, it is sufficient to have
2√
n
< ε, or n >

4

ε2
. In other

words, we should choose N =
4

ε2
.
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The discussion above is the analysis of the problem, which you may write on
your scratch paper. The formal rigorous argument you are supposed to present is

the following: For any ε > 0, choose N =
4

ε2
. Then

n > N =⇒ |
√
n+ 2−

√
n− 0| = 2√

n+ 2 +
√
n
<

2√
n
<

2√
N

= ε.

1.2.2 The Art of Estimation

In Examples 1.2.4, the formula for N is obtained by solving

∣∣∣∣n2 − 1

n2 + 1
− 1

∣∣∣∣ < ε in

exact way. However, this may not be so easy in general. For example, for the limit
in Example 1.1.2, we need to solve∣∣∣∣ 2n2 + n

n2 − n+ 1
− 2

∣∣∣∣ =
3n− 2

n2 − n+ 1
< ε.

While the exact solution can be found, the formula for N is rather complicated. For
more complicated example, it may not even be possible to find the formula for the
exact solution.

We note that finding the exact solution of |xn − l| < ε is the same as finding
N = N(ε), such that

n > N ⇐⇒ |xn − l| < ε.

However, in order to rigorously prove the limit, only =⇒ direction is needed. The
weaker goal can often be achieved in much simpler way.

Example 1.2.6. Consider the limit in Example 1.1.2. For n > 1, we have∣∣∣∣ 2n2 + n

n2 − n+ 1
− 2

∣∣∣∣ =
3n− 2

n2 − n+ 1
<

3n

n2 − n
=

3

n− 1
.

Since
3

n− 1
< ε implies

∣∣∣∣ 2n2 + n

n2 − n+ 1
− 2

∣∣∣∣ < ε, and
3

n− 1
< ε is equivalent to

n >
3

ε
+ 1, we find that choosing N =

3

ε
+ 1 is sufficient

n > N =
3

ε
+ 1 =⇒

∣∣∣∣ 2n2 + n

n2 − n+ 1
− 2

∣∣∣∣ =
3n− 2

n2 − n+ 1
<

3

n− 1
<

3

N − 1
= ε.

Exercise 1.2.1. Show that

∣∣∣∣n2 − 1

n2 + 1
− 1

∣∣∣∣ < 2

n
and then rigorously prove limn→∞

n2 − 1

n2 + 1
= 1.

The key for the rigorous proof of limits is to find a simple and good enough
estimation. We emphasize that there is no need to find the best estimation. Any
estimation that can fulfill the rigorous definition of limit is good enough.
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Everyday life is full of good enough estimations. Mastering the art of such
estimations is very useful for not just learning calculus, but also for making smart
judgement in real life.

Example 1.2.7. If a bottle is 20% bigger in size than another bottle, how much bigger
is in volume?

The exact formula is the cube of the comparison in size

(1 + 0.2)3 = 1 + 3 · 0.2 + 3 · 0.22 + 0.23.

Since 3 · 0.2 = 0.6, 3 · 0.22 = 0.12, and 0.23 is much smaller than 0.1, the bottle is a
little more than 72% bigger in volume.

Example 1.2.8. The 2013 GDP per capita is 9,800USD for China and 53,100USD for
the United States, in terms of PPP (purchasing power parity). The percentage of
the annual GDP growth for the three years up to 2013 are 9.3, 7.7, 7.7 for China
and 1.8, 2.8, 1.9 for the United States. What do we expect the number of years for
China to catch up to the United States?

First we need to estimate how much faster is the Chinese GDP growing compared
to the United States. The comparison for 2013 is

1 + 0.077

1 + 0.019
≈ 1 + (0.077− 0.019) = 1 + 0.058.

Similarly, we get the (approximate) comparisons 1 + 0.075 and 1 + 0.049 for the
other two years. Among the three comparisons, we may choose a more conservative
1 + 0.05. This means that we assume Chinese GDP per capita grows 5% faster than
the United States for the next many years.

Based on the assumption of 5%, the number of years n for China to catch up to
the United States is obtained exactly by solving

(1 + 0.05)n = 1 + n 0.05 +
n(n− 1)

2
0.052 + · · ·+ 0.05n =

53, 100

9, 800
≈ 5.5.

If we use 1 + n 0.05 to approximate (1 + 0.05)n, then we get n ≈ 5.5− 1

0.05
= 90.

However, 90 years is too pessimistic because for n = 90, the third term
n(n− 1)

2
0.052

is quite sizable, so that 1 + n 0.05 is not a good approximation of (1 + 0.05)n.
An an exercise for the art of estimation, we try to avoid using calculator in

getting better estimation. By
53, 100

9, 800
≈ 2.32, we may solve

n = 2m, (1 + 0.05)m = 1 +m 0.05 +
m(m− 1)

2
0.052 + · · ·+ 0.05m ≈ 2.3.
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We get n ≈ 2 · 2.3− 1

0.05
= 52. Since

m(m− 1)

2
0.052 is still sizable for m = 26 (but

giving much better approximation than n = 90), the actual n should be somewhat
smaller than 52. We try n = 40 and estimate (1 + 0.05)n by the first three terms

(1 + 0.05)40 ≈ 1 + 40 · 0.05 +
40 · 39

2
0.052 ≈ 5.

So it looks like somewhere between 40 and 45 is a good estimation.
We conclude that, if Chinese GDP per capita growth is 5% (a very optimistic

assumption) faster than the United States in the next 50 years, then China will
catch up to the United States in 40 some years.

Exercise 1.2.2. I wish to paint a wall measuring 3 meters tall and 6 meters wide, give or
take 10% in each direction. If the cost of paint is $13.5 per square meters, how much
should I pay for the paint?

Exercise 1.2.3. In a supermarket, I bought four items at $5.95, $6.35, $15.50, $7.20. The
sales tax is 8%. The final bill is around $38. Is the bill correct?

Exercise 1.2.4. In 1900, Argentina and Canada had the same GDP per capita. In 2000,
the GDP per capita is 9,300USD for Argentina and 24,000USD for Canada. On average,
how much faster is Canadian GDP growing annually compared with Argentina in the 20th
century?

Next we leave real life estimations and try some examples in calculus.

Example 1.2.9. If x is close to 3 and y is close to 5, then 2x−3y is close to 2·3−3·5 =
−9. We wish to be more precise about the statement, say, we want to find a tolerance
for x and y, such that 2x− 3y is within ±0.2 of −9.

We have

|(2x− 3y)− (−9)| = |2(x− 3)− 3(y − 5)| ≤ 2|x− 3|+ 3|y − 5|.

For the difference to be within ±0.2, we only need to make sure 2|x−3|+ 3|y−5| <
0.2. This can be easily achieved by |x− 3| < 0.2

2+3
= 0.04 and |y − 5| < 0.04.

Example 1.2.10. Again we assume x and y are close to 3 and 5. Now we want to
find the percentage of tolerance, such that 2x− 3y is within ±0.2 of −9.

We can certainly use the answer in Example 1.2.9 and find the percentage 0.04
3
≈

1.33% for x and 0.04
5
≈ 0.8% for y. This implies that, if both x and y are within

0.8% of 3 and 5, then 2x− 3y is within ±0.2 of −9.
The better (or more honest) way is to directly solve the problem. Let δ1 and δ2

be the percentage of tolerance for x and y. Then x = 3(1 + δ1) and y = 5(1 + δ2),
and

|(2x−3y)−(−9)| = |2(x−3)−3(y−5)| ≤ |2·3δ1−3·5δ2| ≤ 21δ, δ = max{|δ1|, |δ2|}.
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To get 21|δ| to be within our target of 0.2, we may take our tolerance δ = 0.9% <
0.2
21
≈ 0.0095.

Example 1.2.11. Assume x and y are close to 3 and 5. We want to find the tolerance
for x and y, such that xy is within ±0.2 of 3 · 5 = 15. This means finding δ > 0,
such that

|x− 3| < δ, |y − 5| < δ =⇒ |xy − 15| < 0.2.

Under the assumptions |x− 3| < δ and |y − 5| < δ, we have

|xy − 15| ≤ |xy − 3y|+ |3y − 15| ≤ |x− 3||y|+ 3|y − 5| ≤ (|y|+ 3)δ.

We also note that, if we postulate δ ≤ 1, then |y− 5| < δ implies 4 < y < 6, so that

|xy − 15| ≤ (|y|+ 3)δ ≤ (6 + 3)δ = 9δ.

To get 9|δ| to be within our target of 0.2, we may take our tolerance δ = 0.02 < 0.2
9

.
Since this indeed satisfies δ ≤ 1, we conclude that we can take δ = 0.02.

If the targeted error ±0.2 is changed to some other amount ±ε, then the same
argument shows that we can take the tolerance to be δ = ε

10
. Strictly speaking,

since we also use δ ≤ 1 in the argument above, we should take δ = min{ ε
10
, 1}.

Exercise 1.2.5. Find a tolerance for x, y, z near −2, 3, 5, such that 5x − 3y + 4z is within
±ε of 1.

Exercise 1.2.6. Find a tolerance for x and y near 2 and 2, such that xy is within ±ε of 4.

Exercise 1.2.7. Find a tolerance for x near 2, such that x2 is within ±ε of 4.

Exercise 1.2.8. Find a percentage of tolerance for x near 2, such that
1

x
is within ±0.1 of

0.5.

1.2.3 Rigorous Proof of Limits

We revisit the limits derived before and make the argument rigorous.

Example 1.2.12. In Example 1.1.5, we argued that limn→∞(
√
n+ a −

√
n) = 0. To

make the argument rigorous, we use the estimation in the earlier example. In fact,
regardless of the sign of a, we always have

|
√
n+ a−

√
n− 0| =

∣∣∣∣(√n+ a−
√
n)(
√
n+ a+

√
n)√

n+ a+
√
n

∣∣∣∣ =
|a|√

n+ a+
√
n
<
|a|√
n
.

For the right side
|a|√
n
< ε, it is sufficient to have n >

a2

ε2
. Then we can easily get

n >
a2

ε2
=⇒ |

√
n+ a−

√
n− 0| < ε.



32 CHAPTER 1. LIMIT

This gives the rigorous proof of limn→∞(
√
n+ a−

√
n) = 0.

Example 1.2.13. In Example 1.1.6, we argued that limn→∞

√
n+ 2

n
= 1. To make

the argument rigorous, we use the estimation in the earlier example. The estimation

suggested that it is sufficient to have 2
1

n
< ε. Thus we get the following rigorous

argument for the limit

n <
2

ε
=⇒ 0 <

√
n+ 2

n
− 1 <

n+ 2

n
− 1 =

2

n
< ε =⇒

∣∣∣∣∣
√
n+ 2

n
− 1

∣∣∣∣∣ < ε.

Exercise 1.2.9. Rigorously prove the limits.

1.
n+ 2

n− 3
.

2.
n− 2

n+ 3
.

3.
n+ a

n+ b
.

4.
2n2 − 3n+ 2

3n2 − 4n+ 1
.

5.

√
n+ 2√
n− 3

.

6.

√
n+ a

n+ b
.

7.
n

n+ 1
− n

n− 1
.

8.
n+ a

n+ b
− n+ c

n+ d
.

9.
1√

an+ b
.

10.
sin
√
n

n
.

11.
cos
√
n+ a

n+ b sinn
.

12.
√
n+ a−

√
n+ b.

13.

√
n+ a

n+ b
.

14. 3
√
n+ 1− 3

√
n.

Exercise 1.2.10. Rigorously prove the limits, p > 0.

1.
a√

np + b
. 2.

np + a

np + b
. 3.

a sinn+ b

np + c
.

Example 1.2.14. The estimation in Example 1.1.7 tells us that | n
√
a − 1| < a

n
for

a > 1. This suggests that for any ε > 0, we may choose N =
a

ε
. Then

n > N =⇒ | n
√
a− 1| < a

n
<

a

N
= ε.

This rigorously proves that limn→∞
n
√
a = 1 in case a ≥ 1.

Example 1.2.15. We try to rigorously prove limn→∞ n
2an = 0 for |a| < 1.

Using the idea of Example 1.1.11, we write |a| =
1

1 + b
. Then |a| < 1 implies
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b > 0, and for n ≥ 3, we have

|n2an − 0| = n2|a|n =
n2

(1 + b)n

=
n2

1 + nb+
n(n− 1)

2!
b2 +

n(n− 1)(n− 2)

3!
b3 + · · ·+ bn

<
n2

n(n− 1)(n− 2)

3!
b3

=
3!n

(n− 1)(n− 2)b3
<

3!n
n

2

n

2
b3

=
3!22

nb3
.

Since
3!22

nb3
< ε is the same as n >

3!22

b3ε
, we have

n >
3!22

b3ε
and n ≥ 3 =⇒ |n2an − 0| < 3!22

nb3
< ε.

This shows that we may choose N = max

{
3!22

b3ε
, 3

}
.

It is clear from the proof that we generally have

lim
n→∞

npan = 0, for any p and |a| < 1.

Example 1.2.16. We rigorously prove limn→∞
an

n!
= 0 in Example 1.1.13.

Choose a natural number M satisfying |a| < M . Then for n > M , we have∣∣∣∣ann!

∣∣∣∣ < Mn

n!
=
M ·M · · ·M

1 · 2 · · ·M
· M

M + 1
· M

M + 2
· · ·M

n
≤ MM

M !
· M
n

=
MM+1

M !
· 1

n
.

Therefore for any ε > 0, we have

n > max

{
MM+1

M !ε
,M

}
=⇒

∣∣∣∣ann!
− 0

∣∣∣∣ < MM+1

M !
· 1

n
<
MM+1

M !
· 1

MM+1

M !ε

= ε.

Exercise 1.2.11. Rigorously prove the limits.

1. n
√
n.

2.
n5.4

n!
.

3.
np

n!
.

4.
n5.43n

n!
.

5.
npan

n!
.

6.
n!

nn
.

7. npan, |a| < 1.

1.2.4 Rigorous Proof of Limit Properties

The rigorous definition of limit allows us to rigorously prove some limit properties.
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Example 1.2.17. Suppose limn→∞ xn = l > 0. We prove that limn→∞
√
xn =

√
l.

First we clarify the problem. The limit limn→∞ xn = l means the implication

For any ε > 0, there is N , such that n > N =⇒ |xn − l| < ε.

The limit limn→∞
√
xn =

√
l means the implication

For any ε > 0, there is N , such that n > N =⇒ |
√
xn −

√
l| < ε.

We need to argue is that the first implication implies the second implication.
We have

|
√
xn −

√
l| =

|(√xn −
√
l)(
√
xn +

√
l)|

√
xn +

√
l

=
|xn − l|
√
xn +

√
l
≤ |xn − l|√

l
.

Therefore for any given ε > 0, the second implication will hold as long as
|xn − l|√

l
< ε,

or |xn − l| <
√
lε. The inequality |xn − l| <

√
lε can be achieved from the first

implication, provided we apply the first implication to
√
lε in place of ε.

The analysis above leads to the following formal proof. Let ε > 0. By applying
the definition of limn→∞ xn = l to

√
lε > 0, there is N , such that

n > N =⇒ |xn − l| <
√
lε.

Then

n > N =⇒ |xn − l| <
√
lε

=⇒ |
√
xn −

√
l| =

|(√xn −
√
l)(
√
xn +

√
l)|

√
xn +

√
l

=
|xn − l|
√
xn +

√
l
≤ |xn − l|√

l
< ε.

In the argument, we take advantage of the fact that the definition of limit can
be applied to any positive number,

√
lε for example, instead of the given positive

number ε.

Example 1.2.18. We prove the arithmetic rule limn→∞(xn + yn) = limn→∞ xn +
limn→∞ yn in Proposition 1.1.3. The concrete Example 1.2.9 provides idea of the
proof.

Let limn→∞ xn = l and limn→∞ yn = k. Then for any ε1 > 0, ε2 > 0, there are
N1, N2, such that

n > N1 =⇒ |xn − l| < ε1,

n > N2 =⇒ |yn − k| < ε2.

We expect to choose ε1, ε2 as some modification of ε, as demonstrated in Example
1.2.17.
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Let N = max{N1, N2}. Then

n > N =⇒ n > N1, n > N2

=⇒ |xn − l| < ε1, |yn − k| < ε2

=⇒ |(xn + yn)− (l + k)| ≤ |xn − l|+ |yn − k| < ε1 + ε2.

If ε1 + ε2 ≤ ε, then this rigorously proves limn→∞(xn + yn) = l + k. Of course this

means that we may choose ε1 = ε2 =
ε

2
at the beginning of the argument.

The analysis above leads to the following formal proof. For any ε > 0, apply the

definition of limn→∞ xn = l and limn→∞ yn = k to
ε

2
> 0. We find N1 and N2, such

that

n > N1 =⇒ |xn − l| <
ε

2
,

n > N2 =⇒ |yn − k| <
ε

2
.

Then

n > max{N1, N2} =⇒ |xn − l| <
ε

2
, |yn − k| <

ε

2

=⇒ |(xn + yn)− (l + k)| ≤ |xn − l|+ |yn − k| <
ε

2
+
ε

2
= ε.

Example 1.2.19. The arithmetic rule limn→∞ xnyn = limn→∞ xn limn→∞ yn in Propo-
sition 1.1.3 means that, if we know the approximate values of the width and height
of a rectangle, then multiplying the width and height approximates the area of the
rectangle. The rigorous proof requires us to estimate how the approximation of the
area is affected by the approximations of the width and height. Example 1.2.11
gives the key idea for such estimation.

area= |l||y − k|

ar
ea

=
|x
−
l||
y
|

l

k

x

y

Figure 1.2.2: The error in product.
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Let limn→∞ xn = l and limn→∞ yn = k. Then for any ε1 > 0, ε2 > 0, there are
N1, N2, such that

n > N1 =⇒ |xn − l| < ε1,

n > N2 =⇒ |yn − k| < ε2.

Then for n > N = max{N1, N2}, we have (see Figure 1.2.2)

|xnyn − lk| = |(xn − l)yn + l(yn − k)|
≤ |xn − l||yn|+ |l||yn − k|
< ε1(|k|+ ε2) + |l|ε2,

where we use |yn − k| < ε2 implying |yn| < |k|+ ε2. The proof of limn→∞ xnyn = lk
will be complete if, for any ε > 0, we can choose ε1 > 0 and ε2 > 0, such that

ε1(|k|+ ε2) + |l|ε2 ≤ ε.

This can be achieved by choosing ε1, ε2 satisfying

ε2 ≤ 1, ε1(|k|+ 1) ≤ ε

2
, |l|ε2 ≤

ε

2
.

In other words, if we choose

ε1 =
ε

2(|k|+ 1)
, ε2 = min

{
1,

ε

2|l|

}
at the very beginning of the proof, then we get a rigorous proof of the arithmetic
rule. The formal writing of the proof is left to the reader.

Example 1.2.20. The sandwich rule in Proposition 1.1.4 reflects the intuition that, if
x and z are within ε of 5, then any number y between x and z is also within ε of 5

|x− 5| < ε, |z − 5| < ε, x ≤ y ≤ z =⇒ |y − 5| < ε.

Geometrically, this means that if x and z lies inside an interval, say (5 − ε, 5 + ε),
then any number y between x and z also lies in the interval.

Suppose xn ≤ yn ≤ zn and limn→∞ xn = limn→∞ zn = l. For any ε > 0, there are
N1 and N2, such that

n > N1 =⇒ |xn − l| < ε,

n > N2 =⇒ |zn − l| < ε.

Then

n > N = max{N1, N2} =⇒ |xn − l| < ε, |zn − l| < ε

=⇒ l − ε < xn, zn < l + ε

=⇒ l − ε < xn ≤ yn ≤ zn < l + ε

⇐⇒ |yn − l| < ε.
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Example 1.2.21. The order rule in Proposition 1.1.5 reflects the intuition that, if x is
very close to 3 and y is very close to 5, then x must be less than y. More specifically,
we know x < y when x and y are within ±1 of 3 and 5. Here 1 is half of the distance
between 3 and 5.

Suppose xn ≤ yn, limn→∞ xn = l, limn→∞ yn = k. For any ε > 0, there is N ,
such that (you should know from earlier examples how to find this N)

n > N =⇒ |xn − l| < ε, |yn − k| < ε.

Picking any n > N , we get

l − ε < xn ≤ yn < k + ε.

Therefore we proved that l − ε < k + ε for any ε > 0. It is easy to see that the
property is the same as l ≤ k.

Conversely, we assume limn→∞ xn = l, limn→∞ yn = k, and l < k. For any ε > 0,
there is N , such that n > N implies |xn − l| < ε and |yn − k| < ε. Then

n > N =⇒ xn < l + ε, yn > k − ε =⇒ yn − xn > (k − ε)− (l + ε) = k − l − 2ε.

By choosing ε =
k − l

2
> 0 at the beginning of the argument, we conclude that

yn > xn for n > N .

Exercise 1.2.12. Prove that if limn→∞ xn = l, then limn→∞ |xn| = |l|.

Exercise 1.2.13. Prove that limn→∞ |xn − l| = 0 if and only if limn→∞ xn = l.

Exercise 1.2.14. Prove that if limn→∞ xn = l, then limn→∞ cxn = cl.

Exercise 1.2.15. Prove that a sequence xn converges if and only if the subsequences x2n

and x2n+1 converge to the same limit. This is a special case of Proposition 1.1.6.

Exercise 1.2.16. Suppose xn ≥ 0 for sufficiently big n and limn→∞ xn = 0. Prove that
limn→∞ x

p
n = 0 for any p > 0.

Exercise 1.2.17. Suppose xn ≥ 0 for sufficiently big n and limn→∞ xn = 0. Suppose yn ≥ c
for sufficiently big n and some constant c > 0. Prove that limn→∞ x

yn
n = 0.

1.3 Criterion for Convergence

Any number close to 3 must be between 2 and 4, and in particular have the absolute
value no more than 4. The intuition leads to the following result.

Theorem 1.3.1. If xn converges, then |xn| ≤ B for a constant B and all n.
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The theorem basically says that any convergent sequence is bounded. The num-
ber B is a bound for the sequence.

If xn ≤ B for all n, then we say xn is bounded above, and B is an upper bound.
If xn ≥ B for all n, then we say xn is bounded below, and B is a lower bound. A
sequence is bounded if and only if it is bounded above and bounded below.

The sequences n,
n2 + (−1)n

n+ 1
diverge because they are not bounded. On the

other hand, the sequence 1,−1, 1,−1, . . . is bounded but diverges. Therefore the
converse of Theorem 1.3.1 is not true in general.

Exercise 1.3.1. Prove that if xn is bounded for sufficiently big n, i.e., |xn| ≤ B for n ≥ N ,
then xn is still bounded.

Exercise 1.3.2. Suppose xn is the union of two subsequences x′k and x′′k. Prove that xn is
bounded if and only if both x′k and x′′k are bounded.

1.3.1 Monotone Sequence

The converse of Theorem 1.3.1 holds under some additional assumption. A sequence
xn is increasing if

x1 ≤ x2 ≤ x3 ≤ · · · ≤ xn ≤ xn+1 ≤ · · · .

It is strictly increasing if

x1 < x2 < x3 < · · · < xn < xn+1 < · · · .

The concepts of decreasing and strictly decreasing can be similarly defined. More-
over, a sequence is monotone if it is either increasing or decreasing.

The sequences
1

n
,

1

2n
, n
√

2 are (strictly) decreasing. The sequences − 1

n
, n are

increasing.

Theorem 1.3.2. A monotone sequence converges if and only if it is bounded.

An increasing sequence xn is always bounded below by its first term x1. Therefore
xn is bounded if and only if it is bounded above. Similarly, a decreasing sequence is
bounded if and only if it is bounded below.

The world record for 100 meter dash is a decreasing sequence bounded below by
0. The proposition reflects the intuition that there is a limit on how fast human
being can run. We note that the proposition does not tells us the exact value of the
limit, just like we do not know the exact limit of the human ability.

Example 1.3.1. Consider the sequence

xn =
1

12
+

1

22
+

1

32
+ · · ·+ 1

n2
.
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The sequence is clearly increasing. Moreover, the sequence is bounded above by

xn ≤ 1 +
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

(n− 1)n

= 1 +

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n− 1
− 1

n

)
= 2− 1

n
< 2.

Therefore the sequence converges.
The limit of the sequence is the sum of the infinite series

∞∑
n=1

1

n2
= 1 +

1

22
+

1

32
+ · · ·+ 1

n2
+ · · · .

We will see that the sum is actually
π2

6
.

Exercise 1.3.3. Show the convergence of sequences.

1. xn =
1

13
+

1

23
+

1

33
+ · · ·+ 1

n3
.

2. xn =
1

12.4
+

1

22.4
+

1

32.4
+ · · ·+ 1

n2.4
.

3. xn =
1

1 · 3
+

1

3 · 5
+

1

5 · 7
+ · · ·+ 1

(2n− 1)(2n+ 1)
.

4. xn =
1

1!
+

1

2!
+ · · ·+ 1

n!
.

Example 1.3.2. The number

√
2 +

√
2 +
√

2 + · · · is the limit of the sequence xn
inductively given by

x1 =
√

2, xn+1 =
√

2 + xn.

After trying first couple of terms, we expect the sequence to be increasing. This

can be verified by induction. We have x2 =
√

2 +
√

2 > x1 =
√

2. Moreover, if we
assume xn > xn−1, then

xn+1 =
√

2 + xn >
√

2 + xn−1 = xn.

This proves inductively that xn is indeed increasing.
Next we claim that xn is bounded above. For an increasing sequence, we expect

its limit to be the upper bound. So we find the hypothetical limit first. Taking the
limit on both sides of the equality x2

n+1 = 2 + xn and applying the arithmetic rule,
we get l2 = 2 + l. The solution is l = 2 or −1. Since xn > 0, by the order rule, we
must have l ≥ 0. Therefore we conclude that l = 2.
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The hypothetical limit value suggests that xn < 2 for all n. Again we verify this
by induction. We already have x1 =

√
2 < 2. If we assume xn < 2, then

xn+1 =
√

2 + xn <
√

2 + 2 = 2.

This proves inductively that xn < 2 for all n.
We conclude that xn is increasing and bounded above. By Theorem 1.3.2, the

sequence converges, and the hypothetical limit value 2 is the real limit value.
Figure 1.3.1 suggests that our conclusion actually depends only on the general

shape of the graph of the function, and has little to do with the exact formula√
2 + x.

x1

f(x1)

x2

f(x2)

x3

f(x3)

x4

y = x

l

y = f(x)

Figure 1.3.1: Limit of inductively defined sequence.

Exercise 1.3.4. Suppose a sequence xn satisfies xn+1 =
√

2 + xn.

1. Prove that if −2 < x1 < 2, then xn is increasing and converges to 2.

2. Prove that if x1 > 2, then xn is decreasing and converges to 2.

Exercise 1.3.5. For the three functions f(x) in Figure 1.3.2, study the convergence of the
sequences xn defined by xn+1 = f(xn). Your answer depends on the initial value x1.

Exercise 1.3.6. Suppose a sequence xn satisfies xn+1 =
1

2
(x2
n + xn). Prove the following

statements.

1. If x1 > 1, then the sequence is increasing and diverges.

2. If 0 < x1 < 1, then the sequence is decreasing and converges to 0.

3. If −1 < x1 < 0, then the sequence is increasing and converges to 0.

4. If −2 < x1 < −1, then the sequence is decreasing for n ≥ 2 and converges to 0.



1.3. CRITERION FOR CONVERGENCE 41

Figure 1.3.2: Three functions

5. If x1 < −2, then the sequence is increasing for n ≥ 2 and diverges.

Exercise 1.3.7. Determine the convergence of inductively defined sequences. Your answer
may depend on the initial value x1.

1. xn+1 = x2
n.

2. xn+1 =
x2
n + 1

2
.

3. xn+1 = 2x2
n − 1.

4. xn+1 =
1

xn
.

5. xn+1 = 1 +
1

xn
.

6. xn+1 = 2− 1

xn
.

Exercise 1.3.8. Determine the convergence of inductively defined sequences, a > 0. In
some cases, the sequence may not be defined after certain number of terms.

1. xn+1 =
√
a+ xn.

2. xn+1 =
√
xn − a.

3. xn+1 =
√
a− xn.

4. xn+1 = 3
√
a+ xn.

5. xn+1 = 3
√
xn − a.

6. xn+1 = 3
√
a− xn.

Exercise 1.3.9. Explain the continued fraction expansion

√
2 = 1 +

1

2 +
1

2 +
1

2 + · · ·

.

What if 2 on the right side is changed to some other positive number?

Exercise 1.3.10. For any a, b > 0, define a sequence by

x1 = a, x2 = b, xn =
xn−1 + xn−2

2
.

Prove that the sequence converges.

Exercise 1.3.11. The arithmetic and the geometric means of a, b > 0 are
a+ b

2
and
√
ab.

By repeating the process, we get two sequences defined by

x1 = a, y1 = b, xn+1 =
xn + yn

2
, yn+1 =

√
xnyn.
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Prove that xn ≥ xn+1 ≥ yn+1 ≥ yn for n ≥ 2, and the two sequences converge to the same
limit.

Exercise 1.3.12. The Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

is defined by x0 = x1 = 1 and xn+1 = xn + xn−1. Consider the sequence yn =
xn+1

xn
.

1. Find the relation between yn+1 and yn.

2. Assume yn converges, find the limit l.

3. Use the relation between yn+2 and yn to prove that l is the upper bound of y2k and
the lower bound of y2k+1.

4. Prove that the subsequence y2k is increasing and the subsequence y2k+1 is decreasing.

5. Prove that the sequence yn converges to l.

Exercise 1.3.13. To find
√
a for a > 0, we start with a guess x1 > 0 of the value of

√
a.

Noting that x1 and
a

x1
are on the two sides of

√
a, it is reasonable to choose the average

x2 =
1

2

(
x1 +

a

x1

)
as the next guess. This leads to the inductive formula

xn+1 =
1

2

(
xn +

a

xn

)
as a way of numerically computing better and better approximate values of

√
a.

1. Prove that limn→∞ xn =
√
a.

2. We may also use weighted average xn+1 =
1

3

(
xn + 2

a

xn

)
as the next guess. Do we

still have limn→∞ xn =
√
a for the weighted average?

3. Compare the two methods for specific values of a and b (say a = 4, b = 1). Which
way is faster?

4. Can you come up with a similar scheme for numerically computing 3
√
a? What

choice of the weight gives you the fastest method?

1.3.2 Application of Monotone Sequence

We use Theorem 1.3.2 to prove some limits and define a special number e.

Example 1.3.3. We give another argument for limn→∞ a
n = 0 in Example 1.1.11.
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First assume 0 < a < 1. Then the sequence an is decreasing and satisfies
0 < an < 1. Therefore the sequence converges to a limit l. By the remark in
Example 1.1.1, we also have limn→∞ a

n−1 = l. Then by the arithmetic rule, we have

l = lim
n→∞

an = lim
n→∞

a · an−1 = a lim
n→∞

an−1 = al.

Since a 6= 1, we get l = 0.

For the case −1 < a < 0, we may consider the even and odd subsequences
of an and apply Proposition 1.1.6. Another way is to apply the sandwich rule to
−|a|n ≤ an ≤ |a|n.

Example 1.3.4. We give another argument that the sequence xn =
3n(n!)2

(2n)!
in Exam-

ple 1.1.16 converges to 0. By limn→∞
xn
xn−1

= 0.75 < 1 and the order rule, we have

xn
xn−1

< 1 for sufficiently big n. Since xn is always positive, we have xn < xn−1 for

sufficiently big n. Therefore after finitely many terms, the sequence is decreasing.
Moreover, 0 is the lower bound of the sequence, so that the sequence converges.

Let limn→∞ xn = l. Then we also have limn→∞ xn−1 = l. If l 6= 0, then

lim
n→∞

xn
xn−1

=
limn→∞ xn

limn→∞ xn−1

=
l

l
= 1.

But the limit is actually 0.75. The contradiction shows that l = 0.

Exercise 1.3.14. Extend Example 1.3.3 to a proof of limn→∞ na
n = 0 for |a| < 1.

Exercise 1.3.15. Extend Example 1.3.4 to prove that, if limn→∞
|xn|
|xn−1|

= l < 1, then

limn→∞ xn = 0.

Example 1.3.5. For the sequence

(
1 +

1

n

)n
, we compare two consecutive terms by
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their binomial expansions(
1 +

1

n

)n
= 1 + n

1

n
+
n(n− 1)

2!

1

n2
+ · · ·+ n(n− 1) · · · 3 · 2 · 1

n!

1

nn

= 1 +
1

1!
+

1

2!

(
1− 1

n

)
+ · · ·

+
1

n!

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− n− 1

n

)
,(

1 +
1

n+ 1

)n+1

= 1 +
1

1!
+

1

2!

(
1− 1

n+ 1

)
+ · · ·

+
1

n!

(
1− 1

n+ 1

)(
1− 2

n+ 1

)
· · ·
(

1− n− 1

n+ 1

)
+

1

(n+ 1)!

(
1− 1

n+ 1

)(
1− 2

n+ 1

)
· · ·
(

1− n

n+ 1

)
.

A close examination shows that the sequence is increasing. Moreover, by the com-
putation in Example 1.3.1, the first expansion gives(

1 +
1

n

)n
< 1 +

1

1!
+

1

2!
+ · · ·+ 1

n!

< 1 + 1 +
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

(n− 1)n
< 3.

By Theorem 1.3.2, the sequence converges. We denote the limit by e

e = lim
n→∞

(
1 +

1

n

)n
= 2.71828182845904 · · · .

Exercise 1.3.16. Find the limit.

1.

(
n+ 1

n

)n+1

. 2.

(
1− 1

n

)n
. 3.

(
1 +

1

2n

)n
. 4.

(
2n+ 1

2n− 1

)n
.

Exercise 1.3.17. Let xn =

(
1 +

1

n

)n+1

.

1. Use induction to prove (1 + x)n ≥ 1 + nx for x > −1 and any natural number n.

2. Use the first part to prove
xn−1

xn
> 1. This shows that xn is decreasing.

3. Prove that limn→∞ xn = e.

4. Prove that

(
1− 1

n

)n
is increasing and converges to e−1.
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Exercise 1.3.18. Prove that for n > k, we have(
1 +

1

n

)n
≥ 1 +

1

1!
+

1

2!

(
1− 1

n

)
+ · · ·+ 1

k!

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− k

n

)
.

Then use Proposition 1.1.5 to show that

e ≥ 1 +
1

1!
+

1

2!
+ · · ·+ 1

k!
≥
(

1 +
1

k

)k
.

Finally, prove

lim
n→∞

(
1 +

1

1!
+

1

2!
+ · · ·+ 1

n!

)
= e.

1.3.3 Cauchy Criterion

Theorem 1.3.2 gives a special case that we know the convergence of a sequence
without knowing the actual limit value. Note that the definition of limit makes
explicit use of the limit value and therefore cannot be used to derive the convergence
here. The following provides the criterion for the convergence in general, again
without referring to the actual limit value.

Theorem 1.3.3 (Cauchy Criterion). A sequence xn converges if and only if for any
ε > 0, there is N , such that

m,n > N =⇒ |xm − xn| < ε.

Sequences satisfying the property in the theorem are called Cauchy sequences.
The theorem says that a sequence converges if and only if it is a Cauchy sequence.

The necessity is easy to see. If limn→∞ xn = l, then for big m,n, both xm and
xn are very close to l (say within ε

2
). This implies that xm and xn are very close

(within ε
2

+ ε
2

= ε).
The proof of sufficiency is much more difficult and relies on the following deep

result that touches the essential difference between the real and rational numbers.

Theorem 1.3.4 (Bolzano-Weierstrass). Any bounded sequence has a convergent sub-
sequence.

Using the theorem, the converse may be proved by the following steps.

1. A Cauchy sequence is bounded.

2. By Bolzano-Weierstrass Theorem, the sequence has a convergent subsequence.

3. If a Cauchy sequence has a subsequence converging to l, then the whole se-
quence converges to l.
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Example 1.3.6. In Example 1.1.19, we argued that the sequence (−1)n diverges be-
cause two subsequences converge to different limits. Alternatively, we may apply
the Cauchy criterion. For ε = 1 and any N , we pick any n > N and pick m = n+ 1.
Then m,n > N and |xm − xn| = |(−1)n+1 − (−1)n| = 2 > ε. This means that the
Cauchy criterion fails, and therefore the sequence diverges.

Example 1.3.7. In Example 1.3.1, we argued the convergence of

xn = 1 +
1

22
+

1

32
+ · · ·+ 1

n2

by increasing and bounded property. Alternatively, for m > n, we have

|xm − xn| =
1

(n+ 1)2
+

1

(n+ 2)2
+ · · ·+ 1

m2

≤ 1

n(n+ 1)
+

1

(n+ 1)(n+ 2)
+ · · ·+ 1

(m− 1)m

=

(
1

n
− 1

n+ 1

)
+

(
1

n+ 1
− 1

n+ 2

)
+ · · ·+

(
1

m− 1
− 1

m

)
=

1

n
− 1

m
.

Therefore for any ε, we have

m > n > N =
1

ε
=⇒ |xn − xm| <

1

n
<

1

N
= ε.

By the Cauchy criterion, xn converges.
We note that the same argument can be used to show the convergence of

xn = 1− 1

22
+

1

32
− · · ·+ (−1)n

1

n2
.

The method in Example 1.3.7 cannot be used here.

Example 1.3.8. The following is the partial sum of the harmonic series

xn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

For any n, we have

x2n − xn =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
≥ 1

2n
+

1

2n
+ · · ·+ 1

2n
=

1

2
.

For ε =
1

2
and any N , we choose a natural number n > N and also choose m =

2n > N . Then
|xm − xn| = x2n − xn ≥ ε.

This shows that the sequence fails the Cauchy criterion and diverges.
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Exercise 1.3.19. If xn is a Cauchy sequence, is |xn| also a Cauchy sequence? What about
the converse?

Exercise 1.3.20. Suppose |xn+1 − xn| ≤
1

n2
. Prove that xn converges.

Exercise 1.3.21. Suppose cn is bounded and |r| < 1. Prove that the sequence

xn = c0 + c1r + c2r
2 + · · ·+ cnr

n

converges.

Exercise 1.3.22. Use Cauchy criterion to determine convergence.

1. 1 +
1√
2

+
1√
3

+ · · ·+ 1√
n

.

2. 1− 1

23
+

1

33
− · · ·+ (−1)n+1

n3
.

3.
1

2
+

2

3
+

3

4
+ · · ·+ n− 1

n
.

4. 1 +
1

3
+

1

5
+ · · ·+ 1

2n+ 1
.

5. 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!
.

6. 1 +
2

1!
+

3

2!
+ · · ·+ n

(n− 1)!
.

Example 1.3.9. Theorem 1.3.4 shows the existence of converging subsequences of a
bounded sequence. How about the limit values of such subsequences?

Let us list all finite decimal expressions in (0, 1) as a sequence

xn : 0.1, 0.2, . . . , 0.9, 0.01, 0.02, . . . , 0.99, 0.001, 0.002, . . . , 0.999, . . . .

The number 0.318309 · · · is the limit of the following subsequence

0.3, 0.31, 0.318, 0.3183, 0.31830, 0.318309, . . . .

It is easy to see that any number in [0, 1] is the limit of a convergent subsequence
of xn.

Exercise 1.3.23. Construct a sequence such that the limits of convergent subsequences are

exactly
1

n
, n ∈ N and 0.

Exercise 1.3.24. Construct a sequence such that any number is the limit of some convergent
subsequence.

Exercise 1.3.25. Use any suitable method or theorem to determine convergence.

1.
1

2
,

2

1
,

2

3
,

3

2
, . . . ,

n

n+ 1
,
n+ 1

n
, . . . . 2.

1

2
, −2

1
,

2

3
, −3

2
, . . . ,

n

n+ 1
, −n+ 1

n
, . . . .
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3. 1 +
1

22
+

2

32
+ · · ·+ n− 1

n2
.

4.
1

1 · 2
+

1

3 · 4
+ · · ·+ 1

(2n− 1)2n
.

5.
1

1 · 2
− 1

3 · 4
+· · ·+(−1)n+1 1

(2n− 1)2n
.

6.
2

1 · 3
+

3

2 · 4
+ · · ·+ n

(n− 1)(n+ 1)
.

7.
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
.

8.
1 · 3 · 5 · · · (2n− 1)

n!
.

9.

√√√√√1 +

√√√√1

2
+

√
1

3
+ · · ·+

√
1

n
.

10.

√
1 +

√
2 +

√
3 + · · ·+

√
n.

1.4 Infinity

1.4.1 Divergence to Infinity

A sequence may diverge for various reasons. For example, the sequence n diverges
because it can become arbitrarily big. On the other hand, the bounded sequence
(−1)n diverges because it has two subsequences with different limits. The first
example may be summarized by the following definition.

Definition 1.4.1. A sequence diverges to infinity, denoted limn→∞ xn = ∞, if for
any B, there is N , such that n > N implies |xn| > B.

In the definition, the infinity means that the absolute value (or the magnitude)
of the sequence can become arbitrarily big. If we further take into account of the
signs, then we get the following definitions.

Definition 1.4.2. A sequence diverges to +∞, denoted limn→∞ xn = +∞, if for
any B, there is N , such that n > N implies xn > B. A sequence diverges to −∞,
denoted limn→∞ xn = −∞, if for any B, there is N , such that n > N implies xn < B.

The meaning of limn→∞ xn = +∞ is illustrated in Figure 1.4.1. For example, we
have limn→∞ n = +∞. We also note that, in the definition of limn→∞ xn = +∞, we
may additionally assume B > 0 (or B > 100) without loss of generality.

Example 1.4.1. We have

lim
n→∞

np = +∞, for p > 0.

For the rigorous proof, for any B > 0, we have

n > B
1
p =⇒ np > B.
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B

N
n

x1

x2

x3

x4

xN+1

xN+2
xN+3

xn

xn+1

Figure 1.4.1: n > N implies xn > B.

Example 1.4.2. Example 1.1.11 may be extended to show that limn→∞ a
n = ∞ for

|a| > 1. Specifically, let |a| = 1 + b. Then |a| > 1 implies b > 0, and we have

|an| = (1 + b)n = 1 + nb+
n(n− 1)

2
b2 + · · ·+ bn > nb.

For any B, we then have

n >
B

b
=⇒ |an| > nb > B.

This proves limn→∞ a
n = ∞ for |a| > 1. If we take the sign into account, this also

proves limn→∞ a
n = +∞ for a > 1.

Example 1.4.3. Suppose xn 6= 0. We prove that limn→∞ xn = 0 implies limn→∞
1

xn
=

∞. Actually the converse is also true and the proof is left to the reader.
If limn→∞ xn = 0, then for any B > 0, we apply the definition of the limit to

1

B
> 0 to get N , such that

n > N =⇒ |xn| <
1

B
=⇒

∣∣∣∣ 1

xn

∣∣∣∣ > B.

This proves limn→∞
1

xn
=∞.

Applying what we just proved to the limit in Example 1.1.11, we get another
proof of limn→∞ a

n =∞ for |a| > 1.

Exercise 1.4.1. Let xn 6= 0. Prove that limn→∞ xn = 0 if and only if limn→∞
1

xn
=∞.

Exercise 1.4.2. Prove that limn→∞ xn = +∞ if and only if xn > 0 for sufficiently big n

and limn→∞
1

xn
= 0.

Exercise 1.4.3. Rigorously prove divergence to infinity. Determine ±∞ if possible.
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1.
n2 − n+ 1

n+ 1
.

2.
n√
n+ 1

.

3.
an

n
, |a| > 1.

4. npan, |a| > 1.

5.
n!

4n
.

6. n!an.

1.4.2 Arithmetic Rule for Infinity

A sequence xn is an infinitesimal if limn→∞ xn = 0. Example 1.4.3 and Exercise 1.4.1
show that a sequence is an infinetesimal if and only if its reciprocal is an infinity.

Many properties of the finite limit can be extended to infinity. For example, we

have
l

0
= ∞ for l 6= 0. This means that, if limn→∞ xn = l 6= 0 and limn→∞ yn = 0,

then limn→∞
xn
yn

=∞. For example,

lim
n→∞

2n2 + 1

n− 1
= lim

n→∞

2 +
1

n2

1

n
− 1

n2

=

limn→∞

(
2 +

1

n2

)
limn→∞

(
1

n
− 1

n2

) =
2

0
=∞.

Note that l in
l

0
can represent any sequence converging to l, and is not necessarily

a constant.
The following are more extensions of the arithmetic rules to infinity. The rules

are symbolically denoted by “arithmetic equalities”, and the exact meaning of the
rules are also given.

• l

∞
= 0: If limn→∞ xn = l and limn→∞ yn =∞, then limn→∞

xn
yn

= 0.

• (+∞) + (+∞) = +∞: If limn→∞ xn = +∞ and limn→∞ yn = +∞, then
limn→∞(xn + yn) = +∞.

• (−∞) + l = −∞: If limn→∞ xn = −∞ and limn→∞ yn = l, then limn→∞(xn +
yn) = −∞.

• (+∞) · l = −∞ for l < 0: If limn→∞ xn = +∞ and limn→∞ yn = l < 0, then
limn→∞ xnyn = −∞.

• l

0+
= +∞ for l > 0: If limn→∞ xn = l > 0, limn→∞ yn = 0 and yn > 0, then

limn→∞
xn
yn

= +∞.

On the other hand, we should always be cautious not to overextend the arithmetic
properties. For example, the following “arithmetic rules” are actually wrong

∞+∞ =∞, +∞
−∞

= −1, 0 · ∞ = 0, 0 · ∞ =∞.
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A counterexample for the first equality is xn = n and yn = −n, for which we have
limn→∞ xn =∞, limn→∞ yn =∞ and limn→∞(xn+yn) = 0. In general, one needs to
use common sense to decide whether certain extended arithmetic rules make sense.

Example 1.4.4. By Example 1.4.1 and the extended arithmetic rule, we have

lim
n→∞

(n3 − 3n+ 1) = lim
n→∞

n3

(
1− 3

n2
+

1

n3

)
= (+∞) · 1 = +∞.

In general, any non-constant polynomial of n diverges to ∞, and for rational func-
tions, we have

lim
n→∞

apn
p + ap−1n

p−1 + · · ·+ a1n+ a0

bqnq + bq−1nq−1 + · · ·+ b1n+ b0

=


+∞, if p > q, apbq > 0,

−∞, if p > q, apbq < 0,
ap
bq
, if p = q, bq 6= 0,

0, if p < q, bq 6= 0.

Exercise 1.4.4. Prove the extended arithmetic rules

l

0
=∞, l + (+∞) = +∞, (+∞) · (−∞) = −∞, l

0−
= −∞ for l > 0.

Exercise 1.4.5. Construct sequences xn and yn, such that both diverge to infinity, but
xn + yn can have any of the following behaviors.

1. limn→∞(xn + yn) =∞.

2. limn→∞(xn + yn) = 2.

3. xn + yn is bounded but does not converge.

4. xn + yn is not bounded and does not diverge to infinity.

The exercise shows that ∞+∞ has no definite meaning.

Exercise 1.4.6. Prove that if p > 0, then limn→∞ xn = +∞ implies limn→∞ x
p
n = +∞.

What about the case p < 0?

Exercise 1.4.7. Prove the extended sandwich rule: If xn ≤ yn for sufficiently big n, then
limn→∞ xn = +∞ implies limn→∞ yn = +∞.

Exercise 1.4.8. Prove the extended order rule: If limn→∞ xn = l is finite and limn→∞ yn =
+∞, then xn < yn for sufficiently big n.

Exercise 1.4.9. Suppose limn→∞ xn = l > 1. Prove that limn→∞ x
n
n = +∞.
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Exercise 1.4.10. Prove that if limn→∞
xn
xn−1

= l and |l| > 1, then xn diverges to infinity.

Exercise 1.4.11. Explain the infinities. Determine the sign of infinity if possible.

1.
n+ sin 2n√
n− cosn

.

2.
n!

an + bn
, a+ b 6= 0.

3.
1

n
√
n− 1

.

4.
1

n
√
n− n
√

2n
.

5. n(
√
n+ 2−

√
n).

6.
(−1)nn2

n− 1
.

7.
3n − 2n

n
.

8.
3n − 2n

n3 + n2
.

9.

(
1 +

1

n

)n2

.

1.4.3 Unbounded Monotone Sequence

The following complements Theorem 1.3.2.

Theorem 1.4.3. Any unbounded monotone sequence diverges to infinity.

If an increasing sequence xn is bounded, then by Theorem 1.3.2, it converges to
a finite limit. If the sequence is not bounded, then it is not bounded above. This
means that any number B is not an upper bound, or some xN > B. Then by xn
increasing, we have

n > N =⇒ xn ≥ xN > B.

This proves that limn→∞ xn = +∞. Similarly, an unbounded decreasing sequence
diverges to −∞.

Example 1.4.5. In Example 1.3.8, we showed that the increasing sequence

xn = 1 +
1

2
+

1

3
+ · · ·+ 1

n

diverges. By Theorem 1.4.3, we know that it diverges to +∞. Therefore the sum of
the harmonic series

1 +
1

2
+

1

3
+ · · ·+ 1

n
+ · · · = +∞.

Example 1.4.6. For a > 1, the sequence an is increasing. If the sequence converges
to a finite limit l, then

l = lim
n→∞

an = a lim
n→∞

an−1 = al.

Since the sequence is increasing, we have l ≥ a > 1, which contradicts to l = al. By
Theorem 1.4.3, therefore, we conclude that limn→∞ a

n = +∞.

Exercise 1.4.12. Prove limn→∞
an

n2
= +∞ for a > 1.
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1.5 Limit of Function

Similar to the sequence limit, we say a function f(x) converges to l at a, and write

lim
x→a

f(x) = l,

if f(x) approaches l when x approaches a

x→ a, x 6= a =⇒ f(x)→ l.

Note that we include x 6= a because f(x) is not required to be defined at a.
The definition allows a or l to be ∞ (or ±∞ if the sign can be determined).

When l =∞, we should say that f(x) diverges to ∞ at a.

In Figure 1.5.1, as x approaches 0, we see that x2 approaches 0,
1

x
gets arbitrarily

big, and sin
1

x
swings between −1 and 1, never approaching any one specific finite

number. We write limx→0 x
2 = 0, limx→0

1

x
=∞, and say that limx→0 sin

1

x
diverges.

y = x2 y =
1

x
y = sin

1

x

Figure 1.5.1: Behavior of functions near 0.

On the other hand, as x approaches the infinity, we find that x2 gets arbitrar-

ily big, and
1

x
and sin

1

x
approach 0. Therefore limx→∞ x

2 = ∞, limx→∞
1

x
=

limx→∞ sin
1

x
= 0. Moreover, sinx swings between −1 and 1, and limx→∞ sinx

diverges.

1.5.1 Properties of Function Limit

The function limit shares similar properties with the sequence limit.

Proposition 1.5.1. If f(x) = g(x) for x sufficiently near a and x 6= a, then
limx→a f(x) = limx→a g(x).
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Proposition 1.5.2 (Arithmetic Rule). Suppose limx→a f(x) = l and limx→a g(x) = k.
Then

lim
x→a

(f(x) + g(x)) = l + k, lim
x→a

cf(x) = cl, lim
x→a

f(x)g(x) = lk, lim
x→a

f(x)

g(x)
=
l

k
,

where c is a constant and k 6= 0 in the last equality.

Proposition 1.5.3 (Sandwich Rule). If f(x) ≤ g(x) ≤ h(x) and limx→a f(x) =
limx→a h(x) = l, then limx→a g(x) = l.

Proposition 1.5.4 (Order Rule). Suppose limx→a f(x) = l and limx→a g(x) = k.

1. If f(x) ≤ g(x) for x near a and x 6= a, then l ≤ k.

2. If l < k, then f(x) < g(x) for x near a and x 6= a.

Proposition 1.1.6 will be extended to Proposition 1.5.5 (composition rule) and
Proposition 1.6.2 (relation between sequence and function limits).

Since
x→ a, x 6= a =⇒ c→ c,

and
x→ a, x 6= a =⇒ x→ a,

we have
lim
x→a

c = c, lim
x→a

x = a.

It is also intuitively clear that

lim
x→0
|x| = 0, lim

x→∞

1

|x|p
= 0 for p > 0.

The subsequent examples are based on these limits.

Example 1.5.1. For a > 0, we have |x| = x near a. By Proposition 1.5.1, we have
limx→a |x| = limx→a x = a = |a|.

For a < 0, we have |x| = −x near a. By Propositions 1.5.1 and 1.5.2, we have
limx→a |x| = limx→a−x = − limx→a x = −a = |a|.

Combining the two cases with limx→0 |x| = 0, we get limx→a |x| = |a|.

Example 1.5.2. Let

f(x) =

{
y, if y 6= 0,

A, if y = 0.

Then f(x) = x for x 6= 0, and by Proposition 1.5.1, we have limx→0 f(x) =
limx→0 x = 0. Note that the limit is independent of the value f(0) = A. In fact, the
limit does not even require the function to be defined at 0.
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Example 1.5.3. The rational function
x3 − 1

x− 1
is not defined at x = 1. Yet the function

converges at 1

lim
x→1

x3 − 1

x− 1
= lim

x→1
(x2 + x+ 1) = 12 + 1 + 1 = 3.

Example 1.5.4. By the arithmetic rule, we have

lim
x→a

(x3 − 3x+ 1) =
(

lim
x→a

x
)3

− lim
x→a

3 lim
x→a

x+ lim
x→a

1 = a3 − 3a+ 1.

More generally, for any polynomial p(x) = cnx
n+cn−1x

n−1 + · · ·+c1x+c0 and finite
a, we have

lim
x→a

p(x) = p(a).

A rational function r(x) =
p(x)

q(x)
is the quotient of two polynomials p(x) and

q(x), and is defined at a if q(a) 6= 0. Further by the arithmetic rule, we also have

lim
x→a

r(x) =
limx→a p(x)

limx→a q(x)
=
p(a)

q(a)
= r(a)

whenever r(x) is defined at a.

Example 1.5.5. By the arithmetic rule, we have

lim
x→∞

2x2 + x

x2 − x+ 1
= lim

x→∞

2 +
1

x

1− 1

x
+

1

x2

=
2 + limx→∞

1

x

1− limx→∞
1

x
+ limx→∞

1

x
· limx→∞

1

x

= 2.

This is comparable to Example 1.1.2. In general, Example 1.4.4 can be extended to
the function limit

lim
x→∞

apx
p + ap−1x

p−1 + · · ·+ a1x+ a0

bqxq + bq−1xq−1 + · · ·+ b1x+ b0

=


∞, if p > q,
ap
bq
, if p = q, bq 6= 0,

0, if p < q, bq 6= 0.

Example 1.5.6. Similar to Example 1.1.5, the function
√
|x|+ 2−

√
|x| satisfies

0 <
√
|x|+ 2−

√
|x| =

(
√
|x|+ 2−

√
|x|)(

√
|x|+ 2 +

√
|x|)√

|x|+ 2 +
√
|x|

=
1√

|x|+ 2 +
√
|x|

<
2√
|x|
.



56 CHAPTER 1. LIMIT

By limx→∞
2√
|x|

= 2 limx→∞
1√
|x|

= 0 and the sandwich rule, we get

lim
x→+∞

(
√
|x|+ 2−

√
|x|) = 0.

Example 1.5.7. The following computation

lim
x→0

x sin
1

x
= lim

x→0
x lim

x→0
sin

1

x

is wrong because limx→0 sin 1
x

diverges. However, if we use

−|x| ≤ x sin
1

x
≤ |x|, lim

x→0
|x| = 0,

and the sandwich rule, then we get limx→0 x sin
1

x
= 0.

Exercise 1.5.1. Explain that limx→a f(x) = l if and only if limx→a(f(x)− l) = 0.

Exercise 1.5.2. Use the sandwich rule to prove that limx→a |f(x)| = 0 implies limx→a f(x) =
0.

Exercise 1.5.3. Find the limits.

1. limx→∞
x

x+ 2
.

2. limx→2
x

x+ 2
.

3. limx→−2
x

x+ 2
.

4. limx→∞
x2 − 1

x2 + x− 2
.

5. limx→0
x2 − 1

x2 + x− 2
.

6. limx→1
x2 − 1

x2 + x− 2
.

Exercise 1.5.4. Find the limits.

1. limx→0 x cos
1

x2
.

2. limx→∞
1√
|x|

sinx2.

3. limx→∞(
√
|x|+ a−

√
|x|+ b).

4. limx→∞(
√

(x+ a)(x+ b)− x).

5. limx→∞

√
x+ a

x+ b
.

6. limx→∞

(
3
√
x2

3
√
x+ a

−
3
√
x2

3
√
x+ b

)
.

1.5.2 Limit of Composition Function

Suppose three variables x, y, z are related by

x
f−→ y = f(x)

g−→ z = g(y).
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Then z and x are related by z = g(f(x)), the composition of two functions. Suppose
both f and g have limits

lim
x→a

f(x) = b, lim
y→b

g(y) = c,

where b is the value of the first limit as well as the location of the second limit. The
problem is whether the composition has limit

lim
x→a

g(f(x)) = c.

What we want is to combine two implications

x→ a, x 6= a =⇒ y → b,

y → b, y 6= b =⇒ z → c,

to get the third implication

x→ a, x 6= a =⇒ z → c.

However, the two implications cannot be combined as is, because “y → b” does not
imply “y → b, y 6= b”. There are two ways to save this. The first is to strengthen
the first implication to

x→ a, x 6= a =⇒ y → b, y 6= b.

Here the extra condition is f(x) 6= b for x near a and x 6= a. The second is to
strengthen the second implication to

y → b =⇒ z → c.

Here the extra condition is y = b =⇒ z → c. Since y = b implies z = g(b), the
extra condition is simply c = g(b), so the strengthened second implication becomes

y → b =⇒ z → c = g(b).

Proposition 1.5.5 (Composition Rule). Suppose limx→a f(x) = b and limy→b g(y) =
c. Then we have limx→a g(f(x)) = c, provided one of the following extra conditions
is satisfied

1. f(x) 6= b for x near a and x 6= a.

2. c = g(b).

Note that the second condition means

lim
y→b

g(y) = g(b).
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Later on, this will become the definition of the continuity of g(y) at b. Moreover,
the composition rule in this case means

lim
x→a

g(f(x)) = c = g(b) = g
(

lim
x→a

f(x)
)
.

So the continuity of g(y) is the same as the exchangeability of the function g and
the limit.

The composition rule extends Proposition 1.1.6 because a sequence xn can be
considered as a function

xn : n 7→ x(n) = xn.

Then a subsequence can be considered as a composition with a function nk : N→ N
that satisfies limk→∞ nk =∞

k 7→ n(k) = nk 7→ x(n(k)) = xnk .

Example 1.5.8. We have

0 ≤ |
√
x− 1| = |x− 1|√

x+ 1
≤ |x− 1|.

Note that |x− 1| is the composition of z = |y| and y = x− 1. By limx→1(x− 1) =
1− 1 = 0, limy→0 |y| = 0 = |0|, and the composition rule (both extra conditions are
satisfied), we get limx→1 |x−1| = 0. Then by the sandwich rule, we get limx→1 |

√
x−

1| = 0. This implies limx→1(
√
x − 1) = 0 (see Exercise 1.5.2). Finally, by the

arithmetic rule, we get limx→1

√
x = 1.

Example 1.5.9. We have limx→1(3x3−2) = 1 from the arithmetic rule. We also know
limy→1

√
y = 1 from Example 1.5.8. The composition

x 7→ y = f(x) = 3x3 − 2 7→ z = g(y) =
√
y = g(f(x)) =

√
3x3 − 2

should give us limx→1

√
3x3 − 2 = 1.

We need to verify one of the extra conditions in the composition rule. If x is
close to 1 and x < 1, then we have x3 < 13 = 1, so that 3x3 − 2 < 1. Similarly, if x
is close to 1 and x > 1, then 3x3 − 2 > 1. Therefore for x close to 1 and 6= 1, we
indeed have 3x3 − 2 6= 1. This verifies the first condition.

Although the validity of the first condition already allows us to apply the com-
position rule, the second condition limy→1

√
y = 1 =

√
1 is also valid.

Note that it is rather tempting to write

lim
x→1

√
3x3 − 2 = lim

3x3−2→1

√
3x3 − 2 = lim

y→1

√
y.

In other words, the composition rule appears simply as a change of variable. How-
ever, one needs to be careful because hidden in the definition of limx→1 is x 6= 0.
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Similarly, the assumption 3x3− 2 6= 1 is implicit in writing lim3x3−2→1, and the first
equality above actually requires you to establish

x→ 1, x 6= 1 ⇐⇒ 3x3 − 2→ 1, 3x3 − 2 6= 1.

This turns out to be true in our specific example, but might fail for other examples.

Example 1.5.10. Example 1.5.8 can be extended to show that limx→a
√
x =
√
a for

any a > 0 (see Exercise 1.5.5). This actually means that
√
x is continuous, and

therefore we may apply the composition rule to get

lim
x→1

√√
3x3 − 2 + 7x =

√
lim
x→1

(√
3x3 − 2 + 7x

)
=

√
lim
x→1

√
3x3 − 2 + lim

x→1
7x

=

√√
lim
x→1

(3x3 − 2) + lim
x→1

7x

=

√√
3 · 12 + 1 + 7 · 1.

Here is the detailed reason. The last equality is by the arithmetic rule. The third
equality makes use of the continuity of the function

√
x and the composition rule to

move the limit from outside the square root to inside the square root. The second
equality is by the arithmetic rule. Once we know limx→1(

√
3x3 − 2 + 7x) converges

to a positive number, the first equality then follows from the continuity of
√
x and

the composition rule.

Exercise 1.5.5. Show that limx→a
√
x =
√
a for any a > 0.

Exercise 1.5.6. Show that limx→a 3
√
x = 3
√
a for any a 6= 0.

Exercise 1.5.7. Find the limits, a, b > 0.

1. limx→0
√
a+ x.

2. limx→0
1

x
(
√
a+ x−

√
a− x).

3. limx→0

(√
a+ x

a
−
√

a

a+ x

)
.

4. limx→0
1

x

(√
a+ x

b
−
√

a

b+ x

)
.

Example 1.5.11. A change of variable can often be applied to limits. For example,
we have

lim
x→a

f(x2) = lim
y→a2

f(y), for a 6= 0.

The equality means that the two limits are equivalent.
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Suppose limy→a2 f(y) = l. Then f(x2) is the composition of f(y) with y = x2,
and by a 6= 0, the first condition is satisfied

x→ a, x 6= a =⇒ y → a2, y 6= a2.

Therefore the composition rule can be applied to give limx→a f(x2) = l.
Conversely, suppose limx→a f(x2) = l. For x near a > 0, f(y) is the composition

of f(x2) with x =
√
y, and by a 6= 0, the first condition is satisfied

y → a2, y 6= a2 =⇒ x→ a, x 6= a.

Therefore the composition rule can be applied to give limy→a2 f(y) = l. For the case
a < 0, the similar argument with x = −√y works, and the composition rule still
gives limy→a2 f(y) = l.

We note that we cannot verify the second condition in the problem above because
not much is assumed about f . In particular, f is not assumed to be continuous.

Here are more examples of equivalent limits

lim
x→a

f(x) = lim
y→0

f(y − a), lim
x→a

f(x3) = lim
y→a3

f(y), lim
x→∞

f(x) = lim
y→0

f

(
1

y

)
,

where the first condition for the composition rule is satisfied in both directions

x→ a, x 6= a ⇐⇒ x− a→ 0, x− a 6= 0;

x→ a, x 6= a ⇐⇒ x3 → a3, x3 6= a3;

x→∞ ⇐⇒ 1

x
→ 0.

In the last equivalence, we automatically have x 6=∞ and
1

x
6= 0.

Example 1.5.12. The composition rule fails when neither conditions are satisfied,
which means that f(x) = b for some x 6= a arbitrarily close to a, and c 6= g(b).

For a concrete example, consider

f(x) = x sin
1

x
, g(y) =

{
y, if y 6= 0,

A, if y = 0.

We have limx→0 f(x) = 0 (see Example 1.5.7) and limy→0 g(y) = 0 (see Example
1.5.2). This means a = b = c = 0. However, the composition is

g(f(x)) =

x sin
1

x
, if x 6= (nπ)−1,

A, if x = (nπ)−1.

and limx→0 g(f(x)) converges if and only if g(0) = A = 0 = c.

Exercise 1.5.8. Rewrite the limits as limx→c f(x) for suitable c.
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1. limx→b f(x− a).

2. limx→∞ f(x+ a).

3. limx→0 f(ax+ b).

4. limx→1 f(
√
x).

5. limx→−1 f(x2 + x).

6. limx→a f(x2 + x).

1.5.3 One Sided Limit

In the sequence limit limn→∞ xn, the subscript n has only the positive infinity
direction to go. The function limit can have various directions. For example,
limx→+∞ f(x) = l means

x→∞, x > 0 =⇒ f(x)→ l.

Moreover, the left limit limx→a+ f(x) = l means

x→ a, x > a =⇒ f(x)→ l.

Similarly, the right limit limx→a− f(x) = l means

x→ a, x < a =⇒ f(x)→ l.

All the properties of the usual (two sided) limits still hold for one sided limits.
Moreover, we have the following relation (for a =∞, a± means ±∞).

Proposition 1.5.6. limx→a f(x) = l if and only if limx→a+ f(x) = limx→a− f(x) = l.

Example 1.5.13. For the sign function

f(x) =


1, if x > 0,

0, if x = 0,

−1, if x < 0,

we have limx→0+ f(x) = 1 and limx→0− f(x) = −1. Since the two limits are not
equal, limx→0 f(x) diverges.

x

y

Figure 1.5.2: Sign function.
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Example 1.5.14. To find limx→∞
|x+ 4|
x

, we consider the limit at +∞ and −∞. For

x > 0, we have
|x+ 4|
x

=
x+ 4

x
= 1 + 4

1

x
. By the arithmetic rule, we have

lim
x→+∞

|x+ 4|
x

= lim
x→+∞

(
1 + 4

1

x

)
= 1 + 4 lim

x→+∞

1

x
= 1.

For x < −4, we have
|x+ 4|
x

= −x+ 4

x
= −1−4

1

x
. By the arithmetic rule, we have

lim
x→−∞

|x+ 4|
x

= lim
x→−∞

(
−1− 4

1

x

)
= −1− 4 lim

x→−∞

1

x
= −1.

Since the two limits are different, limx→∞
|x+ 4|
x

diverges.

Example 1.5.15. If we apply the argument in Example 1.5.6 to x > 0, then we get

lim
x→+∞

(
√
x+ 2−

√
x) = 0.

If we apply the argument to x < 0, then we get

lim
x→−∞

(
√

2− x−
√
−x) = 0.

Exercise 1.5.9. Find the limits at 0.

1.

{
1, if x < 0,

2, if x > 0.
. 2.

{
1, if x 6= 0,

2, if x = 0.
. 3.

{
x, if x < 0,

−x2, if x > 0.
.

Exercise 1.5.10. Find the limits.

1. limx→+∞
1√
x+ a

sinx2.

2. limx→+∞(
√
x+ a−

√
x+ b).

3. limx→+∞
√
x(
√
x+ a−

√
x+ b).

4. limx→a+

√
x−
√
a+
√
x− a√

x2 − a2
, a > 0.

Example 1.5.16. The composition rule can also be applied to one sided limit. For
example, we have limx→0+ f(x2) = limx→0+ f(x) by introducing y = x2 and x =

√
y,

and the first condition for the composition rule is satisfied in both directions

x→ 0, x > 0 ⇐⇒ y → 0, y > 0.

We also have limx→0− f(x2) = limx→0+ f(x) by

x = −√y → 0, x < 0 ⇐⇒ y = x2 → 0, y > 0.

Then we may use Proposition 1.5.6 to conclude that limx→0 f(x2) = limx→0+ f(x).

Exercise 1.5.11. Rewrite the limits as limx→c f(x) for suitable c.
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1. limx→b+ f(a− x).

2. limx→−∞ f(x+ a).

3. limx→0+ f(ax+ b).

4. limx→0+ f(
√
x).

5. limx→(−1)− f(x2 + x).

6. limx→a− f(x2 + x).

Example 1.5.17. We show that

lim
x→a

xp = ap, for any a > 0 and any p.

First consider the special case a = 1. We find integers M and N satisfying
M < p < N . Then for x > 1, we have xM < xp < xN . By the arithmetic rule, we
have limx→1+ xM = (limx→1+ x)M = 1M = 1. Similarly, we have limx→1+ xN = 1.
Then by the sandwich rule, we get limx→1+ xp = 1.

For 0 < x < 1, we have xM > xp > xN . Again, we have limx→1− x
M =

limx→1− x
N = 1 by the arithmetic rule. Then we get limx→1− x

p = 1 by the sandwich
rule.

Combining limx→1+ xp = 1 and limx→1− x
p = 1, we get limx→1 x

p = 1.

For general a > 0, we move the problem from a to 1 by introducing y =
x

a

lim
x→a

xp = lim
y→1

apyp = ap lim
y→1

yp = ap1 = ap.

Specifically, we first use limx→1 x
p = 1, which we just proved, in the third equality.

Then we use the arithmetic rule to get the second equality. Finally, the first equality
is obtained by a change of variable, which is essentially the composition rule.

Exercise 1.5.12. Suppose limx→a f(x) = l > 0. Prove that limx→a f(x)p = lp. This extends
Exercise 1.1.59 to function limit.

1.5.4 Limit of Trigonometric Function

The sine and tangent functions are defined for 0 < x <
π

2
by Figure 1.5.3. The

lengths of line AB, arc BC, and line CD are respectively sinx, x, and tanx. Since
the length of line AB is smaller than the length of line BC, which is further smaller
than the length of arc BC, we get

0 < sinx < x, for 0 < x <
π

2
.

By limx→0+ x = 0 and the sandwich rule, we get

lim
x→0+

sinx = 0.

Changing x to y = −x (i.e., applying the composition rule) gives the left limit

lim
x→0−

sinx = lim
y→0+

sin(−y) = lim
y→0+

(− sin y) = − lim
y→0+

sin y = 0.
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Combining the two one sided limits at 0, we conclude

lim
x→0

sinx = 0.

Then we further get

lim
x→0

cosx = lim
x→0

(
1− 2 sin2 x

2

)
= 1− 2

(
lim
x→0

sin
x

2

)2

= 1− 2 · 02 = 1.

1

x

O A

sinx

B

C

tanx

D

Figure 1.5.3: Trigonometric function.

Note that the area of fan OBC is
1

2
x, and the area of triangle ODC is

1

2
tanx.

Since the fan is contained in the triangle, we get
1

2
x <

1

2
tanx, which is the same

as cos x <
sinx

x
. Combined with 0 < sinx < x obtained before, we get

cosx <
sinx

x
< 1, for 0 < x <

π

2
.

By limx→0+ cosx = 1 and the sandwich rule, we get limx→0+

sinx

x
= 1. Then

changing x to y = −x gives the left limit

lim
x→0−

sinx

x
= lim

y→0+

sin(−y)

−y
= lim

y→0+

sin y

y
= 1.

Therefore we conclude

lim
x→0

sinx

x
= 1.

This further implies

lim
x→0

cosx− 1

x2
= lim

x→0

−2 sin2 x

2
x2

= lim
y→0

−2 sin2 y

(2y)2
= −1

2
lim
y→0

(
sin y

y

)2

= −1

2
,

lim
x→0

cosx− 1

x
= lim

x→0

cosx− 1

x2
x = −1

2
· 0 = 0,

lim
x→0

tanx

x
= lim

x→0

sinx

x

1

cosx
= 1 · 1

1
= 1.
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We may get the limit of trigonometric functions at any a by using y = x+ a to
move the limit to be at 0.

lim
x→a

sinx = lim
y→0

sin(a+ y) = lim
y→0

(sin a cos y + cos a sin y)

= sin a lim
y→0

cos y + cos a lim
y→0

sin y = (sin a)1 + (cos a)0 = sin a,

lim
x→a

cosx = lim
y→0

cos(a+ y) = lim
y→0

(cos a cos y − sin a sin y)

= cos a lim
y→0

cos y − sin a lim
y→0

sin y = (cos a)1 + (sin a)0 = cos a,

lim
x→a

tanx =
limx→a sinx

limx→a cosx
=

sin a

cos a
= tan a, if cos a 6= 0.

Example 1.5.18. By the arithmetic rule and the composition rule, we have

lim
x→π

2

cosx

x− π

2

= lim
y→0

cos
(
y +

π

2

)
y

= lim
y→0

− sin y

y
= −1,

lim
x→∞

x sin
1

x
= lim

y→0

1

y
sin y = 1,

lim
x→a

sinx− sin a

x− a
= lim

y→0

sin(a+ y)− sin a

y

= lim
y→0

(
sin a

cos y − 1

y
+ cos a

sin y

y

)
= cos a.

Exercise 1.5.13. Find the limit.

1. limx→−1
sinπx

x+ 1
.

2. limx→π
4

tanx− 1

4x− π
.

3. limx→π
4

sinx− cosx

4x− π
.

4. limx→ 1
3

sinπx−
√

3 cosπx

3x− 1
.

5. limx→∞ x tan
1

x
.

6. limx→∞ x

(
cos

1

x
− 1

)
.

7. limx→a
cosx− cos a

x− a
.

8. limx→a
tanx− tan a

x− a
.

9. limx→0
cos(2x+ 1)− cos(2x− 1)

x2
.

10. limx→+∞ x(sin
√
x+ 2− sin

√
x).

11. limx→0
tan(sinx)

x
.

12. limx→0
tan(sinx)

sin(tanx)
.

13. limx→0+
tan(sinx)

sin
√
x

.

Exercise 1.5.14. Study the limit of the sequences sin(sin(sin . . . a))) and cos(cos(cos . . . a))),
where the trigonometric functions are applied n times.
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1.6 Rigorous Definition of Function Limit

The sequence limit is the behavior as n approaches infinity, which is described by
n > N (N is the measurement of bigness). The function limit is the behavior as x
approaches a but not equal to a, which may be described by 0 < |x − a| < δ (δ is
the measurement of smallness). By replacing n > N with 0 < |x − a| < δ in the
rigorous definition of limn→∞ xn, we get the rigorous definition of limx→a f(x) = l
for finite a and l.

Definition 1.6.1. A function f(x) converges to a finite number l at a if for any
ε > 0, there is δ > 0, such that 0 < |x− a| < δ implies |f(x)− l| < ε.

The meaning of the definition is given by Figure 1.6. The other limits can be
similarly defined. For example, limx→a+ f(x) = l means that for any ε > 0, there is
δ > 0, such that

0 < x− a < δ =⇒ |f(x)− l| < ε.

The limit limx→∞ f(x) = l means that for any ε > 0, there is N , such that

|x| > N =⇒ |f(x)− l| < ε.

Moreover, limx→a− f(x) = +∞ means that for any B, there is δ > 0, such that

−δ < x− a < 0 =⇒ f(x) > B.

l + ε

l − ε

a− δ a+ δ

l

a

Figure 1.6.1: 0 < |x− a| < δ implies |f(x)− l| < ε.

Exercise 1.6.1. Write down the rigorous definitions of limx→a f(x) = −∞, limx→a− f(x) =
l, and limx→+∞ f(x) = −∞.
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1.6.1 Rigorous Proof of Basic Limits

Example 1.6.1. Here is the rigorous reason for limx→a c = c. For any ε > 0, take
δ = 1. Then

0 < |x− a| < δ = 1 =⇒ |c− c| = 0 < ε.

Here is the rigorous reason for limx→a x = a. For any ε > 0, take δ = ε. Then

0 < |x− a| < δ = ε =⇒ |x− a| < ε.

Example 1.6.2. To prove limx→1 x
2 = 1 rigorously means that, for any ε > 0, we need

to find suitable δ > 0, such that

0 < |x− 1| < δ =⇒ |x2 − 1| < ε.

We have

0 < |x− 1| < δ =⇒ |x2 − 1| = |x+ 1||x− 1| ≤ |x+ 1|δ.

Moreover, when x is close to 1, we expect x+ 1 to be close to 2. Such intuition can
be made rigorous by

0 < |x− 1| < 1 =⇒ |x+ 1| ≤ |x− 1|+ 2 < 3.

Therefore

0 < |x− 1| < δ, 0 < |x− 1| < 1 =⇒ |x2 − 1| ≤ |x+ 1|δ < 3δ.

To complete the rigorous proof, we only need to make sure δ ≤ 1 and 3δ ≤ ε.
The analysis above suggests the following rigorous proof. For any ε > 0, choose

δ = min
{

1,
ε

3

}
. Then

0 < |x− 1| < δ =⇒ |x− 1| < 1, 3|x− 1| < ε

=⇒ |x+ 1| ≤ |x− 1|+ 2 < 3, 3|x− 1| < ε

=⇒ |x2 − 1| = |(x+ 1)(x− 1)| ≤ 3|x− 1| < ε.

Example 1.6.3. To rigorously prove limx→1
1

x
= 1, we note∣∣∣∣1x − 1

∣∣∣∣ =
1

|x|
|x− 1|.

When x is close to 1, we know |x− 1| is very small. We also know that |x| is close

to 1, so that
1

|x|
can be controlled by a specific bound. Combining the two facts,

we see that
1

|x|
|x− 1| can be very small. Of course concrete and specific estimation
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is needed to get a rigorous proof. If |x− 1| < 1

2
, then x >

1

2
and

1

|x|
< 2. Therefore

if we also have |x− 1| < ε

2
, then we get

1

|x|
|x− 1| < ε.

The analysis above suggests the following rigorous proof. For any ε > 0, choose

δ = min

{
1

2
,
ε

2

}
. Then

0 < |x− 1| < δ =⇒ |x− 1| < 1

2
, |x− 1| < ε

2

=⇒ x > 1− 1

2
=

1

2
, |x− 1| < ε

2

=⇒
∣∣∣∣1x − 1

∣∣∣∣ =
1

|x|
|x− 1| ≤ 2|x− 1| < ε.

Example 1.6.4. We prove

lim
x→0+

xp = 0, for any p > 0.

For any ε > 0, choose δ = ε
1
p . Then by p > 0, we have

0 < x < δ =⇒ |xp − 0| = xp < δp = ε.

We also prove

lim
x→+∞

xp = +∞, for any p > 0.

For any B > 0, choose N = B
1
p . Then by p > 0, we have

x > N =⇒ xp > Np = B.

Combined with Example 1.5.17, we get

lim
x→a

xp =

{
ap, if p > 0, 0 < a < +∞ or a = 0+,

+∞, if p > 0, a = +∞.

Changing x to
1

x
, we get the similar conclusions for p < 0

lim
x→a

xp =


ap, if p < 0, 0 < a < +∞,
+∞, if p < 0, a = 0+,

0, if p < 0, a = +∞.
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Example 1.6.5. We try to rigorously prove the limit in Example 1.5.5. Example 1.2.6
gives the rigorous proof for the limit of the similar sequence. Instead of copying the
proof, we make a slightly different estimation of |f(x)− l|∣∣∣∣ 2x2 + x

x2 − x+ 1
− 2

∣∣∣∣ =

∣∣∣∣ 3x− 2

x2 − x+ 1

∣∣∣∣ < 4|x|
x2

3

=
12

|x|
.

The crucial inequality is based on the intuition that |3x−2| < 4|x| and |x2−x+1| >
x2

2
for sufficiently big x. The first inequality is satisfied when 2 < |x|, and the second

is satisfied when |x| < x2

3
and 1 <

x2

3
. It is easy to see that 2 < |x|, |x| < x2

3
and

1 <
x2

3
are all satisfied when |x| > 4. Therefore |f(x)− l| < 12

|x|
when |x| > 4.

Formally, for any ε > 0, choose N = max

{
4,

12

ε

}
. Then

|x| > N =⇒ |x| > 4, |x| > 12

ε

=⇒ |3x− 2| < 4|x|, |x2 − x+ 1| > x2

3
,

12

|x|
< ε

=⇒
∣∣∣∣ 2x2 + x

x2 − x+ 1
− 2

∣∣∣∣ =

∣∣∣∣ 3x− 2

x2 − x+ 1

∣∣∣∣ < 4|x|
x2

3

=
12

|x|
< ε.

Exercise 1.6.2. Extend the proof of limx→a c = c and limx→a x = a to the case a = ±∞.

Exercise 1.6.3. Rigorously prove the limits.

1. limx→4
√
x = 2.

2. limx→2
1

x
=

1

2
.

3. limx→∞
3x2 − 2x+ 1

x2 + 3x− 1
= 3.

4. limx→−∞
x+ 1√
x2 + 1

= −1.

5. limx→∞
x+ sinx

x+ cosx
= 1.

6. limx→∞
sinx

x
= 0.

Exercise 1.6.4. Rigorously prove the limits. For the first three limits, give direct proof
instead of using Example 1.5.17.

1. limx→a x
2 = a2.

2. limx→a
√
x =
√
a, a > 0.

3. limx→a
1

x
=

1

a
, a 6= 0.

4. limx→∞
x

x+ a
= 1.

5. limx→+∞(
√
x+ a−

√
x+ b) = 0.

6. limx→∞

√
x+ a

x+ b
= 1.
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Exercise 1.6.5. Suppose f(x) ≥ 0 for x near a and limx→a f(x) = 0. Suppose g(x) ≥ c
for x near a and constant c > 0. Prove that limx→a f(x)g(x) = 0. This extends Exercise
1.1.58 to the function limit.

1.6.2 Rigorous Proof of Properties of Limit

Example 1.6.6. The arithmetic rule limx→a(f(x)+g(x)) = limx→a f(x)+limx→a g(x)
in Proposition 1.5.2 can be proved in the same way as Example 1.2.18. For any

ε > 0, apply the definition of limx→a f(x) = k and limx→a g(x) = l to
ε

2
> 0. We

find δ1 and δ2, such that

0 < |x− a| < δ1 =⇒ |f(x)− l| < ε

2
,

0 < |x− a| < δ2 =⇒ |g(x)− k| < ε

2
.

Then

0 < |x− a| < δ = min{δ1, δ2}

=⇒ |f(x)− l| < ε

2
, |g(x)− k| < ε

2

=⇒ |(f(x) + g(x))− (l + k)| ≤ |f(x)− l|+ |g(x)− k| < ε

2
+
ε

2
= ε.

Example 1.6.7. We prove the extended arithmetic rule (+∞)·l = +∞ for l > 0. This
means that, if limx→a f(x) = +∞ and limx→a g(x) = l > 0, then limx→a f(x)g(x) =
+∞.

For any B, there is δ1 > 0, such that

0 < |x− a| < δ1 =⇒ f(x) >
2

l
B.

For ε =
l

2
> 0, there is δ2 > 0, such that

0 < |x− a| < δ2 =⇒ |g(x)− l| < l

2
=⇒ g(x) >

l

2
.

Combining the two implications, we get

0 < |x− a| < δ = min{δ1, δ2} =⇒ f(x)g(x) >
2

l
B · l

2
= B.

This completes the proof of (+∞) · l = +∞.
As an application of the extended arithmetic rule, we have

lim
x→+∞

(x3 − 3x+ 1) = lim
x→+∞

x3 lim
x→+∞

(
1− 3

x2
+

1

x3

)
= (+∞) · 1 = +∞.
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In general, we have

lim
x→+∞

(anx
n + an−1x

n−1 + · · ·+ a1x+ a0) =

{
+∞, if an > 0,

−∞, if an < 0.

Example 1.6.8. We prove Proposition 1.5.6 about one sided limits.
Assume limx→a f(x) = l. Then for any ε > 0, there is δ > 0, such that

0 < |x− a| < δ =⇒ |f(x)− l| < ε.

The implication is the same as the following two implications

0 < x− a < δ =⇒ |f(x)− l| < ε,

−δ < x− a < 0 =⇒ |f(x)− l| < ε.

These are exactly the definitions of limx→a+ f(x) = l and limx→a− f(x) = l.
Conversely, assume limx→a+ f(x) = limx→a− f(x) = l. Then for any ε > 0, there

are δ+, δ− > 0, such that

0 < x− a < δ+ =⇒ |f(x)− l| < ε,

−δ− < x− a < 0 =⇒ |f(x)− l| < ε.

Therefore

0 < |x− a| < min{δ+, δ−} =⇒ 0 < x− a < δ+ or − δ− < x− a < 0

=⇒ |f(x)− l| < ε.

This proves that limx→a f(x) = l.

Example 1.6.9. We prove the second case of the composition rule in Proposition 1.5.5.
In other words, limx→a f(x) = b and limy→b g(y) = g(b) imply limx→a g(f(x)) = g(b).

By limy→b g(y) = g(b), for any ε > 0, there is µ > 0, such that

0 < |b− y| < µ =⇒ |g(y)− g(b)| < ε.

Since the right side also holds when y = b, we actually have

|y − b| < µ =⇒ |g(y)− g(b)| < ε. (1.6.1)

On the other hand, by limx→a f(x) = b, for the µ > 0 just found above, there is
δ > 0, such that

0 < |x− a| < δ =⇒ |f(x)− b| < µ.

Then we get

0 < |x− a| < δ =⇒ |f(x)− b| < µ

=⇒ |g(f(x))− g(b)| < ε.

In the second step, we apply the implication (1.6.1) to y = f(x). This completes
the proof that limx→a g(f(x)) = g(b).
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Example 1.6.10. In Example 1.5.16, we argued that limx→0 f(x2) = limx→0+ f(x).
Now we give rigorous proof.

Suppose limx→0 f(x2) = l. Then for any ε > 0, there is δ > 0, such that

0 < |x| < δ =⇒ |f(x2)− l| < ε.

Now for any y > 0, let x =
√
y. Then

0 < y < δ2 =⇒ 0 < x =
√
y < δ =⇒ |f(y)− l| = |f(x2)− l| < ε.

This proves limy→0+ f(y) = l.
On the other hand, suppose limx→0+ f(x) = l. Then for any ε > 0, there is δ > 0,

such that
0 < x < δ =⇒ |f(x)− l| < ε.

Now for any y, let x = y2. Then

0 < |y| <
√
δ =⇒ 0 < x = y2 < δ =⇒ |f(y2)− l| = |f(x)− l| < ε.

This proves limy→0 f(y2) = l.

Exercise 1.6.6. Prove the arithmetic rule limx→a f(x)g(x) = limx→a f(x) limx→a g(x) in
Proposition 1.5.2.

Exercise 1.6.7. Prove the sandwich rule in Proposition 1.5.3.

Exercise 1.6.8. Prove the order rule in Proposition 1.5.4.

Exercise 1.6.9. Prove the first case of the composition rule in Proposition 1.5.5.

Exercise 1.6.10. Prove the extended arithmetic rules (−∞) + l = −∞ and
l

∞
= 0 for

function limit.

Exercise 1.6.11. For a subset A of R, define limx∈A,x→a f(x) = l if for any ε > 0, there is
δ > 0, such that

x ∈ A, 0 < |x− a| < δ =⇒ |f(x)− l| < ε.

Suppose A ∪B contains all the points near a and 6= a. Prove that limx→a f(x) = l if and
only if limx∈A,x→a f(x) = l = limx∈B,x→a f(x).

Exercise 1.6.12. Prove that limx→a f(x) = l implies limx→a max{f(x), l} = l and
limx→a min{f(x), l} = l. Can you state and prove the sequence version of the result?

Exercise 1.6.13. Suppose f(x) ≤ 1 for x near a and limx→a f(x) = 1. Suppose g(x) is
bounded near a. Prove that limx→a f(x)g(x) = 1. What about the case f(x) ≥ 1?
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Exercise 1.6.14. Use Exercises 1.6.12, 1.6.13 and the sandwich rule to prove that, if limx→a f(x) =
1 and g(x) is bounded near a, then limx→a f(x)g(x) = 1. This is the function version of
Exercise 1.1.58. An alternative method for doing the exercise is by extending Proposition
1.1.6.

1.6.3 Relation to Sequence Limit

The sequence limit and the function limit are related.

Proposition 1.6.2. limx→a f(x) = l if and only if

lim
n→∞

xn = a, xn 6= a =⇒ lim
n→∞

f(xn) = l.

The necessary direction means that if the whole function converges to l at a,
then the restriction of the function to any sequence converging to (but not equal to)
a also converges to l. The sufficiency direction means that if all such restrictions
converge to l, then the original function converges to l.

The necessary direction can also be considered as a version of the composition
rule because xn can be considered as a function x(n) with n as variable, and f(xn)
is a composition

n 7→ x = xn 7→ f(x) = f(xn).

By analogy with the first case of Proposition 1.5.5, we have

lim
n→∞

xn = a, xn 6= a (at least for big n), and lim
x→a

f(x) = l =⇒ lim
n→∞

f(xn) = l.

Example 1.6.11. By taking a = +∞ in Proposition 1.6.2, the limit in Example 1.5.5
implies the limit in Example 1.1.2.

Example 1.6.12. From limx→0
sinx

x
= 1 and limn→∞

1

n
= limn→∞

1√
n

= 0, we get

lim
n→∞

n sin
1

n
= lim

n→∞

sin
1

n
1

n

= 1, lim
n→∞

√
n sin

1√
n

= lim
n→∞

sin
1√
n

1√
n

= 1.

Example 1.6.13. A consequence of Proposition 1.6.2 is that, if the restrictions of
f(x) to two sequences converging to a converge to different limits, then limx→a f(x)
diverges.

The Dirichlet function is

D(x) =

{
1, if x ∈ Q,
0, if x /∈ Q.
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For any a, we have a rational sequence xn converging to a, and the restriction of
D(x) to the sequence is D(xn) = 1, converging to 1. We also have an irrational
sequence converging to a, and the restriction of D(x) converges to 0. Therefore
D(x) diverges everywhere.

y = D(x)

R−Q

Q

y = xD(x)

R−Q

Q

Figure 1.6.2: Dirichlet function.

By the same reason, the function xD(x) diverges at everywhere except 0. On
the other hand, we have −|x| ≤ |xD(x)| ≤ |x|. By limx→0 |x| = 0 and the sandwich
rule, we have limx→0 xD(x) = 0. So xD(x) converges only at 0.

If limn→∞ f(xn) = l for one (instead of all) sequence xn converging to a, then
it suggests (but does not necessarily imply) that limx→+∞ f(x) = l. Sometimes we
can “fill the gap” between xn and derive limx→+∞ f(x) = l in general.

Example 1.6.14. The limit limn→∞ a
n = 0 in Example 1.1.11 suggests

lim
x→+∞

ax = 0, for 0 ≤ a < 1.

Here we do not consider −1 < a < 0 because ax is not always defined.
For rigorous proof, we compare ax with an for a natural number n near x. Specif-

ically, for any x > 1, we have n ≤ x ≤ n + 1 for some natural number n. Then
0 ≤ a < 1 implies

0 ≤ ax < an.

By limn→∞ a
n = 0, the sandwich rule should imply limx→+∞ a

x = 0. However, we
cannot quote the sandwich rule directly because we have a function sandwiched by
a sequence. We have to repeat the proof of the sandwich rule.

For any ε > 0, by limn→∞ a
n = 0, there is N , such that

n > N =⇒ an < ε.

For x > N + 1, let n be a natural number satisfying n ≤ x ≤ n+ 1. Then

x > N + 1 =⇒ n ≥ x− 1 > N =⇒ 0 ≤ ax ≤ an < ε.
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This rigorously proves limx→+∞ a
x = 0.

For a > 1, let b =
1

a
. Then 0 < b < 1 and by the arithmetic rule, we have

lim
x→+∞

ax =
1

limx→+∞ bx
=

1

0+
= +∞.

Thus we have

lim
x→+∞

ax =


+∞, if a > 1,

1, if a = 1,

0, if 0 < a < 1.

By using the composition rule to change x to −x, we also get

lim
x→−∞

ax =


0, if a > 1,

1, if a = 1,

+∞, if 0 < a < 1.

We emphasize that we cannot use the following argument at the moment

x > N =
log ε

log a
= loga ε =⇒ 0 < ax < ε.

The reason is that our logical foundation only assumes the arithmetic operations
and the exponential operation of real numbers. The concept of logarithm must be
defined as the inverse operation of the exponential, and will be developed only after
we have a theory of inverse functions. See Example 1.7.15.

Exercise 1.6.15. Use the limit in Example 1.2.15 and the idea of Example 1.6.14 to prove
that limx→+∞ x

2ax = 0 for 0 < a < 1. Then use the sandwich rule to prove that
limx→+∞ x

pax = 0 for any p and 0 < a < 1.

Exercise 1.6.16. State and prove the extended exponential rule

a+∞ =

{
+∞, if a > 1,

0, if 0 < a < 1.

Example 1.6.15. The limit limn→∞
n
√
n = 1 in Example 1.1.8 suggests that

lim
x→+∞

x
1
x = 1.

By the composition rule, this is the same as

lim
x→0+

xx = 1.

We will rigorously prove the second limit.
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For any 0 < x < 1, we have
1

n+ 1
≤ x ≤ 1

n
for some natural number n. Then

1

(n+ 1)
1
n

≤ 1

(n+ 1)x
≤ xx ≤ 1

nx
≤ 1

n
1

n+1

.

By Example 1.1.9 (not quite Example 1.1.8), we know

lim
n→∞

1

(n+ 1)
1
n

= lim
n→∞

1

n
1

n+1

= 1.

Thus for any ε > 0, there is N , such that

n > N =⇒

∣∣∣∣∣ 1

(n+ 1)
1
n

− 1

∣∣∣∣∣ < ε,

∣∣∣∣ 1

n
1

n+1

− 1

∣∣∣∣ < ε

=⇒ 1

(n+ 1)
1
n

> 1− ε, 1

n
1

n+1

< 1 + ε.

Then

0 < x <
1

N + 1
=⇒ 1

n+ 1
≤ x ≤ 1

n
for some natural number n >

1

x
− 1 > N

=⇒ 1− ε < 1

(n+ 1)
1
n

≤ xx ≤ 1

n
1

n+1

< 1 + ε

=⇒ |xx − 1| < ε.

Example 1.6.16. We show that
lim
x→b

ax = ab.

For the special case b = 0, the limit is limx→0 a
x = 1, and is closely related to

limn→∞
n
√
a = 1 in Example 1.1.7. This suggests us to prove the special case using

the idea in Example 1.6.15. See Exercise 1.6.17. Alternatively, we may prove the
special case by comparing with limx→0+ xx = 1 in Example 1.6.15. For sufficiently

small x > 0, we have x < a <
1

x
. This implies

xx < ax <
1

xx
for sufficiently small x > 0.

Since Example 1.6.15 tells us that limx→0+ xx = 1 = limx→0+

1

xx
, by the sandwich

rule, we get limx→0+ ax = 1. For x < 0, we may use the change of variable y = −x
to get

lim
x→0−

ax = lim
y→0+

a−y =
1

limy→0+ ay
= 1.

Combing the left and right limits gives the special case limx→0 a
x = 1.

The general case can be derived from the special case by introducing x = y + b

lim
x→b

ax = lim
y→0

ay+b = lim
y→0

ayab = ab lim
y→0

ay = ab · 1 = ab.
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Exercise 1.6.17. Prove limx→0 a
x = 1 by comparing with limn→∞ n

√
a = 1.

Exercise 1.6.18. Prove that limn→∞ xn = l implies limn→∞ a
xn = al.

Exercise 1.6.19. Use Exercises 1.1.58 and 1.6.18 to prove that limn→∞ xn = l > 0 and
limn→∞ yn = k imply limn→∞ x

yn
n = lk.

Exercise 1.6.20. Prove that limx→a f(x) = l implies limx→a b
f(x) = bl.

Exercise 1.6.21. Use Exercises 1.6.14 and 1.6.20 to prove that limx→a f(x) = l > 0 and
limx→a g(x) = k imply limx→a f(x)g(x) = lk.

Example 1.6.17. Example 1.3.5 suggests that

lim
x→∞

(
1 +

1

x

)x
= e.

This is the same as
lim
x→0

(1 + x)
1
x = e.

Suppose n ≤ x ≤ n+ 1. Then(
1 +

1

n+ 1

)n
≤
(

1 +
1

x

)n
≤
(

1 +
1

x

)x
≤
(

1 +
1

x

)n+1

≤
(

1 +
1

n

)n+1

.

By Example 1.3.5, we have

lim
n→∞

(
1 +

1

n+ 1

)n
=

limn→∞

(
1 +

1

n+ 1

)n+1

limn→∞

(
1 +

1

n+ 1

) = e,

lim
n→∞

(
1 +

1

n

)n+1

= lim
n→∞

(
1 +

1

n

)n
lim
n→∞

(
1 +

1

n

)
= e.

Therefore for any ε > 0, there is N , such that

n > N =⇒
∣∣∣∣(1 +

1

n+ 1

)n
− e
∣∣∣∣ < ε,

∣∣∣∣∣
(

1 +
1

n

)n+1

− e

∣∣∣∣∣ < ε,

=⇒
(

1 +
1

n+ 1

)n
> e− ε,

(
1 +

1

n

)n+1

< e+ ε.

Then

x > N + 1 =⇒ n ≤ x ≤ n+ 1 for some natural number n ≥ x− 1 > N

=⇒ e− ε <
(

1 +
1

n+ 1

)n
<

(
1 +

1

x

)x
<

(
1 +

1

n

)n+1

< e+ ε

=⇒
∣∣∣∣(1 +

1

x

)x
− e
∣∣∣∣ < ε.
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This proves limx→+∞

(
1 +

1

x

)x
= e. Then we use the composition rule to further get

lim
x→−∞

(
1 +

1

x

)x
= lim

x→+∞

(
1− 1

x

)−x
= lim

x→+∞

(
x

x− 1

)x
= lim

x→+∞

(
1 +

1

x− 1

)x−1 x

x− 1

= lim
x→+∞

(
1 +

1

x− 1

)x−1

lim
x→+∞

x

x− 1

= lim
x→+∞

(
1 +

1

x

)x
lim

x→+∞

x

x− 1

= e.

Exercise 1.6.22. Find the limits.

1. limx→∞

(
1 +

a

x

)x
.

2. limx→∞

(
1 +

a

x

)bx
.

3. limx→∞

(
1 +

1

x2

)x
.

4. limx→+∞

(
1 +

1

x

)x2

.

5. limx→−∞

(
1− 1

x

)x2

.

6. limx→∞

(
x+ a

x+ b

)x
.

Exercise 1.6.23. Find the limits.

1.

(
1− 1

n

)n
.

2.

(
1 +

1

2n

)n
.

3.

(
1 +

2

n

)n
.

4.
(

1 +
a

n

)n
.

5.

(
1 +

n

n2 − 1

)n+1

.

6.

(
1 +

n

n2 + 1

)n+1

.

7.

(
1 +

n

n2 + (−1)n

)n+1

.

8.

(
1 +

1

n

) n2

n+1

.

9.

(
1 +

2

n

) n2

n−1

.

10.

(
1 +

(−1)n

n2 − 1

)n
.

11.

(
n+ 1

n

)n+1

.

12.

(
n

n+ (−1)n

)(−1)nn

.

13.

(
n+ 2

n− 2

)n
.

14.

(
n− 1

n

) n2

n+(−1)n

.

15.

(
n− 1

n+ 2

)n2+(−1)nn
n+1

.

1.6.4 More Properties of Function Limit

The following is the function version of Theorem 1.3.1.
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Proposition 1.6.3. If f(x) converges at a, then |f(x)| ≤ B for a constant B and
all x near a.

Like the sequence limit, the example of sin
1

x
at 0 shows that a bounded function

does not necessarily converge. However, Theorem 1.3.2 suggests that a bounded
monotone function should converge.

Definition 1.6.4. A function f(x) is increasing if

x1 < x2 =⇒ f(x1) ≤ f(x2).

It is strictly increasing if

x1 < x2 =⇒ f(x1) < f(x2).

The concepts of decreasing and strictly decreasing are similar, and a function is
(strictly) monotone if it is either (strictly) increasing or (strictly) decreasing.

Theorem 1.6.5. If f(x) is monotone and bounded on (a, a+ δ), then limx→a+ f(x)
converges.

The theorem also holds for the left limit. The theorem can be proved by choosing
a decreasing sequence xn converging to a. Then f(xn) is a bounded decreasing
sequence. By Theorem 1.3.2, we have limn→∞ f(xn) = l. Then limx→a+ f(x) = l
can be proved by comparing with the sequence limit, similar to (actually simpler
than) Examples 1.6.15 and 1.6.17.

The Cauchy criterion in Theorem 1.3.3 can also be extended to functions.

Theorem 1.6.6 (Cauchy Criterion). The limit limx→a f(x) converges if and only if
for any ε > 0, there is δ > 0, such that

0 < |x− a| < δ, 0 < |y − a| < δ =⇒ |f(x)− f(y)| < ε.

The criterion also holds for one sided limit. Again the proof starts by choosing a
sequence xn converging to a, then applying the sequence version of Cauchy criterion
(Theorem 1.3.3) to f(xn), and then comparing limn→∞ f(xn) and limx→a f(x).

Exercise 1.6.24. If f(x) is monotone and bounded on (a−δ, a)∪(a, a+δ), does limx→a f(x)
converge?

Exercise 1.6.25. Prove that if limx→a f(x) converges, then f(x) satisfies the Cauchy crite-
rion.
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1.7 Continuity

A function is continuous at a if its graph is “not broken” at a. For example, the
function in Figure 1.7.1 is continuous at a2 and a5, and we have limx→a2 f(x) = f(a2)
and limx→a5 f(x) = f(a5). It is not continuous at the other ai for various reasons.
The function diverges at a1 and a7 because it has different left and right limits. The
function converges at a3 but the limit is not f(a3). The function diverges to infinity
at a4. The function diverges at a6 because the left limit diverges.

a1 a2 a3 a4 a5 a6 a7

Figure 1.7.1: Continuity and discontinuity.

Definition 1.7.1. A function f is continuous at a if limx→a f(x) = f(a).

The left side limx→a f(x) implies that the function should be defined for x near
a and x 6= a. The right side f(a) implies that the function is also defined at
a. Therefore the concept of continuity can only be applied to functions that are
defined near a and including a, which means all x satisfying |x − a| < δ for some
δ > 0. Then by the definition of limx→a f(x), it is easy to see that f(x) is continuous
at a if and only if for any ε > 0, there is δ > 0, such that

|x− a| < δ =⇒ |f(x)− f(a)| < ε.

A function f(x) is right continuous at a if limx→a+ f(x) = f(a). The definition
can be applied to functions defined for x satisfying a ≤ x < a + δ for some δ > 0.
Similar remark can be made for the left continuity. A function is continuous at a if
and only if it is left and right continuous at a.

The function in Figure 1.7.1 is left continuous at a1 and right continuous at a6,
but is not continuous at the two points.

A function is continuous on an interval if it is continuous at every point of the
interval. For example, a function is continuous on [0, 1) if it is continuous at every
0 < a < 1 and is also right continuous at 0.
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1.7.1 Meaning of Continuity

By Example 1.5.4, polynomials are continuous and rational functions are continuous
wherever it is defined. By Examples 1.5.17, the power function xp is continuous
(0,∞) for all p and, by Example 1.6.4, is right continuous at 0 for p > 0. In Section
1.5.4, we find that all trigonometric functions are continuous wherever they are
defined. By Example 1.6.16, the exponential function ax is continuous.

By the properties of limit, we know that the arithmetic combinations and compo-
sitions of continuous functions are continuous, wherever the new function is defined.

As remarked after Proposition 1.5.5, if f(x) is continuous at b and limx→a g(x) =
b, then

lim
x→a

f(g(x)) = f(b) = f
(

lim
x→a

g(x)
)
.

In other words, the continuity of f means that the limit and the evaluation of f can
be exchanged. By using Proposition 1.6.2 (another variant of the composition rule),
the same remark can be applied to a sequence limit limn→∞ xn = b instead of the
function limit limx→a g(x) = b, and we get

lim
n→∞

f(xn) = f(b) = f
(

lim
n→∞

xn

)
.

Example 1.7.1. The sign function in Example 1.5.13 is continuous everywhere except
at 0. The Dirichlet function xD(x) in Example 1.6.13 is not continuous anywhere.
The function xD(x) is continuous at 0 and not continuous at all the other places.

Example 1.7.2. The function
x3 − 1

x− 1
in Example 1.5.3 is not defined at x = 1, and we

cannot talk about its continuity at the point. In order to make the function contin-

uous at 1, we need to assign the value of the function at 1 to be limx→1
x3 − 1

x− 1
= 3,

and we get a continuous function

f(x) =


x3 − 1

x− 1
, if x 6= 1

3, if x = 1
= x2 + x+ 1.

Example 1.7.3. By the composition rule and the continuity of
√
x, ax and sin x, we

have

lim
x→2

√
x3 + 1 =

√
lim
x→2

x3 + 1 = 3,

lim
n→∞

a
n

n2−1 = a
lim
n→∞

n
n2−1 = 1,

lim
x→1−

sin
√

1− x2 = sin

(
lim
x→1−

√
1− x2

)
= sin

√
lim
x→1−

(1− x2) = 0.
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Example 1.7.4. The continuity of
√
x implies that, if limn→∞ xn = l > 0, then

limn→∞
√
xn =

√
l. This is Example 1.2.17.

The continuity of ax implies that, if limn→∞ xn = l, then limn→∞ a
xn = al. This

implies the limit limn→∞
n
√
a = 1 in Example 1.2.14, and also implies the limits such

as limn→∞ a
1√
n = 1 and limn→∞ a

√
n+1√

n−sinn = a.

Exercise 1.7.1. Determine the intervals on which the function is continuous. Is it possible
to extend to a continuous function at more points?

1.
x2 − 3x+ 2

x2 − 1
.

2.
x2 − 1

x− 1
.

3. sign(x).

4. x sin
1

x
.

5. xx.

6.
cosx

2x− π
.

Exercise 1.7.2. Find a function on R that is continuous at 1, 2, 3 and is not continuous at
all the other places.

Exercise 1.7.3. Find a function on R that is not continuous at 1, 2, 3 and is continuous at
all the other places.

Exercise 1.7.4. Find two continuous functions f(x) and g(x), such that limx→0
1 + f(0)g(x)

1 + f(x)g(0)
converges but the value is not 1.

1.7.2 Intermediate Value Theorem

If we start at the sea level and climb to the mountain top of 1000 meters, then we
will be at 500 meters somewhere along the way, and will be at 700 meter some other
place. This is the intuition behind the following result.

Theorem 1.7.2 (Intermediate Value Theorem). If f(x) is continuous on [a, b], then
for any number γ between f(a) and f(b), there is c ∈ [a, b] satisfying f(c) = γ.

x
a b

γ

c

Figure 1.7.2: Intermediate value theorem.
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Example 1.7.5. The polynomial f(x) = x3−3x+1 is continuous and satisfies f(0) =
1, f(1) = −1. Therefore f(x) must attain value 0 somewhere on the interval [0, 1].
In other words, the polynomial has at least one root on (0, 1).

To find more precise location of the root, we may try to evaluate the function
at 0.1, 0.2, . . . , 0.9 and find f(0.3) = 0.727, f(0.4) = −0.136. This tells us that f(x)
has a root on (0.3, 0.4).

The discussion can be summarized as follows: If f is a continuous function on
[a, b], such that f(a) and f(b) have opposite signs, then f has at least one root in
(a, b).

Example 1.7.6. By Example 1.6.7, we have limx→+∞(x3 − 3x + 1) = +∞ and
limx→−∞(x3− 3x+ 1) = −∞. Therefore for sufficiently big b > 0, we have f(b) > 0
and f(−b) < 0. By the Intermediate Value Theorem, the polynomial has a root on
(−b, b).

In general, any odd order polynomial has at least one real root.
Back to f(x) = x3−3x+1. In Example 1.7.5, we actually already know that f(x)

has at least one root on (0, 1). In fact, by f(−b) < 0, f(0) > 0, f(1) < 0, f(b) > 0,
we know f has at least one root on each of the intervals (−b, 0), (0, 1), (1, b). Since
a polynomial of order 3 has at most three roots, we conclude that f(x) has exactly
one root on each of the three intervals.

Example 1.7.7. We know

lim
x→π

2
−

tanx =
limx→π

2
− sinx

limx→π
2
− cosx

=
1

0+
= +∞,

lim
x→−π

2
+

tanx =
limx→π

2
+ sinx

limx→π
2

+ cosx
=
−1

0+
= −∞.

Therefore for any number γ, we can find a > −π
2

and very close to −π
2

, such that

tan a < γ. We can also find b <
π

2
and very close to

π

2
, such that tan b > γ. Then

tanx is continuous on [a, b] and tan a < γ < tan b. This implies that γ = tan c for

some c ∈ (a, b). Therefore any number is the tangent of some angle between −π
2

and
π

2
.

The example shows that, if f(x) is continuous on (a, b) satisfies limx→a+ f(x) =
−∞ and limx→b− f(x) = +∞, then f(x) can take any number as value on (a, b).
Note that the interval (a, b) here does not even have to be bounded.

Example 1.7.8. The function

f(x) =

{
x, if − 1 ≤ x ≤ 0,

x2 + 1, if 0 < x ≤ 1,
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satisfies f(−1) = −1, f(1) = 2, but does not take any number in (0, 1] as value. The
problem is that the function is not continuous at 0, where a jump in value misses the
numbers in (0, 1]. Therefore the Intermediate Value Theorem cannot be applied.

Exercise 1.7.5. Let f(x) : [0, 1] → [0, 1] be a continuous function. Prove that there exists
at least one c ∈ [0, 1] satisfying f(c) = c.

Exercise 1.7.6. Find all the possible values.

1.
x2 − 3x+ 2

x2 − 1
.

2. xx.

3. ex.

4. sinx.

5. sin
1

x
.

6.

{
2x, if − 1 ≤ x ≤ 0,

x2 + 3, if 0 < x ≤ 1.

Exercise 1.7.7. limx→+∞ cos(
√
x+ 2+

√
x) and limx→+∞

√
x(sin

√
x+ 2− sin

√
x) diverge.

1.7.3 Continuous Inverse Function

Given a function f(x), its inverse function f−1(y) is obtained by solving f(x) = y
for x.

Example 1.7.9. To find the inverse of f(x) = 3x − 2, we solve 3x − 2 = y and get

x =
1

3
y +

2

3
. Therefore the inverse function is f−1(y) =

1

3
y +

2

3
.

Example 1.7.10. To find the inverse of f(x) = x2, we try to solve x2 = y.
The problem is that the equation has no solution for y < 0 and has two solutions

for y > 0. The ambiguity on which of the two solutions to choose can be removed if
we additionally specify x ≥ 0 or x ≤ 0. In other words, in order to unambiguously
specify an inverse of f(x) = x2, we must specify the ranges for x and for y.

If we consider

f1(x) = x2 : [0,+∞)→ [0,+∞),

which means that we specify x ≥ 0 and y ≥ 0, then x2 = y always has unique
non-negative solution, which is usually denoted x = f−1

1 (y) =
√
y.

If instead we consider

f2(x) = x2 : (−∞, 0]→ [0,+∞),

then x2 = y also has a unique non-positive solution and gives the inverse

f−1
2 (y) = −√y : [0,+∞)→ (−∞, 0].
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As a more elaborate example, the function

f3(x) = x2 : (−∞,−1] ∪ [0, 1)→ [0,+∞)

has inverse

f−1
3 (y) =

{√
y, if 0 ≤ y < 1

−√y, if y ≥ 1
: [0,+∞)→ (−∞,−1] ∪ [0, 1).

The examples show that, for the concept of inverse function to be unambiguous,
we have to specify the ranges for the variable and the value. In this regard, if two
functions have the same formula but different ranges, then we should really think
of them as different functions.

In general, if a function f(x) is defined for all x ∈ D, then D is the domain of
the function, and all the values of f(x) is the range

R = {f(x) : x ∈ D}.

With the domain and range explicitly specified, we express the function as a map

f(x) : D → R.

Now the equation f(x) = y has solution only when y ∈ R. Moreover, we need to
make sure that the solution is unique in order for the inverse to be unambiguous.
This means that the function is one-to-one

x1, x2 ∈ D, x1 6= x2 =⇒ f(x1) 6= f(x2).

The condition is the same as

x1, x2 ∈ D, f(x1) = f(x2) =⇒ x1 = x2.

Example 1.7.11. Consider the function f(x) = x5 + 3x3 + 1 defined for all x. By the
remark in Example 1.7.7, together with (see Example 1.6.7)

lim
x→−∞

f(x) = −∞, lim
x→+∞

f(x) = +∞,

we see that any number can be the value of f(x). This shows that the range of f is
R.

Is the function one-to-one? This can be established as follows. If x1 6= x2, then
either x1 < x2 or x1 > x2. In the first case, we have

x1 < x2 =⇒ x5
1 < x5

2, x
3
1 < x3

2

=⇒ f(x1) = x5
1 + 3x3

1 + 1 < f(x2) = x5
2 + 3x3

2 + 1.

By switching the roles of x1 and x2, we get x1 > x2 implying f(x1) > f(x2). Either
way, we get x1 6= x2 implying f(x1) 6= f(x2).

We conclude that f(x) = x5 + 3x3 + 1: R→ R is invertible.
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The argument in the example can be generalized. Suppose f(x) is a continuous
function defined on an interval domain D. Then the Intermediate Value Theorem
implies that the range R is also an interval. Moreover, the uniqueness of the solution
to f(x) = y can be obtained if f(x) is strictly increasing or strictly decreasing.

Theorem 1.7.3. A strictly increasing and continuous function on an interval is
invertible, and the inverse function is also strictly increasing and continuous. The
same holds for strictly decreasing and continuous functions.

It is remarkable that, according to the theorem, we get the continuity of the
inverse function for free. For example, although it is impossible to find the formula
for the solution of x5 + 3x3 + 1 = y, we already know the solution is a continuous
function of y,

Example 1.7.12. The sine function can take any value in [−1, 1]. To make sure it is
one-to-one, we specify the domain and range

sinx :
[
−π

2
,
π

2

]
→ [−1, 1].

This is strictly increasing and continuous, and takes any number in [−1, 1] as value.
Therefore we get the inverse sine function

arcsin y : [−1, 1]→
[
−π

2
,
π

2

]
.

The inverse sine function is also strictly increasing and continuous.

−π
2

−1

π
2

1

−π
2

−1

−π
2

−1

sinx

arcsinx

π
2

−π
2

π
2

−π
2

arctanx

tanx

Figure 1.7.3: Inverse trigonometric functions.

Example 1.7.13. The cosine function

cosx : [0, π]→ [−1, 1]
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is strictly decreasing, continuous, and takes any number in [−1, 1] as value. There-
fore we get the inverse cosine function

arccosx : [−1, 1]→ [0, π],

which is also strictly decreasing and continuous.
However, the inverse cosine function is not much a new function. If x = arccos y,

x ∈ [0, π], y ∈ [−1, 1], then

sin
(π

2
− x
)

= cosx = y,
π

2
− x ∈

[
−π

2
,
π

2

]
shows that

π

2
− x = arcsin y. Therefore we have the equality

arcsin y + arccos y =
π

2
.

Example 1.7.14. The tangent function

tanx :
(
−π

2
,
π

2

)
→ (−∞,+∞)

is strictly increasing, continuous, and by Example 1.7.7, takes any number as the
value. Therefore we have the inverse tangent function

arctan y : (−∞,+∞)→
(
−π

2
,
π

2

)
,

which is also strictly increasing and continuous.
We claim that

lim
y→+∞

arctan y =
π

2
, lim

y→−∞
arctan y = −π

2
.

For any
π

2
> ε > 0, let N = tan

(π
2
− ε
)

. Then
π

2
− ε = arctanN , and the strict

increasing property of arctan implies

y > N =⇒ π

2
> arctan y > arctanN =

π

2
− ε =⇒

∣∣∣arctan y − π

2

∣∣∣ < ε.

This proves the first limit. The second limit can be proved similarly.

Example 1.7.15. For a > 1, the exponential function

ax : R→ (0,+∞)

is strictly increasing and continuous. Moreover, by Example 1.6.14, we have

lim
x→−∞

ax = 0, lim
x→+∞

ax = +∞.
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Then by an argument similar to Example 1.7.7, any number in (0,+∞) is a value
of ax. Therefore the exponential function has an inverse

loga x : (0,+∞)→ R,

called the logarithmic function with base a. Like the exponential function, the
logarithmic function is strictly increasing and continuous. We can also show

lim
x→+∞

loga x = +∞, lim
x→0+

loga x = −∞, for a > 1

by method similar to Example 1.7.13.
The logarithm loge x based on the special value e is called the natural logarithm.

We will denote the natural logarithm simply by log x.
For 0 < a < 1, the exponential ax is strictly decreasing and continuous. The

corresponding logarithm can be similarly defined and is also strictly decreasing and
continuous. Moreover, we have

lim
x→+∞

loga x = −∞, lim
x→0+

loga x = +∞, for 0 < a < 1.

1

1 log x

ex

Figure 1.7.4: Exponential and logarithm.

Exercise 1.7.8. Let f be a strictly increasing function. Show that its inverse is also strictly
increasing.

1.7.4 Continuous Change of Variable

Suppose f(x) is continuous and strictly increasing near a. Then by Theorem 1.7.3,
f(x) can be inverted near a, and the inverse f−1(y) is also continuous and strictly
increasing near b = f(a). The continuity of f and f−1 means that

x→ a ⇐⇒ y → b.

The one-to-one property implies that

x 6= a ⇐⇒ y 6= b.
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Therefore the composition rule can be applied in both directions, and we have

lim
x→a

g(f(x)) = lim
y→b

g(y).

Here the equality means that the convergence of both sides are equivalent, and the
limits have the same value.

Example 1.7.16. Since sin x is strictly increasing and continuous near 0, we have

lim
y→0

arcsin y

y
= lim

x→0

x

sinx
= 1.

The same argument also tells us

lim
y→0

arctan y

y
= lim

x→0

x

tanx
= 1.

Example 1.7.17. In Examples 1.5.11, 1.5.16, 1.6.10, we find limx→a f(x2) = limx→a2 f(x)
for a 6= 0 and limx→0 f(x2) = limx→0+ f(x). Here we explain the two equalities from
the viewpoint of continuous change of variable.

The function
x2 : [0,+∞)→ [0,+∞)

is strictly increasing and continuous, and is therefore invertible, with strictly in-
creasing and continuous inverse

√
x : [0,+∞)→ [0,+∞).

The continuous change of variable implies that limx→a f(x2) = limx→a2 f(x) for
a > 0 and limx→0+ f(x2) = limx→0+ f(x). Note that the second equality makes use
of the right continuity of x2 and

√
x at 0.

Similarly, the function

x2 : (−∞, 0]→ [0,+∞)

is strictly decreasing and continuous, and is therefore invertible, with strictly de-
creasing and continuous inverse. This implies that limx→a f(x2) = limx→a2 f(x) for
a < 0 and limx→0− f(x2) = limx→0+ f(x).

By
lim
x→0+

f(x2) = lim
x→0+

f(x) = lim
x→0−

f(x2),

we also conclude that limx→0 f(x2) = limx→0+ f(x).

Example 1.7.18. Since the natural logarithm log x is continuous, we may move the
limit from outside the logarithm to inside the logarithm

lim
x→0

log(x+ 1)

x
= lim

x→0
log(1 + x)

1
x = log

(
lim
x→0

(1 + x)
1
x

)
= log e = 1.

Here the third equality follows from Example 1.6.17.

Exercise 1.7.9. Find the limits.
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1. limx→0
loga(x+ 1)

x
. 2. limx→a

log x− log a

x− a
. 3. limx→a

logb x− logb a

x− a
.

Exercise 1.7.10. Find the limits.

1. limx→2
log(x2 − 2x+ 1)

x2 − 4
. 2. limx→1

log(x2 − 2x+ 1)

x2 − 1
. 3. limx→0

log(x2 − 2x+ 1)

x
.

Exercise 1.7.11. Find the limits.

1. limx→0
1

x
log

ax+ c

bx+ c
.

2. limx→0
1

x
log

ax+ b

cx+ d
.

3. limx→0
1

x
log

a2x
2 + a1x+ a0

b2x2 + b1x+ b0
.

4. limx→∞ x log
ax+ b

ax+ c
.

5. limx→∞ x log
ax+ b

cx+ d
.

6. limx→∞ x log
a2x

2 + a1x+ a0

b2x2 + b1x+ b0
.

Exercise 1.7.12. Find the limits.

1. limx→0
x

log(ax+ 1)
.

2. limx→1
x2 − 1

log x
.

3. limx→0
log(x2 + 3x+ 2)− log 2

x
.

4. limx→1
log x

sinπx
.

Example 1.7.19. Since y = ex − 1 is strictly increasing and continuous, with inverse
x = log(y + 1), we may change the variable and use Example 1.7.18 to get

lim
x→0

ex − 1

x
= lim

y→0

y

log(y + 1)
= 1.

Exercise 1.7.13. Find the limits.

1. limx→0
e2x − 1

x
.

2. limx→0
ax − 1

x
.

3. limx→a
ex − ea

x− a
.

4. limx→b
ax − ab

x− b
.

5. limx→∞
ex − 1

x
.

6. limx→0
ax − bx

x
.

7. limx→0
eax − ebx

x
.

8. limx→+∞
eax − ebx

x
.

9. limx→0
ax − bx

cx − dx
.

Example 1.7.20. The continuity of the logarithm implies the continuity of the func-
tion xx = ex log x on (0,∞). In general, if f(x) and g(x) are continuous and f(x) > 0,
then f(x)g(x) = eg(x) log f(x) is continuous.

The continuity of the exponential and the logarithm can also be used to prove
that

lim
n→∞

an = l > 0, lim
n→∞

bn = k =⇒ lim
n→∞

abnn = lk.
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The reason is that the continuity of log implies limn→∞ log an = log l. Then the
arithmetic rule implies limn→∞ bn log an = k log l. Finally, the continuity of the
exponential implies

lim
n→∞

abnn = lim
n→∞

ebn log an = elimn→∞ bn log an = ek log l = lk.

In Exercises 1.6.19 and 1.6.21, we took a number of steps to prove the same
property, without using the logarithmic function.

Example 1.7.21. For p 6= 0, y = p log(x + 1) is strictly increasing and continuous.
Using change the variable and Examples 1.7.18 and 1.7.19, we get

lim
x→0

(x+ 1)p − 1

x
= lim

x→0

ep log(x+1) − 1

x
= lim

x→0

ep log(x+1) − 1

p log(x+ 1)
p

log(x+ 1)

x

= p lim
x→0

ep log(x+1) − 1

p log(x+ 1)
lim
x→0

log(x+ 1)

x

= p lim
y→0

ey − 1

y
lim
x→0

log(x+ 1)

x
= p · 1 · 1 = p.

Exercise 1.7.14. Find the limits.

1. limx→1
xp − 1

x− 1
.

2. limx→1
xp − 1

xq − 1
.

3. limx→a
xp − ap

x− a
.

4. limx→a
xp − ap

xq − aq
.

5. limx→a
sinxp − sin ap

x− a
.

6. limx→a
ex

p − eap

bx − ba
.

Exercise 1.7.15. Let

xn = 1 +
1

2
+ · · ·+ 1

n
− log n, yn = 1 +

1

2
+ · · ·+ 1

n
− log(n+ 1).

1. Use Exercise 1.3.17 to prove that
1

1 + n
< log

(
1 +

1

n

)
<

1

n
.

2. Prove that xn is strictly decreasing and yn is strictly increasing.

3. Prove that both xn and yn converge to the same limit

lim
n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)
= 0.577215669015328 · · · .

The number is called the Euler1-Mascheroni2 constant.

1Leonhard Paul Euler, born 1707 in Basel (Switzerland), died 1783 in St. Petersburg (Russia).
Euler is one of the greatest mathematicians of all time. He made important discoveries in almost
all areas of mathematics. Many theorems, quantities, and equations are named after Euler. He
also introduced much of the modern mathematical terminology and notation, including f(x), e, Σ
(for summation), i (for

√
−1), and modern notations for trigonometric functions.

2Lorenzo Mascheroni, born 1750 in Lombardo-Veneto (now Italy), died 1800 in Paris (France).
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The Euler-Mascheroni constant first appeared in a paper by Euler in 1735. Euler calculated the
constant to 6 decimal places in 1734, and to 16 decimal places in 1736. Mascheroni calculated the
constant to 20 decimal places in 1790.



Chapter 2

Differentiation

2.1 Linear Approximation

The basic idea of differentiation is solving problems by using simple functions to ap-
proximate general complicated functions. The simplest functions are the constant
functions, which are usually too primitive to be useful. More effective approxima-
tions are given by linear functions A+Bx.

Definition 2.1.1. A linear approximation of a function f(x) at x0 is a linear function
L(x) = a+ b(x− x0), such that for any ε > 0, there is δ > 0, such that

|x− x0| < δ =⇒ |f(x)− L(x)| = |f(x)− a− b(x− x0)| ≤ ε|x− x0|.

A function is differentiable if it has a linear approximation.

The differentiability at x0 requires the function to be defined on a neighborhood
of x0, and the linear approximation depends only on the function near x0.

In everyday life, we use approximations all the time. For example, when we
measure certain distance and get 7 meters and 5 centimeters, we really mean give or
take some millimeters. So the real distance might be 7.052 meters or 7.046 meters.
The function f(x) is like the real distance (7.052 meters or 7.046 meters), and the
linear function L(x) is like the reading (7.05 meters) from the ruler.

The accuracy of the measurement depends on how refined the ruler is. We often
use the rulers with two units m and cm. The centimeter cm is smaller among the
two units and is therefore the “basic unit” that gives the accuracy of the ruler. The
error |7m5.2cm− 7m5cm| = 0.2cm between the real distance and the measurement
should be significantly smaller than the basic unit 1cm.

Analogously, the linear function L(x) = a · 1 + b · (x − x0) is a combination of
two units 1 and x − x0. Since the approximation happens for x near x0, x − x0 is
much smaller than 1 and is therefore the “basic unit”. The error |f(x) − L(x)| of
the approximation should be significantly smaller than the size |x− x0| of the basic
unit, which exactly means ≤ ε|x− x0| on the right side of the definition.

93
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2.1.1 Derivative

Geometrically, a function may be represented by its graph. The graph of a linear
function is a straight line. Therefore a linear approximation at x0 is a straight line
that “best fits” the graph of the given function near x0. This is the tangent line of
the function.

x0

P

x

Q

LPQ
tangent L

Figure 2.1.1: The linear approximation is the tangent line.

Specifically, the point P in Figure 2.1.1 is the point (x0, f(x0)) on the graph
of f(x). We pick a nearby point Q = (x, f(x)) on the graph, for x near x0. The
straight line connecting P and Q is the linear function (the variable in LPQ is t
because x is already used for Q)

LPQ(t) = f(x0) +
f(x)− f(x0)

x− x0

(t− x0).

As x→ x0, Q approaches P , and the linear function approaches L(t) = a+b(t−x0).
Therefore we have a = f(x0), and b is given below.

Definition 2.1.2. The derivative of a function f(x) at x0 is

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

= lim
h→0

f(x0 + h)− f(x0)

h
.

We emphasize that the linear approximation is the concept. As the coefficient b
of the first order term, the derivative f ′(x0) is the computation of the concept. The
following says that the concept and its computation are equivalent.

Proposition 2.1.3. A function f(x) is differentiable at x0 if and only if the derivative
f ′(x0) exists. Moreover, the linear approximation is given by f(x0) + f ′(x0)(x−x0).

The notation f ′ for the derivative is due to Joseph Louis Lagrange. It is simple
and convenient, but could become ambiguous when there are several variables related

in more complicated ways. Another notation
df

dx
, due to Gottfried Wilhelm Leibniz,
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is less ambiguous. So we also write

df

dx

∣∣∣∣
x=x0

= lim
x→x0

f(x)− f(x0)

x− x0

= lim
∆x→0

∆f

∆x
, ∆f = f(x)− f(x0), ∆x = x− x0.

We emphasize that Leibniz’s notation is not the “quotient” of two quantities df and
dx. It is an integrated notation that alludes to the fact that the derivative is the

limit of the quotient
∆f

∆x
of differences.

Example 2.1.1. The function f(x) = 3x − 2 is already linear. So its linear approx-
imation must be L(x) = f(x) = 3x − 2. This reflects the intuition that, if the
distance is exactly 7m5cm, then the measure by the ruler in centimeters should be

7m5cm. In particular, the derivative f ′(x) = 3, or
d(3x− 2)

dx
= 3. In general, we

have (A+Bx)′ = B.

Example 2.1.2. To find the linear approximation of x2 at 1, we rewrite the function
in terms of x− 1

x2 = (1 + (x− 1))2 = 1 + 2(x− 1) + (x− 1)2.

Note that L(x) = 1 + 2(x − 1) is linear, and the error |x2 − L(x)| = (x − 1)2 is
significantly smaller than |x− 1| when x is near 1

|x− 1| < δ = ε =⇒ |x2 − L(x)| ≤ ε|x− 1|.

Therefore 1 + 2(x − 1) is the linear approximation of x2 at 1, and the derivative

(x2)′|x=1 =
d(x2)

dx

∣∣∣∣
x=1

= 2.

Exercise 2.1.1. Find the linear approximations and then the derivatives.

1. 5x+ 3 at x0.

2. x3 − 2x+ 1 at 1.

3. x2 at x0.

4. x3 at x0.

5. xn at 1.

6. xn at x0.

Exercise 2.1.2. Interpret the limits as derivatives.

1. limx→0
(1 + x)p − 1

x
.

2. limx→0

√
x+ 9− 3

x
.

3. limx→π
2

cosx

x− π
2

.

4. limx→π
sinx

x− π
.

5. limx→0
arcsinx

x
.

6. limx→2
1

x− 2
log

x

2
.

2.1.2 Basic Derivative

We derive the derivatives of the power function, the exponential function, the loga-
rithmic function, and the trigonometric functions.
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Example 2.1.3. For x0 6= 0, we have

d

dx

(
1

x

)∣∣∣∣
x=x0

= lim
x→x0

1

x
− 1

x0

x− x0

= lim
x→x0

x0 − x
x0x(x− x0)

= lim
x→x0

− 1

x0x
= − 1

x2
0

.

Therefore
1

x
is differentiable at x0, and the linear approximation is

1

x0

− 1

x2
0

(x−x0).

We express the derivative as (
1

x

)′
= − 1

x2
.

Example 2.1.4. For x0 > 0, we have

d
√
x

dx

∣∣∣∣
x=x0

= lim
x→x0

√
x−√x0

x− x0

= lim
x→x0

√
x−√x0

(
√
x−√x0)(

√
x+
√
x0)

=
1

2
√
x0

.

Therefore
√
x is differentiable, and the linear approximation is

√
x0−

1

2
√
x0

(x−x0).

We express the derivative as

(
√
x)′ =

d
√
x

dx
=

1

2
√
x
.

Example 2.1.5. By Example 1.7.21, we have

d(xp)

dx

∣∣∣∣
x=1

= lim
h→0

(1 + h)p − 1

h
= p.

Therefore xp is differentiable at 1 and has linear approximation 1 + p(x− 1).

Examples 2.1.3 and 2.1.4 are the derivatives of xp for p = −1 and
1

2
at general

x0 > 0. For general p, we take h = x0y and get

d(xp)

dx

∣∣∣∣
x=x0

= lim
h→0

(x0 + h)p − xp0
h

= lim
y→0

(x0 + x0y)p − xp0
x0y

= lim
y→0

xp−1
0

(1 + y)p − 1

y
= pxp−1

0 .

We express the derivative as
(xp)′ = pxp−1.

Example 2.1.6. By Example 1.7.18, we have

d log x

dx

∣∣∣∣
x=1

= lim
x→1

log x− log 1

x− 1
= lim

y→0

log(y + 1)

y
= 1.
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Therefore log x is differentiable at 1 and has linear approximation x− 1.
In general, at any x0 > 0, by taking h = x0y, we have

d log x

dx

∣∣∣∣
x=x0

= lim
h→0

log(x0 + h)− log x0

h
= lim

y→0

log(y + 1)

x0y
=

1

x0

.

We express the derivative as

(log x)′ =
1

x
.

Example 2.1.7. By Example 1.7.19, we have

dex

dx

∣∣∣∣
x=x0

= lim
h→0

ex0+h − ex0

h
= lim

h→0
ex0

eh − 1

h
= ex0 .

We express the derivative as
(ex)′ = ex.

Example 2.1.8. In Section 1.5.4, we find

lim
x→0

sinx− sin 0

x− 0
= lim

x→0

sinx

x
= 1,

Therefore sinx is differentiable at x = 0, and the linear approximation at 0 is x.
More generally, we have

d sinx

dx

∣∣∣∣
x=x0

= lim
h→0

sin(x0 + h)− sinx0

h

= lim
h→0

sinh cosx0 + cosh sinx0 − sinx0

h

= lim
h→0

(
cosh− 1

h
sinx0 +

sinh

h
cosx0

)
= 0 · sinx0 + 1 · cosx0 = cosx0.

We express the result as
(sinx)′ = cosx.

By similar method, we have
(cosx)′ = − sinx.

Example 2.1.9. In Section 1.5.4, we find

lim
x→0

sinx− sin 0

x− 0
= lim

x→0

sinx

x
= 1,

Therefore sinx is differentiable at x = 0, and the linear approximation at 0 is x.



98 CHAPTER 2. DIFFERENTIATION

More generally, we have

d sinx

dx

∣∣∣∣
x=x0

= lim
h→0

sin(x0 + h)− sinx0

h

= lim
h→0

sinh cosx0 + cosh sinx0 − sinx0

h

= lim
h→0

(
cosh− 1

h
sinx0 +

sinh

h
cosx0

)
= 0 · sinx0 + 1 · cosx0 = cosx0.

We express the result as

(sinx)′ = cosx.

By similar method, we have

(cosx)′ = − sinx.

Exercise 2.1.3. Find the derivatives and then the linear approximations.

1. 3
√
x at 1.

2. (log x)2 at 1.

3. cosx2 at 0.

4. tanx at 0.

5. arcsinx at 0.

6. arctanx at 0.

7. sin sinx at 0.

8. x2D(x) at 0.

Exercise 2.1.4. Find the derivatives, a > 0.

1. loga x. 2. ax. 3. tanx. 4. arcsinx.

Exercise 2.1.5. We have log |x| = log(−x) for x < 0. Show that the derivative of log(−x)

at x0 < 0 is
1

x0
. The interpret your result as

(log |x|)′ = 1

x
.

Exercise 2.1.6. What is the derivative of loga |x|?

Exercise 2.1.7. Suppose p is an odd integer. Then xp is defined for x < 0. Do we still have
(xp)′ = pxp−1 for x < 0?

2.1.3 Constant Approximation

If a measurement of distance by a ruler in centimeters gives 7 meters and 5 centime-
ters, then the measurement by another (more primitive) ruler in meters should give
7 meters.

Analogously, if a+ b(x− x0) is a linear approximation of f(x) at x0, then a is a
constant approximation of f(x) at x0. Since the “basic unit” for constant functions
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is 1, the constant approximation means that, for any ε > 0, there is δ > 0, such that

|x− x0| < δ =⇒ |f(x)− a| ≤ ε.

This means exactly that f(x) is continuous at x0, and the approximating constant
is a = f(x0). Therefore the fact of linear approximation implying constant approx-
imation means the following.

Theorem 2.1.4. If a function is differentiable at a, then it is continuous at a.

We do not expect the continuity to imply differentiability, because we do not
expect the measurement in meters can tell us the measurement in centimeters.

Example 2.1.10. The sign function

sign(x) =


1, if x > 0,

0, if x = 0,

−1, if x < 0,

is not continuous at 0, and is therefore not differentiable at 0. Of course, we have
(sign(x))′ = 0 away from 0.

Example 2.1.11. The absolute value function |x| is continuous everywhere. Yet the
derivative

(|x|)′|x=0 = lim
x→0

|x| − |0|
x− 0

= lim
x→0

sign(x)

diverges. Therefore the continuous function is not differentiable at 0.

Example 2.1.12. The Dirichlet function D(x) in Example 1.6.13 is not continuous
anywhere and is therefore not differentiable anywhere.

On the other hand, the function xD(x) is continuous at 0. Yet the derivative

(xD(x))′|x=0 = lim
x→0

xD(x)

x
= lim

x→0
D(x)

diverges. Therefore xD(x) is not differentiable at 0, despite the continuity.

Exercise 2.1.8. Find the derivative of |x| at x0 6= 0.

Exercise 2.1.9. Determine the differentiability of |x|p at 0.

Exercise 2.1.10. Is xD(x) differentiable at x0 6= 0?

Exercise 2.1.11. Determine the differentiability of |x|pD(x) at 0.
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Exercise 2.1.12. Determine the differentiability of

f(x) =

|x|p sin
1

x
, if x 6= 0,

0, if x = 0,

at 0.

Exercise 2.1.13. Let [x] be the greatest integer ≤ x. Study the differentiability of [x].

2.1.4 One Sided Derivative

Like one sided limits, we have one sided derivatives

f ′+(x0) = lim
x→x+

0

f(x)− f(x0)

x− x0

, f ′−(x0) = lim
x→x−0

f(x)− f(x0)

x− x0

.

The derivative f ′(x0) exists if and only if both f ′+(x0) and f ′−(x0) exist and are equal.

Example 2.1.13. We have

(|x|)′|at 0+ = lim
x→0+

|x|
x

= 1, (|x|)′|at 0− = lim
x→0−

|x|
x

= −1.

Therefore |x| has left and right derivatives. Since the two one sided derivatives are
different, the function is not differentiable at 0.

Example 2.1.14. Consider the function

f(x) =

{
ex, if x ≥ 0,

x+ 1, if x < 0.

We have (note that f(0) = e0 = 0 + 1)

f ′+(0) = (ex)′|x=0 = 1, f ′−(0) = (x+ 1)′|x=0 = 1.

Therefore f ′(0) = 1 and has linear approximation 1 + x at 0.

Exercise 2.1.14. Determine the differentiability.

1. |x2 − 3x+ 2| at 0, 1, 2.

2.
√

1− cosx at 0.

3. | sinx| at 0.

4. |π2 − x2| sinx at π.

Exercise 2.1.15. Determine the differentiability at 0.
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1.

{
x2, if x ≥ 0,

x, if x < 0.

2.


1

x+ 1
, if x ≥ 0,

x, if x < 0.

3.

{
xe−

1
x , if x ≥ 0,

0, if x < 0.

4.

{
log(1 + x), if x ≥ 0,

ex − 1, if x < 0.

Exercise 2.1.16. Determine the differentiability, p, q > 0.

1.

{
(x− a)p(b− x)q, if a ≤ x ≤ b,
0, otherwise.

2.

{
arctanx, if |x| ≤ 1,
π

4
x, if |x| > 1.

3.

{
x2e−x

2
, if |x| ≤ 1,

e−1, if |x| > 1.

4.

{
log |x|, if |x| ≥ 1,

x, if |x| < 1.

Exercise 2.1.17. Find a, b, c, such that the function

f(x) =

{a
x
, if x > 1,

bx+ c, if x ≤ 1,

is differentiable at 1.

Exercise 2.1.18. For p ≥ 0, xp is defined on [0, δ). What is the right derivative of xp at 0?

Exercise 2.1.19. For some p (see Exercises 2.1.7 and 2.1.18), xp is defined on (−δ, δ). What
is the derivative of xp at 0?

Exercise 2.1.20. Suppose g(x) is continuous at x0. Show that f(x) = |x − x0|g(x) is
differentiable at x0 if and only if g(x0) = 0.

2.2 Property of Derivative

2.2.1 Arithmetic Combination of Linear Approximation

Suppose f(x) and g(x) are linearly approximated respectively by a+ b(x− x0) and
c+ d(x− x0) at x0. Then f(x) + g(x) is approximated by

(a+ b(x− x0)) + (c+ d(x− x0)) = (a+ c) + (b+ d)(x− x0).

Therefore f + g is differentiable and (f + g)′(x0) = b + d. Since b = f ′(x0) and
d = g′(x0), we conclude that

(f + g)′(x) = f ′(x) + g′(x), or
d(f + g)

dx
=
df

dx
+
dg

dx
.
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Similarly, Cf(x) is approximated by

C(a+ b(x− x0)) = Ca+ Cb(x− x0).

Therefore Cf(x) is differentiable and (Cf)′(x0) = Cb, which means

(Cf)′(x) = Cf ′(x), or
d(Cf)

dx
= C

df

dx
.

We also have f(x)g(x) approximated by

(a+ b(x− x0))(c+ d(x− x0)) = ac+ (bc+ ad)(x− x0) + bd(x− x0)2.

Although the approximation is not linear, the square unit (x− x0)2 is much smaller
than x − x0 when x is close to x0. Therefore f(x)g(x) is differentiable and has
linear approximation ac + (bc + ad)(x − x0), and we get (fg)′(x0) = bc + ad. By
a = f(x0), b = f ′(x0), c = g(x0), d = g′(x0), we get the Leibniz rule

(fg)′(x) = f ′(x)g(x) + f(x)g′(x), or
d(fg)

dx
=
df

dx
g + f

dg

dx
.

The explanation above on the derivatives of arithmetic combinations are analo-
gous to the arithmetic properties of limits.

Exercise 2.2.1. Find the derivative of the polynomial p(x) = cnx
n + · · ·+ c1x+ c0.

Exercise 2.2.2. Compute the derivatives.

1. ex sinx.

2. sin2 x.

3. e2x.

4. sin2 x cosx.

5. sinx− x cosx.

6. cosx+ x sinx.

7. (x− 1)ex.

8. x2ex.

9. x log x− x.

10. 2x2 log x− x2.

11. xex cosx.

12. xex cosx log x.

Exercise 2.2.3. Find a polynomial p(x), such that (p(x)ex)′ = x2ex. In general, suppose
(pn(x)ex)′ = xnex. Find the relation between polynomials pn(x).

Exercise 2.2.4. Find polynomials p(x) and q(x), such that (p(x) sinx + q(x) cosx)′ =
x2 sinx. Moreover, find a function with derivative x2 cosx?

Exercise 2.2.5. Find constants A and B, such that (Aex sinx+Bex cosx)′ = ex sinx. What
about (Aex sinx+Bex cosx)′ = ex cosx?

2.2.2 Composition of Linear Approximation

Consider a composition g ◦ f

x 7→ y = f(x) 7→ z = g(y) = g(f(x)).
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Suppose f(x) is linearly approximated by a + b(x − x0) at x0 and g(y) is linearly
approximated by c+ d(y − y0) at y0 = f(x0). Then

a = f(x0) = y0, b = f ′(x0), c = g(y0) = g(f(x0)), d = g′(y0) = g′(f(x0)),

and the composition g ◦ f is approximated by the composition of linear approxima-
tions (recall a = y0)

c+ d[(a+ b(x− x0))− y0] = c+ db(x− x0).

Therefore the composition is also differentiable, with

(g ◦ f)′(x0) = db = g′(y0)f ′(x0) = g′(f(x0))f ′(x0)

This gives us the chain rule

(g(f(x)))′ = (g ◦ f)′(x) = g′(f(x))f ′(x) = g′(y)|y=f(x)f
′(x),

or
dz

dx
=
dz

dy

dy

dx
.

Example 2.2.1. We know (log x)′ =
1

x
for x > 0. For x < 0, we have

(log(−x))′ = (log y)′|y=−x(−x)′ =
1

y

∣∣∣∣
y=−x

(−1) =
1

−x
(−1) =

1

x
.

Therefore we conclude

(log |x|)′ = 1

x
, for x 6= 0.

Example 2.2.2. In Example 2.1.5, we use the definition to derive xp = pxp−1. Alter-
natively, we may also derive the derivative of xp at general x0 > 0 from the derivative
(xp)′x=1 = p at a special place.

To move from x0 to 1, we introduce y =
x

x0

. Then xp is the composition

x 7→ y =
x

x0

7→ z = xp = xp0y
p.

Then x = x0 corresponds to y = 1, and we have

d(xp)

dx

∣∣∣∣
x=x0

=
dz

dy

∣∣∣∣
y=1

dy

dx

∣∣∣∣
x=x0

=
d(xp0y

p)

dy

∣∣∣∣
y=1

d

dx

(
x

x0

)∣∣∣∣
x=x0

= xp0 ·
d(yp)

dy

∣∣∣∣
y=1

· 1

x0

= xp0 · p ·
1

x0

= pxp−1
0 .

Exercise 2.2.6. Use the derivative at a special place to find the derivative at other places.
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1. log x. 2. ex. 3. sinx. 4. cosx.

Exercise 2.2.7. Use cosx = sin
(π

2
− x
)

and the derivative of sine to derive the derivative

of cosine. Use the similar method to find the derivatives of cotx and cscx.

Exercise 2.2.8. A function f(x) is odd if f(−x) = −f(x), and is even if f(−x) = f(x).
What can you say about the derivative of an odd function and the derivative of an even
function?

Example 2.2.3. By Example 2.1.3 and the chain rule, we have(
1

f(x)

)′
=

(
1

y

)′∣∣∣∣
y=f(x)

f ′(x) = − 1

y2

∣∣∣∣
y=f(x)

f ′(x) = − f
′(x)

f(x)2
.

Then we may use the Leibniz rule to get the derivative of quotient(
f(x)

g(x)

)′
=

(
f(x)

1

g(x)

)′
= f ′(x)

1

g(x)
+ f(x)

(
1

g(x)

)′
= f ′(x)

1

g(x)
− f(x)

g′(x)

g(x)2
=
f ′(x)g(x)− f(x)g′(x)

g(x)2
.

Exercise 2.2.9. Derive the derivatives.

(tanx)′ = sec2 x, (secx)′ = secx tanx, (e−x)′ = −e−x.

Exercise 2.2.10. Compute the derivatives.

1.
1

x+ 2
.

2.
x+ 1

x− 2
.

3.
x2 − x+ 1

x3 + 1
.

4.
x3 + 1

x2 − x+ 1
.

5.
1

ax+ b
.

6.
ax+ b

cx+ d
.

7.
x

x2 + ax+ b
.

8.
1

(x+ a)(x+ b)
.

Exercise 2.2.11. Compute the derivatives.

1.
log x

x
. 2.

log x

xp
. 3.

xp

log x
. 4.

ex

x log x
.

Exercise 2.2.12. Compute the derivatives.

1.
sinx

a+ cosx
. 2.

1

a+ tanx
. 3.

1 + x tanx

tanx− x
. 4.

cosx+ x sinx

sinx− x cosx
.

Exercise 2.2.13. The hyperbolic trigonometric functions are

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
,
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and

tanhx =
sinhx

coshx
, cothx =

coshx

sinhx
, sechx =

1

coshx
, cschx =

1

sinhx
.

Find their derivatives and express them in hyperbolic trigonometric functions.

Example 2.2.4. The function (x2− 1)10 is the composition of z = y10 and y = x2− 1.
Therefore (

(x2 − 1)10
)′

=
d(y10)

dy

d(x2 − 1)

dx
= 10y9 · 2x = 20x(x2 − 1)9.

Example 2.2.5. The function ax = ebx, b = log a, is the composition of z = ey and
y = bx. Therefore

(ax)′ = (ey)′|y=bx(bx)′ = ebxb = ax log a.

Exercise 2.2.14. Compute the derivatives.

1. (1− x)10.

2. (3x+ 2)10.

3. (x3 − 1)10(1− x2)9.

4. (1 + (1− x2)10)9.

5. ((x3−1)8+(1−x2)10)9.

6. ((1− (3x+ 2)3)8 + 1)9.

7.
(x+ 1)9

(3x+ 5)8
.

8.
x(x+ 1)

(x+ 2)(x+ 3)
.

Exercise 2.2.15. Compute the derivatives.

1. cos(x5 + 3x2 + 1).

2. tan10
(
x(x+ 1)9

)
.

3. sin(
√
x+ 3).

4. sin(
√
x− 2 + 3).

5. (sinx+ cosx)10.

6.
√

sinx+ cosx.

7.

(
sin3 x

cos4 x

)10

.

8. sin(cosx).

9. sin(cos(tanx)).

10.
sin2 x

sinx2
.

11.
sin 2x+ 2 cos 2x

2 sinx− cos 2x
.

12.
sin8√x

1 + cos10(sin9 x)
.

Exercise 2.2.16. Compute the derivatives.

1. ex
2
.

2. (x2 − 1)ex
2
.

3. e(ex).

4. elog x.

5. logx e.

6. log(log x).

7. log

(
1

log x

)
.

8. log(log(log x)).

9. log | cosx|.

10. log | tanx|.

11. log | secx− tanx|.

12. log
1− sinx

1 + sinx
.

Exercise 2.2.17. Compute the derivatives.
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1. (ax+ b)p.

2. (ax2 + bx+ c)p.

3. (a+ (bx2 + c)p)q.

4. eax.

5. log(ax+ b).

6. sin(ax+ b).

7. cos(ax+ b).

8. tan(ax+ b).

9. sec(ax+ b).

Exercise 2.2.18. Compute the derivatives.

1.
1√

a2 − x2
.

2.
1√

a2 + x2
.

3.
1√

x2 − a2
.

4.
x√

a2 − x2
.

5.
x√

a2 + x2
.

6.
x√

x2 − a2
.

Exercise 2.2.19. Compute the derivatives.

1.
√

1 +
√
x.

2.
1√

1 +
√
x

.

3.

√
1 +

√
1 +
√
x.

4.

√
x+

√
x+
√
x.

5. (1 + 2
√
x+ 1)10.

6. (1 + 2
√
x+ 1)−10.

7.

√
x+ 1

x− 2
.

8.

√
x+ 1

(1−
√
x+ x)3

.

9.
(
√
x+ 1)4

(1−
√
x+ x)3

.

10.

√
1 + x2

1− x2
.

11.
3

√
1 + x2

1− x2
.

12.

√
1 +
√
x√

1−
√
x

.

13.

√
1 +
√
x

1−
√
x

.

14.

(
1 +
√
x

1−
√
x

)10

.

15.

√
x+ 1−

√
x− 1√

x+ 1 +
√
x− 1

.

16.

√
1 + x−

√
1− x√

1 + x+
√

1− x
.

17.

(
1

1 +
√
x

+
1

1−
√
x

)10

.

18.

√
1 +

1√
x2 + 1

.

Exercise 2.2.20. Compute the derivatives.

1. |x2(x+ 2)3|. 2. | sin3 x|. 3. |x(ex − 1)|. 4. |(x−1)2 log x|.

Exercise 2.2.21. Compute the derivatives.

1.
√
x− log |

√
x+ a|.

2.
b

a2(ax+ b)
+

1

a2
log |ax+ b|.

3. −1

b
log

ax+ b

x
.

4.
1

b(ax+ b)
− 1

b2
log

ax+ b

x
.

5.
1

2
log(a2 + x2).

6.
√
x(a+ x)− a log(

√
x+
√
x+ a).

7.
1√
b

log

√
ax+ b−

√
b

√
ax+ b+

√
b
.

8. x log(x+
√
x2 + a)−

√
x2 + a.

9. −1

a
log

a+
√
a2 + x2

x
.
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10. −1

a
log

a+
√
a2 − x2

x
.

11.
b

2a
x− 1

4
x2 +

1

2

(
x2 − b2

a2

)
log(ax+b).

12. −1

2
x2 +

1

2

(
x2 − a2

b2

)
log(a2 − b2x2).

Example 2.2.6. By the chain rule, we have(
log
∣∣∣x+

√
x2 + a

∣∣∣)′ = (log |y|)′|y=x+
√
x2+a

[
x′ + (

√
z)′|z=x2+a(x

2 + a)′
]

=
1

x+
√
x2 + a

[
1 +

1

2
√
x2 + a

2x

]
=

1√
x2 + a

.

Now suppose we wish to find a function f(x) with derivative

f ′(x) =
1√

x2 + ax+ b
.

By

f(x) =
1√(

x+
a

2

)2

+ b− a2

4

=
1√
y2 + c

, y = x+
a

2
, c = b− a2

4
,

we may substitute x by x+
a

2
and substitute a by c = b− a2

4
. Then we get

(
log
∣∣∣x+

a

2
+
√
x2 + ax+ b

∣∣∣)′ = (
log
∣∣∣y +

√
y2 + c

∣∣∣)′∣∣∣∣
y=x+a

2

(
x+

a

2

)′
=

1√
y2 + c

∣∣∣∣∣
y=x+a

2

=
1√

x2 + ax+ b
.

Exercise 2.2.22. Find constants A and B, such that (Aeax sin bx+Beax cos bx)′ = eax cos bx.
What about (Aeax sin bx+Beax cos bx)′ = eax sin bx?

Exercise 2.2.23. Use Example 2.2.6 to compute the derivatives.

1. log(ex +
√

1 + e2x). 2. log
∣∣∣x−√x2 + a

∣∣∣. 3. log(tanx+ secx).

Exercise 2.2.24. Compute the derivative of log
x

x+ 1
. Then find a function with derivative

1

(x+ a)(x+ b)
. In case a2 ≥ 4b, can you find a function with derivative

1

x2 + ax+ b
?

Exercise 2.2.25. Compute the derivative of x
√
x2 + a + a log(x +

√
x2 + a). Then find a

function with derivative
√
x2 + ax+ b.

Exercise 2.2.26. Use Example 2.2.6 to compute the derivatives.
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1. log(ex +
√

1 + e2x). 2. log(x−
√
x2 + a). 3. log(tanx+ secx).

Example 2.2.7. By viewing xp = ep log x as a composition of z = ey and y = p log x,
we have

d(xp)

dx
=

(ep log x)

dx
=
d(ey)

dy

∣∣∣∣
y=p log x

d(p log x)

dx
= ep log x p

x
= xp

p

x
= pxp−1.

This derives the derivative of xp by using the derivatives of ex and log x.

Example 2.2.8. Suppose u(x) and v(x) are differentiable and u(x) > 0. Then
u(x)v(x) = eu(x) log v(x), and

(u(x)v(x))′ = (ev(x) log u(x))′ = (ey)′|y=v(x) log u(x)(v(x) log u(x))′.

By
(ey)′|y=v(x) log u(x) = ey|y=v(x) log u(x) = ev(x) log u(x) = u(x)v(x),

and

(v(x) log u(x))′ = v′(x) log u(x)+v(x)(log u)′|u=u(x)u
′(x) = v′(x) log u(x)+

v(x)u′(x)

u(x)
,

We get

(u(x)v(x))′ = u(x)v(x)

(
v′(x) log u(x) +

v(x)u′(x)

u(x)

)
= u(x)v(x)−1(u(x)v′(x) log u(x) + u′(x)v(x)).

Exercise 2.2.27. Compute the derivatives.

1. xx.

2. xx
2
.

3. (x2)x.

4. (ax)x.

5. (xa)x.

6. (xx)a.

7. (xx)x.

8. a(xx).

9. x(ax).

10. x(xa).

11. x(xx).

12. (xx)(xx).

Exercise 2.2.28. Compute the derivatives.

1. xsinx.

2. (sinx)x.

3. (sinx)cosx.

4. x
√
x.

5. x
√

log x.

6. xlog x.

7. (ex + e−x)x.

8. (log |x2 − 1|)x.

Exercise 2.2.29. Let f(x) = u(x)v(x). Then log f(x) = u(x) log v(x). By taking the deriva-
tive on both sides of the equality, derive the formula for f ′(x).

Exercise 2.2.30. Use the idea of Exercise 2.2.29 to compute the derivatives.
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1.
x+ a

x+ b
.

2.
1

(x+ a)(x+ b)
.

3.
(x+ c)(x+ d)

(x+ a)(x+ b)
.

4.
(x+ 3)7

√
2x− 1

(2x+ 1)3
.

5.
(x2 + x+ 1)7

(x2 − x+ 1)3
.

6.
ex

2+1
√

sinx

(x2 − x+ 1)3 log x
.

2.2.3 Implicit Linear Approximation

The chain rule can be used to compute the derivatives of functions that are “implic-
itly” given. Such functions often do not have explicit formula expressions.

Strictly speaking, we need to know that implicitly given functions are differen-
tiable before taking their derivatives. There are general theorems confirming such
differentiability. In the subsequent examples, we will always assume the differentia-
bility of implicitly defined functions.

Example 2.2.9. The unit circle x2 + y2 = 1 on the plane is made up of the graphs
of two functions y =

√
1− x2 and y = −

√
1− x2. We may certainly compute the

derivative of each one explicitly

(
√

1− x2)′ =
1

2
(1− x2)−

1
2 (−2x) =

−x√
1− x2

, (−
√

1− x2)′ =
x√

1− x2
.

On the other hand, we may use the fact that both functions y = y(x) satisfy
the equation x2 + y(x)2 = 1. Taking the derivatives in x of both sides, we get
2x+ 2yy′ = 0. Solving the equation, we get

y′ = −x
y
.

This is consistent with the two derivatives computed above.
There is yet another way of computing the derivative y′(x). The circle can be

parametrized as x = cos t, y = sin t. In this view, the function y = y(x) satisfies
sin t = y(cos t). By the chain rule, we have

cos t = y′(x)(− sin t).

Therefore

y′(x) = −cos t

sin t
= −x

y
.

In general, the derivative of a function y = y(x) given by a parametrized curve
x = x(t), y = y(t) is

y′(x) =
y′(t)

x′(t)
.

Note that the formula is ambiguous, in that y′(x) = − cot t and y′(t) = cos t are not

the same functions. The primes in the two functions refer to
d

dx
and

d

dt
respectively.
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So it is better to keep track of the variables by using Leibniz’s notation. The formula
above becomes

dy

dx
=

dy

dt
dx

dt

.

This is just another way of expressing the chain rule
dy

dt
=
dy

dx

dx

dt
.

Exercise 2.2.31. Compute the derivatives of the functions y = y(x) given by curves.

1. x = sin2 t, y = cos2 t.

2. x = a(t− sin t), y = a(1− cos t).

3. x = et cos 2t, y = et sin 2t.

4. x = (1 + cos t) cos t, y = (1 + cos t) sin t.

Example 2.2.10. Like the unit circle, the equation 2y−2x2−sin y+1 = 0 is a curve on
the plane, made up of the graphs of several functions y = y(x). Although we cannot
find an explicit formula for the functions, we can still compute their derivatives.

Taking the derivative of both sides of the equation 2y− 2x2− sin y+ 1 = 0 with
respect to x and keeping in mind that y is a function of x, we get 2y′−4x−y′ cos y = 0.
Therefore

y′ =
4x

2− cos y
.

The point P =

(√
π

2
,
π

2

)
satisfies the equation and lies on the curve. The

tangent line of the curve at the point has slope

y′|P =

4

√
π

2

2− cos
π

2

=
√

2π.

Therefore the tangent line at P is given by the equation

y − π

2
=
√

2π

(
x−

√
π

2

)
,

or

y =
√

2πx− π

2
.
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Example 2.2.11. The equations x2 + y2 + z2 = 2 and x + y + z = 0 specify a circle
in the Euclidean space R3 and define functions y = y(x) and z = z(x). To find the
derivatives of the functions, we take the derivatives of the two equations in x

2x+ 2yy′ + 2zz′ = 0, 1 + y′ + z′ = 0.

Solving for y′ and z′, we get

y′ =
z − x
y − z

, z′ =
y − x
z − y

.

Exercise 2.2.32. Compute the derivatives of implicitly defined functions.

1. y2 + 3y3 + 1 = x.

2. sin y = x.

3.
x2

a2
+
y2

b2
= 1.

4.
√
x+
√
y =
√
a.

5. ex+y = xy.

6. x2 + 2xy − y2 − 2x = 0.

Exercise 2.2.33. Find the derivative of the implicitly defined functions of x.

1. xp + yp = 2 at x = 1, y = 1.

2. xy = sin(x+ y) at x = 0, y = π.

3.
x+ y

z
=
y + z

x
=
z + x

y
at x = y = z = 1.

Exercise 2.2.34. If f(sinx) = x, what can you say about the derivative of f(x)? What if
sin f(x) = x?

Example 2.2.12. In Example 1.7.11, we argued that the function f(x) = x5 + 3x3 + 1
is invertible. The inverse g(x) satisfies g(x)5 + 3g(x)3 + 1 = x. Taking the derivative
in x on both sides, we get 5g(x)4g′(x) + 9g(x)2g′(x) = 1. This implies

g′(x) =
1

5g(x) + 9g(x)2
.

Example 2.2.13. In Example 2.2.12, we interpreted the derivative of an inverse
function as an implicit differentiation problem. In general, the inverse function
g(x) = f−1(x) satisfies f(g(x)) = x. Taking the derivative of both sides, we get
f ′(g(x))g′(x) = 1. Therefore

(g(x))′ =
1

f ′(g(x))
, or (f−1(x))′ =

1

f ′(f−1(x))
.

For example, the derivative of arcsinx is

(arcsinx)′ =
1

(sin y)′|y=arcsinx

=
1

(cos y)|x=sin y

=
1√

1− x2
.
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In the last step, we have positive square root because y ∈
[
−π

2
,
π

2

]
.

The computation can also be explained by considering two variables related by
y = y(x) and x = x(y), with x(y) being the inverse function of y(x). The chain rule

tells us
dx

dy

dy

dx
=
dx

dx
= 1. Then we get

dx

dy
=

1

dy

dx

, or x′(y) =
1

y′(x)|x=x(y)

=
1

y′(x(y))
.

Specifically, for y = arcsinx, we have x = sin y. then

d arcsinx

dx
=
dy

dx
=

1

dx

dy

=
1

(sin y)′
=

1

cos y
=

1√
1− sin2 y

=
1√

1− x2
.

Exercise 2.2.35. Derive the derivatives of the inverse trigonometric functions

(arctanx)′ =
1

1 + x2
, (arccosx)′ = − 1√

1− x2
, (arcsecx)′ =

1

x
√
x2 − 1

.

Exercise 2.2.36. Compute the derivatives.

1. arcsin
√
x.

2. arcsin
√

1− x2.

3. arctan
1 + x

1− x
.

4.
arccosx

x
+

1

2
log

1−
√

1− x2

1 +
√

1− x2
.

5.
arcsinx√

1− x2
+

1

2
log(1− x2).

6. arctan
1− x√
2x− x2

.

Exercise 2.2.37. Compute the derivatives.

1. 2 arcsin

√
x− a
b− a

.

2.
1

a
arcsin

a

x
.

3.
1

a
arcsec

x

a
.

4.
2√

4ac− b2
arctan

2ax+ b√
4ac− b2

.

5. −
√
x(a− x)− a arctan

√
x(a− x)

x− a
.

6.
1

2
x
√
a2 − x2 +

1

2
a2 arctan

x√
a2 − x2

.

7. x log(x2 + a2) + 2a arctan
x

a
− 2x.

Exercise 2.2.38. Compute the derivative of arcsin
x

a
. Then use the idea and result of

Example 2.2.6 to find a function with derivative
1√

ax2 + bx+ c
.
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Exercise 2.2.39. Compute the derivative of x
√
a2 − x2 + a2 arcsin

x

a
. Then combine with

the result of Exercise 2.2.25 to find a function with derivative
√
ax2 + bx+ c.

Exercise 2.2.40. Compute the derivative of
1

a
arctan

x

a
. Then for the case a2 ≤ 4b, find a

function with derivative
1

x2 + ax+ b
. This complements Exercise 2.2.24.

Exercise 2.2.41. Compute the derivative of log

√
x+ 1− 1√
x+ 1 + 1

and arctan
√
x. Then find a

function with derivative
1

x
√
ax+ b

.

Exercise 2.2.42. Suppose f(x) is invertible, with f(1) = 1, f ′(1) = a. Find the derivative

of the functions f

 1

f−1

(
x

f(x)

)
 and f−1(f−1(x)) at 1.

Exercise 2.2.43. Explain the formula for the derivative of the inverse function by consid-
ering the inverse of the linear approximation.

Exercise 2.2.44. Find the place on the curve y = x2 where the tangent line is parallel to
the straight line x+ y = 1.

Exercise 2.2.45. Show that the area enclosed by the tangent line on the curve xy = a2 and
the coordinate axes is a constant.

Exercise 2.2.46. Let P be a point on the curve y = x3. The tangent at P meets the curve
again at Q. Prove that the slope of the curve at Q is four times the slope at P .

2.3 Application of Linear Approximation

The linear approximation can be used to determine behaviors of functions. The
idea is that, if the linear approximation of a function has certain behavior, then the
function is likely to have the similar behavior.

2.3.1 Monotone Property and Extrema

We say a function f(x) has local maximum at x0, if

x ∈ domain, |x− x0| < δ =⇒ f(x) ≤ f(x0).

Similarly, f(x) has local minimum at x0, if

x ∈ domain, |x− x0| < δ =⇒ f(x) ≥ f(x0).
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The function has a (global) maximum at x0 if f(x0) ≥ f(x) for all x in the
domain

x ∈ domain =⇒ f(x) ≤ f(x0).

The concepts of (global) minimum can be similarly defined. The maximum and
minimum are extrema of the function. A global extreme is also a local extreme.

The local maxima are like the peaks in a mountain, and the global maximum is
like the highest peak.

x
a b

loc max

loc min

max

min

Figure 2.3.1: Local and global extrema.

The following result shows the existence of global extrema in certain case.

Theorem 2.3.1. Any continuous function on a bounded closed interval has global
maximum and global minimum.

If a function f is increasing on (x0−δ, x0] (i.e., on the left of x0 and including x0),
then f(x0) is the biggest value on (x0−δ, x0]. If f is also decreasing on [x0, x0+δ) (i.e.,
on the right of x0 and including x0), then f(x0) is the biggest value on [x0, x0 + δ).
In other words, if f changes from increasing to decreasing as we pass x0 from left to
right, then x0 is a local maximum of f . Similarly, if f changes from decreasing to
increasing at x0, then x0 is a local minimum.

Example 2.3.1. The square function x2 is strictly decreasing on (−∞, 0] because

x1 < x2 ≤ 0 =⇒ x2
1 > x2

2.

By the same reason, the function is strictly increasing on [0,+∞). This leads to
the local minimum at 0. In fact, by x2 ≥ 0 = |0| for all x, we know x2 has a
global minimum at 0. The function has no local maximum and therefore no global
maximum on R.

On the other hand, if we restrict x2 to [−1, 1], then x2 has global minimum at
0 and global maxima at −1 and 1. If we restrict to [−1, 2], then x2 has global
minimum at 0, global maximum at 2, and local (but not global) maximum at −1. If
we restrict to (−1, 2), then x2 has global minimum at 0, and has no local maximum.
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Example 2.3.2. The sine function is strictly increasing on
[
2nπ − π

2
, 2nπ +

π

2

]
and

is strictly decreasing on

[
2nπ +

π

2
, 2nπ +

3π

2

]
. This implies that 2nπ +

π

2
are local

maxima and 2nπ − π

2
are local minima. In fact, by sin

(
2nπ − π

2

)
= −1 ≤ sinx ≤

1 = sin
(

2nπ +
π

2

)
, these local extrema are also global extrema.

Exercise 2.3.1. Determine the monotone property and find the extrema for |x|

1. on [−1, 1]. 2. on (−1, 1]. 3. on [−2, 1]. 4. on (−∞, 1].

Exercise 2.3.2. Determine the monotone property and find the extrema on R.

1. |x|.

2. x2 + 2x.

3. |x2 + 2x|.

4. x3.

5. x6.

6.
1

x
.

7.
√
|x|.

8. x+
1

x
.

9.
1

x2 + 1
.

10. cosx.

11. sin2 x.

12. sinx2.

13. ex.

14. e−x.

15. log x.

16. xx.

Exercise 2.3.3. How are the extrema of the function related to the extrema of f(x)?

1. f(x) + a. 2. af(x). 3. f(x)a. 4. af(x).

Exercise 2.3.4. How are the extrema of the function related to the extrema of f(x)?

1. f(x+ a). 2. f(ax). 3. f(x2). 4. f(sinx).

Exercise 2.3.5. Is local maximum always the place where the function changes from in-
creasing to decreasing? In other words, can you construct a function f(x) with local
maximum at 0, but f(x) is not increasing on (−δ, 0] for any δ > 0?

Exercise 2.3.6. Compare the global extrema on various intervals in Example 2.3.1 with
Theorem 2.3.1.

2.3.2 Detect the Monotone Property

Suppose f(x) is approximated by the linear function L(x) = f(x0) + f ′(x0)(x− x0)
near x0. The linear function L(x) is increasing if and only if the slope f ′(x0) ≥
0. Since L(x) is very close to f(x), we expect f(x) to be also increasing. The
expectation is true if the linear approximation is increasing everywhere.

Theorem 2.3.2. If f ′(x) ≥ 0 on an interval, then f(x) is increasing on the interval.
If f ′(x) > 0 on the interval, then f(x) is strictly increasing on the interval.
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Similar statements hold for decreasing functions. Moreover, for a function on
a closed interval [a, b], we just need the derivative criterion to be satisfied on (a, b)
and the function to be continuous on [a, b].

Example 2.3.3. We have (x2)′ = 2x < 0 on (−∞, 0) and x2 continuous on (−∞, 0].
Therefore x2 is strictly decreasing on (−∞, 0]. By the similar reason, x2 is strictly
increasing on [0,+∞). This implies that 0 is a local minimum. The conclusion is
consistent with the observation in Example 2.3.1 obtained by direct inspection.

x (−∞, 0) 0 (0,+∞)
f = x2 ↘ loc min 0 ↗
f ′ = 2x − 0 +

Example 2.3.4. The function f(x) = x3−3x+1 has derivative f ′(x) = 3(x+1)(x−1).
The sign of the derivative implies that the function is strictly increasing on (−∞,−1]
and [1,+∞), and is strictly decreasing on [−1, 1]. This implies that −1 is a local
maximum and 1 is a local minimum.

x (−∞,−1) −1 (−1, 1) 1 (1,+∞)
f = x3 − 3x+ 1 ↗ loc max 3 ↘ loc min −1 ↗

f ′ = 3(x+ 1)(x− 1) + 0 − 0 +

Example 2.3.5. The function f(x) = sinx − x cosx has derivative f ′(x) = x sinx.
The sign of the derivative determines the strict monotone property on the interval
[−5, 5] as described in the picture. The strict monotone property implies that −π, 5
are local minima, and −5, π are local maxima.

x −5 (−5,−π) −π (−π, 0) 0 (0, π) π (π, 5) 5
f max ↘ min ↗ ↗ max ↘ min
f ′ − 0 + 0 + 0 −

Example 2.3.6. The function f(x) =
3
√
x2(x + 1) has derivative f ′(x) =

(5x+ 2)

3 3
√
x

for x 6= 0. Using the sign of the derivative and the continuity, we get the strict

monotone property of the function, which implies that −2

5
is a local maximum, and

0 is a local minimum.

x (−∞,−2
5
) −2

5
(−2

5
, 0) 0 (0,+∞)

f ↗ max ↘ min ↗
f ′ + 0 − no +
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5

−2.377

−5

2.377

π

π

−π

−π local min

local max
local max

local min

Figure 2.3.2: Graph of sinx− x cosx.

Example 2.3.7. The function f(x) =
x3

x2 − 1
has derivative f ′(x) =

x2(x2 − 3)

(x2 − 1)2
for

x 6= ±1. The sign of the derivative determines the strict monotone property away
from ±1. The strict monotone property implies that −

√
3 is a local minimum, and√

3 is a local maximum.

x −
√

3 −1 0 1
√

3
f ↗ max ↘ ↘ ↘ ↘ min ↗
f ′ + 0 − no − 0 − no − 0 +

Exercise 2.3.7. Determine the monotone property and find extrema.

1. x3 − 3x+ 2 on R.

2. x3 − 3x+ 2 on [−1, 2].

3. x3− 3x+ 2 on (−1, 2).

4. |x3 − 3x+ 2| on R.

5. |x3−3x+2| on [−1, 2].

6. |x3−3x+2| on (−1, 2).

7.
√
|x3 − 3x+ 2|.

8. 7
√

(x3 − 3x+ 2)2.

9.
1

x3 − 3x+ 2
.

Exercise 2.3.8. Determine the monotone property and find extrema.

1.
x

1 + x2
on [−1, 1].

2.
sinx

1 + sin2 x
on [0, 2π].

3.
cosx

1 + cos2 x
on [0, 2π].

4.
1 + x2

x
on [−1, 0) ∪ (0, 1].

5. tanx+ cotx on
[
−π

4
, 0
)
∪
(

0,
π

4

]
.

6. ex + e−x on R.

Exercise 2.3.9. Determine the monotone property and find extrema.
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1. x4 on [−1, 1]. 2. cos4 x on R. 3. sin2 x on R.

Exercise 2.3.10. Determine the monotone property and find extrema.

1. −x4 + 2x2 − 1 on [−2, 2].

2.
√

3 + 2x− x2 on (−1, 3].

3. |x|p(x+ 1) on R.

4. x2ex on R.

5. xpax on (0,+∞).

6. |x|e−|x−1| on [−2, 2].

7. x log x on (0,+∞).

8. x2 log3 x on (0,+∞).

9. xp log x on (0,+∞).

10. x3 + 3 log x on (0,+∞).

11. x− log(1 + x) on (−1,+∞).

12. e−x sinx on R.

13. x− sinx on [0, 2π].

14. |x− sinx| on [−π, π].

15. |x− sinx| on
[
−π

2
,
π

2

]
.

16. 2 sinx+ sin 2x on [0, 2π].

17. 2x− 4 sinx+ sin 2x on [0, π].

Exercise 2.3.11. Show that 2x+ sinx = c has only one solution. Show that x4 + x = c has
at most two solutions.

Exercise 2.3.12. If f is differentiable and has 9 roots on (a, b), how many roots does f ′

have on (a, b)? If f also has second order derivative, how many roots does f ′′ have on
(a, b)?

Exercise 2.3.13. Find smallest A > 0, such that log x ≤ A
√
x. Find smallest B > 0, such

that log x ≥ − B√
x

.

Exercise 2.3.14. A quantity is measured n times, yielding the measurements x1, . . . , xn.
Find the estimate value x̂ of x that minimizes the squared error (x−x1)2 + · · ·+(x−xn)2.

Exercise 2.3.15. Find the biggest term in the sequence n
√
n.

2.3.3 Compare Functions

If we apply Theorem 2.3.2 to f(x)− g(x), then we get the following comparison of
two functions.

Theorem 2.3.3. Suppose f(x) and g(x) are continuous for x ≥ a and differentiable
for x > a. If f(a) ≥ g(a) and f ′(x) ≥ g′(x) for x > a, then f(x) ≥ g(x) for x > a.
If f(a) ≥ g(a) and f ′(x) > g′(x) for x > a, then f(x) > g(x) for x > a.

There is a similar statement for the case x < a.
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Example 2.3.8. We have ex > 1 for x > 0 and ex < 1 for x < 0. This is the
comparison of ex with the constant term of the Taylor expansion (or the 0th Taylor
expansion) in Example 2.5.5. How do we compare ex with the first order Taylor
expansion 1 + x?

We have e0 = 1+0. For x > 0, we have (ex)′ = ex > (1+x)′ = 1. Therefore we get
ex > 1+x for x > 0. On the other hand, for x < 0, we have (ex)′ = ex < (1+x)′ = 1.
Therefore we also get ex > 1 + x for x < 0. We conclude that

ex > 1 + x for x 6= 0.

Example 2.3.9. We claim that

x

1 + x
< log(1 + x) < x for x > −1, x 6= 0.

The three functions have the same value 0 at 0. Then we compare their derivatives(
x

1 + x

)′
=

1

(1 + x)2
, (log(1 + x))′ =

1

1 + x
, (x)′ = 1.

We have
1

(1 + x)2
<

1

1 + x
< 1 for x > 0,

and
1

(1 + x)2
>

1

1 + x
> 1 for − 1 < x < 0.

The inequalities then follow from Theorem 2.3.3.

Example 2.3.10. For a, b > 0 and p > q > 0, we claim that

(ap + bp)
1
p < (aq + bq)

1
q .

By symmetry, we may assume a ≤ b. Then c =
b

a
> 1, and the inequality means

that f(x) = (1 + cx)
1
x is strictly decreasing for x > 0.

By Example 2.2.8, we have

f ′(x) = (1 + cx)
1
x
−1

(
−1 + cx

x2
log(1 + cx) + cx(log c)

1

x

)
=

(1 + cx)
1
x
−1

x2
(cx log cx − (1 + cx) log(1 + cx)).

So we study the monotone property of the function g(t) = t log t. By

g′(t) = log t+ 1 > 0, for t > e−1,

we see that g(t) is increasing for t > e−1. Since c ≥ 1 and x > 0 implies 1 + cx >
cx ≥ 1 > e−1, we get cx log cx ≤ (1 + cx) log(1 + cx). Therefore f ′(x) < 0 and f(x)
is decreasing.
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Exercise 2.3.16. State Theorem 2.3.3 for the case x < a.

Exercise 2.3.17. Prove the inequality.

1. sinx >
2

π
x, for 0 < x <

π

2
.

2.
1

2p−1
≤ xp + (1− x)p ≤ 1, for 0 ≤ x ≤ 1, p > 1.

3.

√
3

6 + 2
√

3
≤ 1 + x

2 + x2
≤

√
3

6− 2
√

3
.

4.

(
1 +

1

x

)x
< e <

(
1 +

1

x

)x+1

, for x > 0.

5. arctanx− arctan y ≤ 2 arctan
x− y

2
, for x > y > 0.

6.
x2

2(1 + x)
< x− log(1 + x) <

x2

2
, for x > 0. What about −1 < x < 0?

Exercise 2.3.18. For natural number n and 0 < a < 1, prove that the equation

1 + x+
x2

2!
+ · · ·+ xn

n!
= aex

has only one solution on (0,+∞).

2.3.4 First Derivative Test

We saw that the local extrema are often the places where the function changes
between increasing and decreasing. If the function is differentiable, then these are the
places where the derivative changes the sign. In particular, we expect the derivatives
at these places to become 0. This leads to the following criterion for the candidates
of local extrema.

Theorem 2.3.4. If f(x) is differentiable at a local extreme x0, then f ′(x0) = 0.

If f ′(x0) > 0, then the linear approximation L(x) = f(x0) + f ′(x0)(x − x0) of
f near x0 is strictly increasing. This means that L(x) < L(x0) for x < x0 and
L(x) > L(x0) for x > x0. Since L is very close to f near x0, we expect that f is also
“lower” on the left of x0 and “higher” on the right of x0. In particular, this implies
that x0 is not a local extreme of f . By the similar argument, if f ′(x0) < 0, the x0

is also not a local extreme. This is the reason behind the theorem.
Since our reason makes explicit use of both the left and right sides, the criterion

does not work for one sided derivatives. Therefore for a function f defined on an
interval, the candidates for the local extrema must be one of the following cases:
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x0

L(x0) = f(x0)

f(x) < f(x0)

f(x) > f(x0)

L(x) > L(x0)

L(x) < L(x0)

Figure 2.3.3: What happens near x0 when f ′(x0) > 0.

1. End points of the interval.

2. Points inside the interval where f is not differentiable.

3. Points inside the interval where f is differentiable and has derivative 0.

Example 2.3.11. The derivative (x2)′ = 2x vanishes only at 0. Therefore the only
candidate for the local extrema of x2 on R is 0. By x2 ≥ 02 for all x, 0 is a minimum.

If we restrict x2 to the closed interval [−1, 2], then the end points −1 and 2 are
also candidates for the local extrema. By x2 ≤ (−1)2 on [−1, 0] and x2 ≤ 22 on
[−1, 2], −1 is a local maximum and 2 is a global maximum.

On the other hand, the restriction of x2 on the open interval (−1, 2) has no other
candidates for local extrema besides 0. The function has global minimum at 0 and
has no local maximum on (−1, 2).

Example 2.3.12. Consider the function

f(x) =

{
x2, if x 6= 0,

2, if x = 0,

that modifies the square function by reassigning the value at 0. The function is not
differentiable at 0 and has nonzero derivative away from 0. Therefore on [−1, 2],
the candidates for the local extrema are 0 and the end points −1 and 2. The end
points are also local maxima, like the unmodified x2. By x2 < f(0) = 2 on [−1, 1],
0 is a local maximum. The modified square function f(x) has no local minimum on
[−1, 2].

Example 2.3.13. The function f(x) = x3 − 3x + 1 in Example 2.3.4 has derivative
f ′(x) = 3(x+ 1)(x− 1). The possible local extrema on R are ±1. These are not the
global extrema on the whole line because limx→−∞ f(x) = −∞ and limx→+∞ f(x) =
+∞.
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If we restrict the function to [−2, 2], then ±2 are also possible local extrema. By
comparing the values

f(−2) = −1, f(−1) = 3, f(1) = −1, f(2) = 3,

we get global minima at −2, 1, and global maxima at 2,−1.

Example 2.3.14. By (x3)′ = 3x2, 0 is the only candidate for the local extreme of x3.
However, we have x3 < 03 for x < 0 and x3 > 03 for x > 0. Therefore 0 is actually
not a local extreme.

The example shows that the converse of Theorem 2.3.4 is not true.

Example 2.3.15. The function f(x) = xe−x has derivative f ′(x) = (x − 1)ex. The
only possible local extreme on R is at 1. We have limx→−∞ f(x) = −∞ and
limx→+∞ f(x) = 0. We claim that the limits imply that f(1) = e−1 is a global
maximum.

Since the limits at both infinity are < f(1), there is N , such that f(x) < f(1)
for |x| ≥ N . In particular, we have f(±N) < f(1). Then consider the function
on [−N,N ]. On the bounded and closed interval, Theorem 2.3.1 says that the
continuous function must reach its maximum, and the candidates for the maximum
on [−N,N ] are −N, 1, N . Since f(±N) < f(1), we see that f(1) is the maximum
on [−N,N ]. Combined with f(x) < f(1) for |x| ≥ N , we conclude that f(1) is the
maximum on the whole real line.

Exercise 2.3.19. Find the global extrema.

1. x2(x− 1)3 on R.

2. x2(x− 1)3 on [−1, 1].

3. |x2 − 1| on [−2, 1].

4. x2 + bx+ c on R.

5. 1− x4 + x5 on R.

6. sinx2 on [−1,
√
π].

7. x log x on (0,+∞).

8. x log x on (0, 1].

9. xx on (0, 1].

10. (x2 + 1)ex on R.

2.3.5 Optimization Problem

Example 2.3.16. Given the circumference a of a rectangle, which rectangle has the
largest area?

Let one side of the rectangle be x. Then the other side is
a

2
− x, and the area

A(x) = x
(a

2
− x
)
.

The problem is to find the maximum of A(x) on
[
0,
a

2

]
.
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By A′(x) =
a

2
− 2x, the candidates for the local extrema are 0,

a

4
,
a

2
. The values

of A at the three points are 0,
a2

16
, 0. Therefore the maximum is reached when x =

a

4
,

which means the rectangle is a square.

Example 2.3.17. The distance from a point P = (x0, y0) on the plane to a straight
line ax+ by + c = 0 is the minimum of the distance from P to a point (x, y) on the
line. The distance is minimum when the square of the distance

f(x) = (x− x0)2 + (y − y0)2

is minimum. Note that y is a function of x given by the equation ax + by + c = 0
and satisfies a+ by′ = 0.

ax+ by + c = 0

P (x0, y0)

(x, y)

Figure 2.3.4: Distance from a point to a straight line.

From

f ′(x) = 2(x− x0) + 2(y − y0)y′ =
2

b
(b(x− x0)− a(y − y0)),

we know that f(x) is minimized when

b(x− x0)− a(y − y0) = 0.

Moreover, recall that (x, y) must also be on the straight line

ax+ by + c = 0.

Solving the system of two linear equations, we get

x− x0 = −a(ax0 + by0 + c)

a2 + b2
, y − y0 = −b(ax0 + by0 + c)

a2 + b2
.

The minimum distance is√
(x− x0)2 + (y − y0)2 =

|ax0 + by0 + c|√
a2 + b2

.
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l
L

x

y

speed u

speed
v

P

a

A

Q

b

B

Figure 2.3.5: Snell’s law.

Example 2.3.18. Consider light traveling from a point A in one medium to point B
in another medium. Fermat’s principle says that the path taken by the light is the
path of shortest traveling time.

Let u and v be the speed of light in the respective medium. Let L be the place
where two media meet. Draw lines AP and BQ perpendicular to L. Let the length
of AP,BP, PQ be a, b, l. Let x be the angle by which the light from A hits L. Let
y be the angle by which the light leaves L and reaches B.

The angles x and y are related by

a tanx+ b tan y = l.

This can be considered as an equation that implicitly defines y as a function of x.
The derivative of y = y(x) can be obtained by implicit differentiation

y′(x) = −a sec2 x

b sec2 y
.

The time it takes for the light to travel from A to B is

T =
a secx

u
+
b sec y

v
.

By thinking of y as a function of x, the time T becomes a function of x. The time
will be shortest when

0 =
dT

dx
=
a secx tanx

u
+
b sec y tan y

v
y′

=
a secx tanx

u
− b sec y tan y

v

a sec2 x

b sec2 y

= a sec2 x

(
sinx

u
− sin y

v

)
.

This means that the ratio between the sine of the angles x and y is the same as the
ratio between the speeds of light

sinx

sin y
=
u

v
.
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This is Snell’s law of refraction.

Exercise 2.3.20. A rectangle is inscribed in an isosceles triangle. Show that the biggest
area possible is half of the area of the triangle.

Exercise 2.3.21. Among all the rectangles with area A, which one has the smallest perime-
ter?

Exercise 2.3.22. Among all the rectangles with perimeter L, which one has the biggest
area?

Exercise 2.3.23. A rectangle is inscribed in a circle of radius R. When does the rectangle
have the biggest area?

Exercise 2.3.24. Determine the dimensions of the biggest rectangle inscribed in the ellipse
x2

a2
+
y2

b2
= 1.

Exercise 2.3.25. Find the volume of the biggest right circular cone with a given slant height
l.

Exercise 2.3.26. What is the shortest distance from the point (2, 1) to the parabola y =
2x2?

2.4 Mean Value Theorem

If one travels between two cities at the average speed of 100 kilometers per hour,
then we expect that the speed reaches exactly 100 kilometers per hour somewhere
during the trip. Mathematically, let f(t) be the distance traveled by the time t.
Then the average speed from the time a to time b is

f(b)− f(a)

b− a
.

Our expectation can be interpreted as

f(b)− f(a)

b− a
= f ′(c) for some c ∈ (a, b).

2.4.1 Mean Value Theorem

Theorem 2.4.1 (Mean Value Theorem). If f(x) is continuous on [a, b] and differen-
tiable on (a, b), then there is c ∈ (a, b), such that

f(b)− f(a)

b− a
= f ′(c).
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The conclusion can also be expressed as

f(b)− f(a) = f ′(c)(b− a), for some a < c < b,

or
f(a+ h)− f(a) = f ′(a+ θh)h, for some 0 < θ < 1.

We also note that the conclusion is symmetric in a, b. Therefore there is no need to
insist a < b.

a c c c b

f(a)

f(b)

L(x)

f(x)

Figure 2.4.1: Mean value theorem.

Geometrically, the Mean Value Theorem means that the straight line L connect-
ing the two ends (a, f(a)) and (b, f(b)) of the graph of f is parallel to the tangent
of the function somewhere. Figure 2.4.1 suggests that c in the Mean Value Theo-
rem is the place where the the distance between the graphs of f and L has local
extrema. Since such local extrema for the distance f(x) − L(x) always exists by
Theorem 2.3.1, we get (f − L)′(c) = 0 for some c by Theorem 2.3.4. Therefore

f ′(c) = L′(c) =
f(b)− f(a)

b− a
.

Example 2.4.1. We try to verify the Mean Value Theorem for f(x) = x3− 3x+ 1 on
[−1, 1]. This means finding c, such that

f ′(c) = 3(c2 − 1) =
f(1)− f(−1)

1− (−1)
=
−1− 3

1− (−1)
= −2.

We get c = ± 1√
3

.

Example 2.4.2. By the Mean Value Theorem, we have

log(1 + x) = log(1 + x)− log 1 =
1

1 + θx
x for some 0 < θ < 1.

Since
x

1 + x
≤ 1

1 + θx
x ≤ x for x > −1,
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we conclude that
x

1 + x
≤ log(1 + x) ≤ x.

The inequality already appeared in Example 2.3.9.

Example 2.4.3. For the function |x| on [−1, 1], there is no c ∈ (−1, 1) satisfying

f(1)− f(−1) = 0 = f ′(c)(1− (−1)).

The Mean Value Theorem does not apply because |x| is not differentiable at 0.

Exercise 2.4.1. Is the conclusion of the Mean Value Theorem true? If true, find c. If not,
explain why.

1. x3 on [−1, 1].

2. 2x on [0, 1].

3.
1

x
on [1, 2].

4. |x3−3x+1| on [−1, 1].

5.
√
|x| on [−1, 1].

6. cosx on [−a, a].

7. log x on [1, 2].

8. log |x| on [−1, 1].

9. arcsinx on [0, 1].

Exercise 2.4.2. Suppose f(1) = 2 and f ′(x) ≤ 3 on R. How large and how small can f(4)
be? What happens when the largest or the smallest value is reached? How about f(−4)?

Exercise 2.4.3. Prove inequality.

1. | sinx− sin y| ≤ |x− y|.

2.
x− y
x

< log
x

y
<
x− y
y

, for x > y > 0.

3. | arctanx− arctan y| ≤ |x− y|.

Exercise 2.4.4. Find the biggest interval on which |ex−ey| > |x−y|? What about |ex−ey| <
|x− y|?

Exercise 2.4.5. Suppose f(x) is continuous at x0 and differentiable on (x0−δ, x0)∪(x0, x0+
δ). Prove that if limx→x0 f

′(x) = l converges, then f(x) is differentiable at x0 and f ′(x0) =
l.

2.4.2 Criterion for Constant Function

The Mean Value Theorem can be used to prove Theorem 2.3.2: If f ′ ≥ 0 on an
interval, then for any x1 < x2 on the interval, by the Mean Value Theorem, we have

f(x2)− f(x1) = f ′(c)(x2 − x1) ≥ 0.

For the special case f ′ = 0 throughout the interval, the argument gives the following
result.
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Theorem 2.4.2. If f ′(x) = 0 for all x ∈ (a, b), then f(x) is a constant on (a, b).

Applying the theorem to f(x)− g(x), we get the following result.

Theorem 2.4.3. If f ′(x) = g′(x) for all x ∈ (a, b), then there is a constant C, such
that f(x) = g(x) + C on (a, b).

Example 2.4.4. The function ex satisfies f(x)′ = f(x). Are there any other functions
satisfying the equation?

If f(x)′ = f(x). Then

(e−xf(x))′ = (e−x)′f(x) + e−x(f(x))′ = ex(−f(x) + f ′(x)) = 0.

Therefore e−xf(x) = C is a constant, and f(x) = Cex.

Example 2.4.5. Suppose f ′(x) = x and f(1) = 2. Then f ′(x) =

(
x2

2

)′
implies

f(x) =
x2

2
+C for some constant C. By taking x = 1, we get 2 =

1

2
+C. Therefore

C =
3

2
and f(x) =

x2 + 3

2
.

Example 2.4.6. By

(arcsinx)′ =
1√

1− x2
, (arccosx)′ = − 1√

1− x2
.

we have (arcsin x+arccos x)′ = 0, and we have arcsinx+arccos x = C. The constant
can be determined by taking a special value x = 0

C = arcsin 0 + arccos 0 = 0 +
π

2
=
π

2
.

Therefore we have
arcsinx+ arccosx =

π

2
.

Exercise 2.4.6. Prove that a differentiable function is linear on an interval if and only if its
derivative is a constant.

Exercise 2.4.7. Find all functions on an interval satisfying the following equations.

1. f ′(x) = −2f(x).

2. f ′(x) = xf(x).

3. f ′(x) = f(x)2

4. f ′(x)f(x) = 1.

Exercise 2.4.8. Prove equality.
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1. arctanx+ arctanx−1 =
π

2
, for x 6= 0.

2. 3 arccosx− arccos(3x− 4x3) = π, for |x| ≤ 1

2
.

3. arctan
x+ a

1− ax
− arctanx = arctan a, for ax < 1.

4. arctan
x+ a

1− ax
− arctanx = arctan a− π, for ax > 1.

2.4.3 L’Hospital’s Rule

The following limits cannot be computed by simple arithmetic rules.

0

0
: lim
x→1

x3 − 1

x− 1
, lim
x→0

sinx

x
, lim
x→0

log(1 + x)

x
;

∞
∞

: lim
x→0

log x

x−1
, lim
x→∞

log x

x
, lim
x→∞

x2

ex
;

1∞ : lim
x→∞

(
1 +

1

x

)x
, lim
x→0

(1 + sin x)log x;

∞−∞ : lim
x→0

(
1

x
− 1

ex − 1

)
.

We say these limits are indeterminate. Other indeterminates include 0 ·∞, ∞+∞,
00, ∞0. The derivative can help us computing such limits.

Theorem 2.4.4 (L’Hospital’s Rule). Suppose f(x) and g(x) are differentiable func-
tions on (a, b), with g′(x) 6= 0. Suppose

1. Either limx→a+ f(x) = limx→a+ g(x) = 0 or limx→a+ f(x) = limx→a+ g(x) =∞.

2. limx→a+

f ′(x)

g′(x)
= l converges.

Then limx→a+

f(x)

g(x)
= l.

The theorem computes the limits of the indeterminates of type
0

0
or
∞
∞

. The

conclusion is the equality

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)

g′(x)

whenever the right side converges. It is possible that the left side converges but the
right side diverges.
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The theorem also has a similar left sided version, and the left and right sided
versions may be combined to give the two sided version. Moreover, l’Hospital’s rule
also allows a or l to be any kind of infinity.

The reason behind l’Hospital’s rule is the following version of the Mean Value
Theorem, which can be proved similar to the Mean Value Theorem.

Theorem 2.4.5 (Cauchy’s Mean Value Theorem). If f(x) and g(x) are continuous
on [a, b] and differentiable on (a, b), such that g′(x) 6= 0 on (a, b), then there is
c ∈ (a, b), such that

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
.

Consider the parametrized curve (g(t), f(t)) for t ∈ [a, b]. The theorem says that
the straight line connecting the two ends (g(a), f(a)) and (g(b), f(b)) of the curve is

parallel to the tangent of the curve somewhere. The slope of the tangent is
f ′(c)

g′(c)
.

(g(a), f(a))

(g(b), f(b))

f ′(c)

g′(c)

Figure 2.4.2: Cauchy’s Mean Value Theorem.

For the case limx→a+ f(x) = limx→a+ g(x) = 0 of l’Hospital’s rule, we may extend
f and g to continuous functions on [a, b) by assigning f(a) = g(a) = 0. Then for
any a < x < b, we may apply Cauchy’s Mean Value Theorem to the functions on
[a, x] and get

f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)
=
f ′(c)

g′(c)
for some c ∈ (a, x).

Since x→ a+ implies c→ a+, we conclude that limc→a+

f ′(c)

g′(c)
= l implies limx→a+

f(x)

g(x)
=

l.

By changing the variable x to
1

x
, it is not difficult to extend the proof to the case

a = ±∞. The proof for the
∞
∞

type is must more complicated and is omitted here.

Example 2.4.7. In Example 1.2.15, we proved that limx→+∞ a
x = 0 for 0 < a < 1.

Exercise 1.6.15 extended the limit to limx→+∞ x
2ax = 0. We derive the second limit

from the first one by using l’Hospital’s rule.
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We have b =
1

a
> 1, and limx→+∞ a

x = 0 is the same as limx→+∞ b
x = ∞. We

also have limx→+∞ x
2 = ∞. Therefore limx→+∞ x

2ax = limx→+∞
x2

bx
is of type

∞
∞

,

and we may apply l’Hospital’s rule (twice)

lim
x→+∞

x2

bx
=(3) lim

x→+∞

(x2)′

(bx)′
= lim

x→+∞

2x

bx log b

=(2) lim
x→+∞

(2x)′

(bx log b)′
= lim

x→+∞

2

bx(log b)2
=(1) 0.

Here is the precise reason behind the computation. The equality =(1) is from
Example 1.2.15. Then by l’Hospital’s rule, the convergence of the right side of =(2)

implies the convergence of the left side of =(2) and the equality =(2) itself. The left of
=(2) is the same as the right side of =(3). By l’Hospital’s rule gain, the convergence of
the right side of =(3) implies the convergence of the left side of =(3) and the equality
=(3).

Example 2.4.8. Applying l’Hospital’s rule to the limit limx→0
sinx

x
of type

0

0
, we get

lim
x→0

sinx

x
= lim

x→0

(sinx)′

(x)′
= lim

x→0
cosx = 1.

However, this argument is logically circular because it makes use of the formula
(sinx)′ = cosx. A special case of this formula is

lim
x→0

sinx

x
= (sinx)′|x=0 = 1,

which is exactly the conclusion we try to get.

Exercise 2.4.9. Are the application of l’Hospital’s rule logically circular?

1. limx→0
x

sinx
.

2. limx→0
cosx− 1

x
.

3. limx→0
cosx− 1

x2
.

4. limx→1
x2 − 1

x− 1
.

5. limx→1
x2 − 1

x3 − 1
.

6. limx→0
log(1 + x)

x
.
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Example 2.4.9. By blindly using l’Hospital’s rule four times, we have

lim
x→0

sin2 x− sinx2

x4
= lim

x→0

2 sinx cosx− 2x cosx2

4x3

= lim
x→0

cos2 x− sin2 x− cosx2 + 2x2 sinx2

6x2

= lim
x→0

−4 cosx sinx+ 6x sinx2 + 4x3 cosx2

12x

= lim
x→0

4 sin2 x− 4 cos2 x+ 6 sinx2 + 24x2 cosx2 − 8x4 sinx2

12

= −1

3
.

We find that it is increasingly difficult to calculate the derivatives. The following
compute the the limit after calculating the derivatives twice.

lim
x→0

sin2 x− sinx2

x4
= lim

x→0

2 sinx cosx− 2x cosx2

4x3

= lim
x→0

cos2 x− sin2 x− cosx2 + 2x2 sinx2

6x2

= lim
x→0

(
−1

3

(
sinx

x

)2

+
1− cosx2

6x2
+

1

3
sinx2

)
= −1

3
· 12 + 0 +

1

3
· 0 = −1

3
.

In fact, the smartest way is not to calculate the derivatives at all. See Example
2.5.11.

Exercise 2.4.10. Use l’Hospital’s rule to compute the limits.

1. limx→0
sinx− x

x3
.

2. limx→0
sinx− tanx

x3
.

3. limx→0
ex − esinx

x3
.

4. limx→0
cos(sinx)− cosx

x4
.

5. limx→0
1− cosx2

x3 sinx
.

6. limx→1
xx − x

log x− x+ 1
.

7. limx→0
x− tanx

x− sinx
.

8. limx→1
(x− 1) log x

1 + cosπx
.

Example 2.4.10. The limit limx→0+ x log x is of type 0 · ∞. We convert into type
∞
∞

and apply l’Hospital’s rule (in the second equality)

lim
x→0+

x log x = lim
x→0+

log x

x−1
= lim

x→0+

x−1

−x−2
= lim

x→0+
−x = 0.
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The similar argument gives

lim
x→0+

xp log x = 0, for p > 0.

Taking a positive power of the limit, we further get

lim
x→0+

xp(− log x)q = 0, for p, q > 0.

By converting x to
1

x
, we also have

lim
x→+∞

(log x)q

xp
= 0, for p, q > 0.

Example 2.4.11. We compute the limit in Example 2.5.13 by first converting it to

type
0

0
and then applying l’Hospital’s rule

lim
x→0

(
1

x
− 1

ex − 1

)
= lim

x→0

ex − 1− x
x(ex − 1)

= lim
x→0

ex − 1

ex − 1 + xex
= lim

x→0

ex

2ex + xex
=

1

2
.

Example 2.4.12. If we apply l’Hospital’s rule to the limit limx→∞
x+ sinx

x
of type

∞
∞

, then we get

lim
x→∞

x+ sinx

x
= lim

x→∞
(1 + cos x).

We find that the left converges and the right diverges. The reason for the l’Hospital’s
rule to fail is that the second condition is not satisfied.

2.5 High Order Approximation

Linear approximations can be used to solve many problems. When linear approxi-
mations are not enough, however, we may use high order approximations.

Definition 2.5.1. An n-th order approximation of f(x) at x0 is a degree n polynomial

P (x) = a0 + a1(x− x0) + a2(x− x0)2 + · · ·+ an(x− x0)n,

such that for any ε > 0, there is δ > 0, such that

|x− x0| < δ =⇒ |f(x)− P (x)| ≤ ε|x− x0|n.

A function is n-th order differentiable if it has n-order approximation.
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The error Rn(x) = f(x) − P (x) of the approximation is called the remainder.
The definition means that

f(x) = P (x) +Rn(x)

= a0 + a1(x− x0) + a2(x− x0)2 + · · ·+ an(x− x0)n + o((x− x0)n),

where the “small o” notation means that the remainder term satisfies

lim
x→a

f(x)− P (x)

(x− x0)n
= lim

x→a

Rn(x)

(x− x0)n
= 0.

The n-th order approximation of a function is unique. See Exercise 2.5.7. More-
over, if m < n, then the truncation a0 + a1(x−x0) + a2(x−x0)2 + · · ·+ am(x−x0)m

is the m-th order approximation of f at x0. After all, if we have the 10th order
approximation, then we should also have the 5th order approximation.

Example 2.5.1. We have

x4 = (1 + (x− 1))4 = 1 + 4(x− 1) + 6(x− 1)2 + 4(x− 1)3 + (x− 1)4.

For any ε > 0, we have |x− 1| < δ = min
{

1,
ε

5

}
implying

|x4 − 1− 4(x− 1)− 6(x− 1)2| = |4(x− 1)3 + (x− 1)4| ≤ (4 + |x− 1|)|x− 1|3

≤ (4 + 1)
ε

5
|x− 1|2 = ε|x− 1|2.

Therefore 1 + 4(x − 1) + 6(x − 1)2 is the quadratic approximation of x4 at 1. By
similar argument, we get approximations of other orders.

linear : 1 + 4(x− 1),

quadratic : 1 + 4(x− 1) + 6(x− 1)2,

cubic : 1 + 4(x− 1) + 6(x− 1)2 + 4(x− 1)3,

quartic : 1 + 4(x− 1) + 6(x− 1)2 + 4(x− 1)3 + (x− 1)4,

quintic : 1 + 4(x− 1) + 6(x− 1)2 + 4(x− 1)3 + (x− 1)4,

...

Example 2.5.2. The limit

lim
x→0

cosx− 1

x2
= −1

2
in Example 1.5.18 can be interpreted as

lim
x→0

cosx− 1 +
1

2
x2

x2
= 0.

This means that cosx is second order differentiable at 0, with quadratic approxima-

tion 1− 1

2
x2.
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Exercise 2.5.1. Prove that
1

1− x
= 1 + x+ x2 + · · ·+ xn +

xn+1

1− x
. What does this tell you

about the differentiability of
1

1− x
at 0?

Exercise 2.5.2. Show that
1

1 + x
and

1

1 + x2
are differentiable of arbitrary order. What

are their high order approximations?

Exercise 2.5.3. What is the n-th order approximation of 1 + 2x+ 3x2 + · · ·+ 100x100 at 0?

Exercise 2.5.4. Use l’Hospital’s rule to compute the limits. Then interpret your results as
high order approximations.

1. limx→0
sinx− x

x3
.

2. limx→0
sinx2 − x2

x6
.

3. limx→0
sin2 x− x2

x4
.

4. limx→0
1

x5

(
sinx− x+

1

6
x3

)
.

5. limx→0
sinx− tanx

x3
.

6. limx→0
1

x3

(
ex − 1− x− 1

2
x2

)
.

7. limx→0
1

x3

(
log(1 + x)− x+

1

2
x2

)
.

8. limx→1
2 log x+ (x− 1)(x− 3)

(x− 1)3
.

Exercise 2.5.5. For what choice of a, b, c is the function{
x4, if x ≥ 1,

a+ bx+ cx2, if x < 1,

second order differentiable at 1? Is it possible for the function to be third order differen-
tiable?

Exercise 2.5.6. Suppose f(x) is second order differentiable at 0. Show that

3f(x)− 3f(2x) + f(3x) = f(0) + o(x2).

Exercise 2.5.7. Suppose P (x) = a0 + a1(x− a) + a2(x− a)2 satisfies limx→a
P (x)

(x− a)2
= 0.

Prove that a0 = a1 = a2 = 0. Then explain that the result means the uniqueness of
quadratic approximation. Moreover, extend the result to high order approximation.

Exercise 2.5.8. Suppose P (x) is the n-order approximation of f(x). What is the n-order
approximation of f(−x)? Then use Exercise 2.5.7 to explain that the high order ap-
proximation of an even function has not odd power terms. What about the high order
approximation of an odd function?
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2.5.1 Taylor Expansion

The linear approximation may be computed by the derivative. The high order
approximation may be computed by repeatedly taking the derivative. The idea is
suggested by the following example. By applying l’Hospital’s rule three times, we
get a more precise limit than the one in Example 2.5.2

lim
x→0

cosx− 1 +
1

2
x2

x3
= lim

x→0

− sinx− x
3x2

= lim
x→0

− cosx− 1

3 · 2x
= lim

x→0

sinx

3 · 2 · 1
= 0.

Each application of the l’Hospital’s rule means taking derivative once. Therefore we
get the third order approximation of cos x at 0 by taking derivative three times.

If f(x) is differentiable everywhere on an open interval, then the derivative f ′(x)
is a function on the open interval. If the derivative function f ′(x) is also differ-
entiable, then we get the second order derivative f ′′(x) = (f ′(x))′. If the function
f ′′(x) is yet again differentiable, then taking the derivative one more time gives the
third order derivative f ′′′(x) = (f ′′(x))′. The process may continue and we have
the n-th order derivative f (n)(x). The Leibniz notation for the high order derivative

f (n)(x) is
dnf

dxn
.

Let f(x) = cos x and P (x) = 1 − 1

2
x2. The key to the repeated application of

the l’Hospital’s rule is that the numerator is always 0 at x0 = 0. This means that

f(x0) = P (x0), f ′(x0) = P ′(x0), f ′′(x0) = P ′′(x0), f ′′′(x0) = P ′′′(x0).

In general, if P (x) = a0 + a1(x − x0) + a2(x − x0)2 + a3(x − x0)3, then the above
equalities become

f(x0) = a0, f
′(x0) = a1, f

′′(x0) = 2a2, f
′′′(x0) = 3 · 2a3.

Theorem 2.5.2. If f(x) has n-th order derivative at x0, then f is n-th order differ-
entiable, with n-th order approximation

Tn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n.

The polynomial Tn is called the n-th order Taylor expansion of f .
Note that the existence of the derivative f (n)(x0) implicitly assumes that f (k)(x)

exists for all x near x0 and all k < n. The theorem gives one way (but not the only
way!) to compute the high order approximation in case the function has high order
derivative. However, we will show in Example 2.5.8 that it is possible to have high
order approximation without the existence of the high order derivative. Here the
concept (high order differentiability) is strictly weaker than the computation (high
order derivative).
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Example 2.5.3. The high order derivatives of the power function xp are

(xp)′ = pxp−1,

(xp)′′ = p(p− 1)xp−2,

...

(xp)(n) = p(p− 1) · · · (p− n+ 1)xp−n.

More generally, we have

((a+ bx)p)(n) = p(p− 1) · · · (p− n+ 1)bn(a+ bx)p−n.

For a = b = 1, we get the Taylor expansion at 0

(1 + x)p = 1 + px+
p(p− 1)

2!
x2 + · · ·+ p(p− 1) · · · (p− n+ 1)

n!
xn + o(xn).

For a = 1, b = −1 and p = −1, we get the Taylor expansion at 0

1

1− x
= 1 + x+ x2 + · · ·+ xn + o(xn).

You may compare with Exercise 2.5.1.

Example 2.5.4. By (log x)′ = x−1 and the derivatives from Example 2.5.3, we have

(log x)(n) = (−1)n−1 (n− 1)!

xn
. This gives the Taylor expansion at 1

log x = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − · · ·+ (−1)n+1 1

n
(x− 1)n + o((x− 1)n).

This can also be expressed as a Taylor expansion at 0

log(1 + x) = x− 1

2
x2 +

1

3
x3 − · · ·+ (−1)n+1 1

n
xn + o(xn).

Example 2.5.5. By (ex)′ = ex, it is easy to see that (ex)(n) = ex for all n. This gives
the Taylor expansion at 0

ex = 1 +
1

1!
x+

1

2!
x2 + · · ·+ 1

n!
xn + o(xn).

Example 2.5.6. The high order derivatives of sin x and cos x are 4-periodic in the
sense that sin(n+4) x = sin(n) x and cos(n+4) x = cos(n) x, and are given by

(sinx)′ = cosx, (cosx)′ = − sinx,

(sinx)′′ = − sinx, (cosx)′′ = − cosx,

(sinx)′′′ = − cosx, (cosx)′′′ = sinx,

(sinx)′′′′ = sinx, (cosx)′′′′ = cosx.
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This gives the Taylor expansions at 0

sinx = x− 1

3!
x3 +

1

5!
x5 − · · ·+ (−1)n+1 1

(2n− 1)!
x2n−1 + o(x2n),

cosx = 1− 1

2!
x2 +

1

4!
x4 − · · ·+ (−1)n

1

(2n)!
x2n + o(x2n+1).

Note that we have o(x2n) for sinx at the end, which is more accurate than o(x2n−1).
The reason is that the 2n-th term 0 · x2n is omitted from the expression, so that the
approximation is actually of 2n-th order. The similar remark applies to cosx.

We also note that the Taylor expansions of ex, sinx, cosx are related by the
equality

eix = cosx+ i sinx, i =
√
−1.

Exercise 2.5.9. Prove the following properties of high order derivative

(f + g)(n) = f (n) + g(n),

(cf)(n) = cf (n),

(fg)(n) =
n∑
i=0

n!

i!(n− i)!
f (i)g(j).

Exercise 2.5.10. Prove the chain rule for second order derivative

(g(f(x)))′′ = g′′(f(x))f ′(x)2 + g′(f(x))f ′′(x).

Exercise 2.5.11. Compute derivatives of all order.

1. ax.

2. eax+b.

3. sin(ax+ b).

4. cos(ax+ b).

5. log(ax+ b).

6. log
ax+ b

cx+ d
.

7.
ax+ b

cx+ d
.

8.
1

(ax+ b)(cx+ d)
.

Exercise 2.5.12. Compute high order derivatives.

1. (tanx)′′′.

2. (secx)′′′.

3. (sinx2)′′′.

4. (arcsinx)′′.

5. (arctanx)′′.

6. (xx)′′.

7.
d2

dx2

(
1 +

1

x

)x
.

Exercise 2.5.13. Use high order derivatives to find high order approximations.

1. ax, n = 5, at 0.

2. ax, n = 5, at 1.

3. sin2 x, n = 6, at 0.

4. sin2 x, n = 6, at π.

5. ex
2
, n = 6, at 0.

6. ex
2
, n = 6, at 1.

7. x3ex, n = 5, at 0.

8. x3ex, n = 5, at 1.

9. ex sinx, n = 5 at 1.
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Exercise 2.5.14. Compute high order derivatives.

1. (x2 + 1)ex. 2. (x2 + 1) sinx. 3. x2(x− 1)p. 4. x log x.

Exercise 2.5.15. Prove (xn−1e
1
x )(n) =

(−1)n

xn+1
e

1
x .

Exercise 2.5.16. Prove (eax sin(bx+ c))(n) = (a2 + b2)
n
2 eax sin(bx+ c+ nθ), where sin θ =

b√
a2 + b2

. What is the similar formula for (eax cos(bx+ c))(n)?

Exercise 2.5.17. Suppose f(x) has second order derivative near x0. Prove that

f ′′(x0) = lim
h→0

f(x0 + h) + f(x0 − h)− 2f(x0)

h2
.

Exercise 2.5.18. Compare ex, sinx, cosx, log(1 + x) with their Taylor expansions. For ex-

ample, is ex bigger than or smaller than 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
?

2.5.2 High Order Approximation by Substitution

The functions (and their variations) in Examples 2.5.3 through 2.5.11 are the only
ones that we can compute all the high order derivative functions. These give the ba-
sic examples of high order approximations. We get other high order approximations
by combining the basic ones.

Example 2.5.7. Substituting x by
b

a
x in the Taylor expansion of (1 + x)p, we get

(a+ bx)p = ap
(

1 +
b

a
x

)p
= ap

[
1 + p

b

a
x+

p(p− 1)

2!

b2

a2
x2 + · · ·

+
p(p− 1) · · · (p− n+ 1)

n!

bn

an
xn + o

(
bn

an
xn
)]

= ap + pap−1bx+
p(p− 1)

2!
ap−2b2x2 + · · ·

+
p(p− 1) · · · (p− n+ 1)

n!
ap−nbnxn + o(xn).

Note that we used apo

(
bn

an
xn
)

= o(xn) in the computation. The reason is that

o

(
bn

an
xn
)

really means a function R

(
bn

an
xn
)

, where R(x) is the remainder of the
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n-th order Taylor expansion of (1 + x)p. Since limx→0
R(x)

xn
= 0, we get

lim
x→0

apR

(
bn

an
xn
)

xn
= lim

y→0

apR(y)
an

bn
yn

= ap−nbn lim
y→0

R(y)

yn
= 0.

This means apR

(
bn

an
xn
)

= o(xn).

Further substitution of a, b, x by x0, 1, x− x0 gives the Taylor expansion of xp at
x0

xp = (x0 + (x− x0))p

= xp0 + pxp−1
0 (x− x0) +

p(p− 1)

2!
xp−2

0 (x− x0)2 + · · ·

+
p(p− 1) · · · (p− n+ 1)

n!
xp−n0 (x− x0)n + o((x− x0)n).

The Taylor expansion can also be obtained from the high order derivative in Example
2.5.3.

Example 2.5.8. The Taylor expansion of
1

1− x
at 0 in Example 2.5.3 induces the

following approximations

1

1 + x
= 1− x+ x2 − · · ·+ (−1)nxn + o(xn),

1

1 + x2
= 1− x2 + x4 − · · ·+ (−1)nx2n + o(x2n).

Similar to the Taylor expansions of sinx and cosx, we expect that the odd power

terms vanish in the Taylor expansion of
1

1 + x2
. Therefore the remainder should be

improved to o(x2n+1). To get the improved remainder, we consider the 2(n + 1)-th

order Taylor expansion of
1

1 + x2

1

1 + x2
= 1− x2 + x4 − · · ·+ (−1)nx2n + (−1)n+1x2(n+1) + o(x2(n+1)).

This shows that the remainder of the 2n-th order Taylor expansion is (−1)n+1x2(n+1)+

R(x), where R(x) satisfies limx→0
R(x)

x2(n+1)
= 0. By

lim
x→0

(−1)n+1x2(n+1) +R(x)

x2n+1
= 0 = lim

x→0

(
(−1)n+1x+

R(x)

x2(n+1)
x

)
= 0,
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we get

(−1)n+1x2(n+1) + o(x2(n+1)) = o(x2n+1),

and the improved approximation

1

1 + x2
= 1− x2 + x4 − · · ·+ (−1)nx2n + o(x2n+1).

Finally, it is easy to see that
1

1 + x2
has derivative of any order. From the

coefficients in the Taylor expansion, we get

dn

dxn

∣∣∣∣
x=0

(
1

1 + x2

)
= n!an =

{
0, if n = 2k − 1,

(−1)k(2k)!, if n = 2k.

It is practically impossible to get this by directly computing the high order deriva-
tives (i.e., by repeatedly taking derivatives).

Exercise 2.5.19. Explain and justify the following claims about remainders.

1. o(x5) = o(x3).

2. o(x5) + o(x5) = o(x5).

3. o(x4) + o(x5) = o(x3).

4. x3o(x5) = o(x8).

5. o(x3)o(x5) = o(x8).

6. o(x3) + x5 = o(x3).

Exercise 2.5.20. Find the Taylor expansion of
1

1− x3
at 0, and the high order derivatives

of the function at 0.

Exercise 2.5.21. Use the high order derivatives in Example 2.5.8 to find the Taylor expan-
sion of arctanx at 0.

Exercise 2.5.22. Find the Taylor expansion of
1√

1− x2
at 0. Find the high order derivatives

of the function at 0. Then find the Taylor expansion of arcsinx at 0.

Example 2.5.9. The Taylor expansion of ex at 0 induces

e−x = 1− 1

1!
x+

1

2!
x2 − · · ·+ (−1)n

1

n!
xn + o(xn),

ex = ex0ex−x0 = ex0 − 1

1!
ex0(x− x0) +

1

2!
ex0(x− x0)2 − · · ·

+ (−1)n
1

n!
ex0(x− x0)n + o((x− x0)n),

ex
2

= 1 +
1

1!
x2 +

1

2!
x4 + · · ·+ 1

n!
x2n + o(x2n+1).
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Note that we have the more accurate remainder o(x2n+1) for ex
2

for the reason similar
to Example 2.5.8. Moreover, the Taylor expansion of ex

2
gives

(ex
2

)(n)|x=0 =

0, if n = 2k − 1,
(2k)!

k!
, if n = 2k.

Example 2.5.10. The high order approximation of x2ex at 0 is

x2ex = x2

(
1 +

1

1!
x+

1

2!
x2 + · · ·+ 1

n!
xn + o(xn)

)
= x2 +

1

1!
x3 +

1

2!
x4 + · · ·+ 1

n!
xn+2 + o(xn+2).

Here we use x2o(xn) = o(xn+2). The n-th order approximation is

x2ex = x2 +
1

1!
x3 +

1

2!
x4 + · · ·+ 1

(n− 2)!
xn + o(xn).

Can you find the n-th order derivative of x2ex at 0?

On the other hand, to find the high order approximation of x2ex at 1, we express
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the variables in terms of x− 1 and get

x2ex = ((x− 1) + 1)2e(x−1)+1 = e((x− 1)2 + 2(x− 1) + 1)ex−1

= e((x− 1)2 + 2(x− 1) + 1)

(
n∑
i=0

1

i!
(x− 1)i + o((x− 1)n)

)

= e

n∑
i=0

1

i!
(x− 1)i+2 + o((x− 1)n+2)

+ 2e
n∑
i=0

1

i!
(x− 1)i+1 + o((x− 1)n+1)

+ e
n∑
i=0

1

i!
(x− 1)i + o((x− 1)n)

= e
n∑
i=2

1

(i− 2)!
(x− 1)i + o((x− 1)n)

+ 2e(x− 1) + 2e
n∑
i=2

1

(i− 1)!
(x− 1)i + o((x− 1)n)

+ e+ e(x− 1) + e
n∑
i=2

1

i!
(x− 1)i + o((x− 1)n)

= e+ 3e(x− 1) + e
n∑
i=2

(
1

(i− 2)!
+

2

(i− 1)!
+

1

i!

)
(x− 1)i + o((x− 1)n)

= e+ 3e(x− 1) + e
n∑
i=2

i2 + i+ 1

i!
(x− 1)i + o((x− 1)n).

Exercise 2.5.23. Use the basic Taylor expansions to find the high order approximations
and derivatives of functions in Exercise 2.5.11.

Exercise 2.5.24. Use the basic Taylor expansions to find the high order approximations
and derivatives at 0.

1.
1

x(x+ 1)(x+ 2)
.

2.
√

1− x2.

3.
√

1 + x3.

4. log(1 + x2).

5. log(1 + 3x+ 2x2).

6. log
1 + x2

1− x3
.

7. e2x.

8. ax
2
.

9. sinx cos 2x.

10. sinx cos 2x sin 3x.

11. sinx2.

12. sin2 x.

Exercise 2.5.25. Use the basic Taylor expansions to find high order approximations and
high order derivatives.
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1. x3 + 5x− 1 at 1.

2. xp at −3.

3.
x+ 3

x+ 1
at 1.

4.
√
x+ 1 at 1.

5. e−2x at 4.

6. log x at 2.

7. log(3− x) at 2.

8. sinx at
π

2
.

9. sinx at π.

10. cosx at π.

11. sin 2x at
π

4
.

12. sin2 x at π.

Exercise 2.5.26. Use the basic Taylor expansions to find high order approximations and
high order derivatives at x0.

1. ax.

2. x2ex.

3. log x.

4. sinx.

5. sinx cos 2x.

6. sin2 x.

2.5.3 Combination of High Order Approximations

So far we only used simple substitutions to get new approximations. In the subse-
quent examples, we compute more sophisticated combinations of approximations.

Example 2.5.11. By the Taylor expansion of sinx, we have

sin2 x− sinx2 =

(
x− 1

6
x3 +

1

120
x5 + o(x6)

)2

−
(
x2 − 1

6
x6 + o((x2)4)

)
=

(
x2 − 1

3
x4 +

1

36
x6 +

1

60
x6 + o(x6)2 + 2xo(x6) + · · ·

)
−
(
x2 − 1

6
x6 + o(x8)

)
= −1

3
x4 +

19

90
x6 + o(x7).

The term o(x7) at the end comes from

lim
x→0

R(x)

x6
= 0 =⇒ lim

x→0

R(x)2

x7
= 0, lim

x→0

xR(x)

x7
= 0, . . . .

In particular, we get the limit in Example 2.4.9

lim
x→0

sin2 x− sinx2

x4
= −1

3
.

We also get the high order derivatives of f(x) = sin2 x− sinx2 at 0

f ′(0) = f ′′(0) = f ′′′(0) = f (5)(0) = 0, f (4)(0) = −8, f (6)(0) = 152.
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Example 2.5.12. We may compute the Taylor expansions of tanx and secx from the

Taylor expansions of sinx, cos x and
1

1− x

secx =
1

cosx
=

1

1− 1

2
x2 +

1

24
x4 + o(x5)

= 1 +

(
1

2
x2 − 1

24
x4 + o(x5)

)
+

(
1

2
x2 − 1

24
x4 + o(x5)

)2

+

(
1

2
x2 − 1

24
x4 + o(x5)

)3

+ o(x6)

= 1 +
1

2
x2 − 1

24
x4 +

1

4
x4 + o(x5)

= 1 +
1

2
x2 +

5

24
x4 + o(x5),

tanx = sinx secx =

(
x− 1

6
x3 +

1

120
x5 + o(x6)

)(
1 +

1

2
x2 +

5

24
x4 + o(x5)

)
= x− 1

6
x3 +

1

120
x5 +

1

2
x3 − 1

12
x5 +

5

24
x5 + o(x6)

= x+
1

3
x3 +

2

15
x5 + o(x6).

The expansions give (secx)
(4)
x=0 = 5 and (tan x)

(5)
x=0 = 16.

Example 2.5.13. We computed limx→0

(
1

x
− 1

ex − 1

)
by using l’Hospital’s rule in

Example 2.4.11. Alternatively,, we use the Taylor expansions of ex and
1

1− x

1

x
− 1

ex − 1
=

1

x
− 1

x+
x2

2
+ o(x2)

=
1

x

1− 1

1 +
x

2
+ o(x)


=

1

x

(
1− 1 +

(x
2

+ o(x)
)

+ o
(x

2
+ o(x)

))
=

1

2
+
o(x)

x
.

This implies that the limit is
1

2
.

Example 2.5.14. We know limx→∞

(
1 +

1

x

)x
= e from Example 1.6.17. The next

question is what the difference

(
1 +

1

x

)x
− e looks like. As x goes to infinity, does

the difference approach 0 like
1

x
?
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The question is the same as the behavior of (1 + x)
1
x − e near 0. By the Taylor

expansions of log(1 + x) and ex at 0, we get

(1 + x)
1
x − e = e

1
x

log(1+x) − e

= e
1
x

(
x−x

2

2
+o(x2)

)
− e

= e
(
e−

x
2

+o(x) − 1
)

= e
[(
−x

2
+ o(x)

)
+ o

(
−x

2
+ o(x)

)]
= −e

2
x+ o(x).

Translated back into x approaching infinity, we have(
1 +

1

x

)x
− e = − e

2x
+ o

(
1

x

)
.

Exercise 2.5.27. Find the 5-th order approximations at 0.

1. ex sinx.

2.
√
x+ 1ex

2
tanx.

3. (1 + x)x.

4. log
sinx

x
.

5. log cosx.

6.
x

ex − 1
.

Exercise 2.5.28. Use approximations to compute limits.

1. limx→0
1− cosx2

x3 sinx
.

2. limx→0
sinx− tanx

x3
.

3. limx→0

(
1

sin2 x
− 1

x2

)
.

4. limx→0

(
1

x2
− 1

tan2 x

)
.

5. limx→1

(
x

x− 1
− 1

log x

)
.

6. limx→0(cosx+ sinx)
1

x(x+1) .

7. limx→0
ex − esinx

x3
.

8. limx→0 log
cos ax

cos bx
.

9. limx→0
x− tanx

x− sinx
.

10. limx→∞ x
2

(
e− 1

x
−
(

1 +
1

x

)x)
.

11. limx→∞ x
2 log

(
x sin

1

x

)
.

12. limx→1
(x− 1) log x

1 + cosπx
.

Exercise 2.5.29. Use whatever method you prefer to compute limits, p, q > 0.

1. limx→0+ xpe−x
q
.

2. limx→+∞ x
pe−x

q
.

3. limx→+∞ x
p log x.

4. limx→1+(x− 1)p log x.

5. limx→1+(x− 1)p(log x)q.

6. limx→+∞ x
pe−x

q
log x.
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7. limx→+∞ x
p log(log x).

8. limx→+∞(log x)p(log(log x))q.

9. limx→e+(x− e)p log(log x).

Exercise 2.5.30. Use whatever method you prefer to compute limits, p, q > 0.

1. limx→0+
tanp x− xp

sinp x− xp
.

2. limx→0+
sinp x− tanp x

xq
.

3. limx→π
4

tanx− cotx

4x− π
.

4. limx→0
a tan bx− b tan ax

a sin bx− b sin ax
.

Exercise 2.5.31. Use whatever method you prefer to compute limits.

1. limx→∞ x
3

(
sin

1

x
− 1

2
sin

2

x

)
.

2. limx→0
1

x

(
2

x(2 + x)
− 1

ex − 1

)
.

3. limx→0

(
1

log(1 + x)
− 1

x

)
.

4. limx→0

(
1

log(x+
√

1 + x2)
− 1

log(1 + x)

)
.

Exercise 2.5.32. Use whatever method you prefer to compute limits.

1. limx→1− log x log(1− x).

2. limx→0+
xx − 1

x log x
.

3. limx→0+
xx − 1− x log x

x2(log x)2
.

4. limx→0+
x(xx) − x
x2(log x)2

.

5. limx→1
xlog x − 1

(log x)2
.

6. limx→1
xx − x

log x− x+ 1
.

Exercise 2.5.33. Use whatever method you prefer to compute limits.

1. limx→0
(1 + ax)b − (1 + bx)a

x2
.

2. limx→0
(1 + ax+ cx2)b − (1 + bx+ dx2)a

x2
.

3. limx→a
ax − xa

x− a
.

4. limx→0
(a+ x)x − ax

x2
.

5. limx→0+
ax − asinx

x3
, a > 0.

6. limx→0+
log(sin ax)

log(sin bx)
, a, b > 0.

7. limx→0
log(cos ax)

log(cos bx)
.

8. limx→0
cos(sinx)− cosx

x4
.

9. limx→0
arcsin 2x− 2 arcsinx

x3
.

10. limx→0
1− cosx2

x2 sinx2
.

11. limx→π
6

1− 2 sinx

cos 3x
.

12. limx→1+ log x tan
πx

2
.

13. limx→0+ xx
x−1.

14. limx→0 x
sinx.

15. limx→0+(− log x)x.
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16. limx→0

(
e−1(1 + x)

1
x

) 1
x
.

17. limx→0(x−1 arcsinx)
1
x2 .

18. limx→0

(
2

π
arccosx

) 1
x

.

19. limx→0

(
cosx

1 + sinx

) 1
x

.

Exercise 2.5.34. In Example 2.4.2, we applied the Mean Value Theorem to get log(1+x) =
x

1 + θx
for some 0 < θ < 1.

1. Find explicit formula for θ = θ(x).

2. Compute limx→0 θ by using l’Hospital’s rule.

3. Compute limx→0 θ by using high order approximation.

You may try the same for other functions such as ex − 1 = eθx. What can you say about
limx→0 θ in general?

Exercise 2.5.35. Show that the limits converge but cannot be computed by L’Hospital’s
rule.

1. limx→0

x2 sin
1

x
sinx

.
2. limx→∞

x− sinx

x+ sinx
.

Exercise 2.5.36. Find a, b so that the following hold.

1. x− (a+ b cosx) sinx = o(x4). 2. x− a sinx− b tanx = o(x4).

2.5.4 Implicit High Order Differentiation

Example 2.5.15. In Example 2.2.9, the function y = y(x) implicitly given by the unit circle

x2 + y2 = 1 has derivative y′ = −x
y

. Then

y′′ = −y − xy
′

y2
= −

y + x
x

y

y2
= −x

2 + y2

y3
= − 1

y3
.

You may verify the result by directly computing the second order derivative of y =
±
√

1− x2.

Example 2.5.16. In Example 2.2.10, we computed the derivative of the function y = y(x)
implicitly given by the equation 2y − 2x2 − sin y + 1 = 0 and then obtained the linear

approximation at P =

(√
π

2
,
π

2

)
. We can certainly continue finding the formula for the

second order derivative of y(x) and then get the quadratic approximation at P .
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Alternatively, we may compute the quadratic approximation at P by postulating the
approximation to be

y =
π

2
+ a1∆x+ a2∆x2 + o(∆x2), ∆x = x−

√
π

2
.

Substituting into the equation, we get

0 = 2
(π

2
+ a1∆x+ a2∆x2 + o(∆x2)

)
− 2

(√
π

2
+ ∆x

)2

− sin
(π

2
+ a1∆x+ a2∆x2 + o(∆x2)

)
+ 1

= 2a1∆x+ 2a2∆x2 − 4

√
π

2
∆x− 2∆x2 + o(∆x2)− cos(a1∆x+ a2∆x2 + o(∆x2)) + 1

= 2a1∆x+ 2a2∆x2 − 2
√

2π∆x− 2∆x2 +
1

2
(a1∆x+ a2∆x2)2 + o(∆x2)

The coefficients of ∆x and ∆x2 on the right must vanish. Therefore

2a1 − 2
√

2π = 0, 2a2 − 2 +
1

2
a2

1 = 0.

The solution is a1 =
√

2π, a2 =
2− π

2
, and the quadratic approximation is

y(x) =
π

2
+
√

2π∆x+
2− π

2
∆x2 + o(∆x2), ∆x = x−

√
π

2
.

Exercise 2.5.37. Compute quadratic approximations of implicitly defined functions.

1. y2 + 3y3 + 1 = x.

2. sin y = x.

3.
x2

a2
+
y2

b2
= 1.

4.
√
x+
√
y =
√
a.

5. ex+y = xy.

6. x2 + 2xy − y2 − 2x = 0.

Exercise 2.5.38. Compute quadratic approximations of functions y = y(x) given by the
curves.

1. x = sin2 t, y = cos2 t.

2. x = a(t− sin t), y = a(1− cos t).

3. x = et cos 2t, y = et sin 2t.

4. x = (1 + cos t) cos t, y = (1 + cos t) sin t.
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2.5.5 Two Theoretical Examples

Theorem 2.5.2 tells us that the existence of high order derivative implies the high
order differentiability. The following example shows that the converse is not true.

Example 2.5.17. The function x3D(x) satisfies

|x| < δ = ε =⇒ |x3D(x)− 0| ≤ |x|3 ≤ ε|x|2.

Therefore the function is second order differentiable, with 0 = 0 + 0x + 0x2 as the
quadratic approximation.

On the other hand, we have (x3D(x))′|x=0 = 0 and x3D(x) is not differentiable
(because not even continuous) away from 0. Therefore the second order derivative
is not defined.

Exercise 2.5.39. Show that for any n, there is a function that is n-th order differentiable
at 0 but has no second order derivative at 0.

Exercise 2.5.40. The lack of high order derivatives for the function in Example 2.5.17 is
due to discontinuity away from 0. Can you find a function with the following properties?

1. f that has first order derivative everywhere on (−1, 1).

2. f has no second order derivative at 0.

3. f is second order differentiable at 0.

The next example deals with the following intuition from everyday life. Suppose
we try to measure a length by more and more refined rulers. If our readings from
meter ruler, centimeter ruler, millimeter ruler, micrometer ruler, etc, are all 0, then
the real length should be 0. Similarly, the Taylor expansion of a function at 0 is the
measurement by “xn-ruler”. The following example shows that, even if the readings
by all the “xn-ruler” are 0, the function does not have to be 0.

Example 2.5.18. The function

f(x) =

{
e−

1
|x| , if x 6= 0,

0, if x = 0,

has derivative

f ′(x) =


1

x2
e−

1
|x| , if x > 0,

− 1

x2
e−

1
|x| , if x < 0,

0, if x = 0.
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The derivative at x 6= 0 is computed by the usual chain rule, and the derivative at
0 is computed directly

f ′(0) = lim
x→0

1

x
e−

1
|x| = lim

y→∞

y

e|y|
= 0.

In general, it can be inductively proved that

f (n)(x) =


p

(
1

x

)
e−

1
x , if x > 0,

(−1)np

(
−1

x

)
e−

1
x , if x < 0,

0, if x = 0,

where p(t) is a polynomial depending only on n.
The function has the special property that the derivative of any order vanishes

at 0. Therefore the function is differentiable of any order, and all the high order
approximations are 0

f(x) = 0 + 0x+ 0x2 + · · ·+ 0xn + o(xn).

However, the function is not 0.

The example can be understood in two ways. The first is that, for some functions,
even more refined ruler is needed in order to measure “beyond all orders”. The
second is that the function above is not “measurable by polynomials”. The functions
that are measurable by polynomials are call analytic, and the function above is not
analytic.

Exercise 2.5.41. Directly show (i.e., without calculating the high order derivatives) that
the function in Example 2.5.18 is differentiable of any order, with 0 as the approximation
of any order.

2.6 Application of High Order Approximation

2.6.1 High Derivative Test

Theorem 2.3.4 gives the first order derivative condition for a (two sided) differen-
tiable function to have local extreme. As the subsequent examples show, the theorem
only provides candidates for the local extrema. To find out whether such candidates
are indeed local extrema, high order approximations are needed.

Let us consider the first non-trivial high order approximation at x0

f(x) = f(x0) + c(x− x0)n + o((x− x0)n) = f(x0) + c(x− x0)n(1 + o(1)), c 6= 0.
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When x is close to x0, we have 1 + o(1) > 0 and therefore f(x) > f(x0) when
c(x − x0)n > 0 and f(x) < f(x0) when c(x − x0)n < 0. Specifically, we have the
following signs of c(x− x0)n for various cases.

• If n is odd and c > 0, then c(x − x0)n > 0 for x > x0 and c(x − x0)n < 0 for
x < x0.

• If n is odd and c < 0, then c(x − x0)n < 0 for x > x0 and c(x − x0)n > 0 for
x < x0.

• If n is even and c > 0, then c(x− x0)n > 0 for x 6= x0.

• If n is even and c < 0, then c(x− x0)n < 0 for x 6= x0.

The sign of c(x−x0)n then further determines whether f(x) < f(x0) or f(x) > f(x0),
and we get the following result.

Theorem 2.6.1. Suppose f(x) has high order approximation f(x0) + c(x− x0)n at
x0.

1. If n is odd and c 6= 0, then x0 is not a local extreme.

2. If n is even and c > 0, then x0 is a local minimum.

3. If n is even and c < 0, then x0 is a local maximum.

If f has n-th order derivative at x0, the condition of the theorem means

f ′(x0) = f ′′(x0) = · · · = f (n−1)(x0) = 0, f (n)(x0) = n!c 6= 0.

The special case n = 1 is Theorem 2.3.4. For the special case n = 2, the theorem
gives the second derivative test: Suppose f ′(x0) = 0 (i.e., the criterion in Theorem
2.3.4 is satisfied), and f has second order derivative at x0.

1. If f ′′(x0) > 0, then x0 is a local minimum.

2. If f ′′(x0) < 0, then x0 is a local maximum.

Example 2.6.1. In Example 2.3.13, we found the candidates ±1 for the local extrema
of f(x) = x3−3x+1. The second order derivative f ′′(x) = 6x at the two candidates
are

f ′′(1) = 6 > 0, f ′′(−1) = −6 < 0.

Therefore 1 is a local minimum and −1 is a local maximum.
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Example 2.6.2. Consider the function y = y(x) implicitly defined in Example 2.2.10.

By y′(x) =
4x

2− cos y
, we find a candidate x = 0 for the local extreme of y(x). Then

we have

y′′(x) =
4

2− cos y
+ 4x

d

dy

(
1

2− cos y

)∣∣∣∣
y=y(x)

y′.

At the candidate x = 0, we already have y′(0) = 0. Therefore y′′(0) =
4

2− cos y(0)
>

0. This shows that x = 0 is a local minimum of the implicitly defined function.

Example 2.6.3. The function f(x) = x2 − x3D(x) has no second order derivative
at 0, but still has the quadratic approximation f(x) = x2 + o(x2). The quadratic
approximation tells us that 0 is a local minimum of f(x).

Example 2.6.4. Let f(x) =
sinx

6x− x3
for x 6= 0 and f(0) =

1

6
. Then for x 6= 0 close

to 0, we have

f(x) =
1

6x− x3

(
x− x3

6
+

x5

120
+ o(x6)

)
=

1

6− x2

(
1− x2

6
+

x4

120
+ o(x5)

)
=

1

6

(
1 +

x2

6
+
x4

36
+ o(x5)

)(
1− x2

6
+

x4

120
+ o(x5)

)
=

1

6
+

x4

120
+ o(x5).

We note that by f(0) =
1

6
, the 4-th order approximation also holds for x = 0. Then

by Theorem 2.6.1, we find that x = 0 is a local minimum.

Alternatively, we may directly use the idea leading to Theorem 2.6.1. For x 6= 0
close to 0, we have

f(x) =
1

6x− x3

(
x− x3

6
+

x5

120
+ o(x6)

)
=

1

6
+

x4(1 + o(x))

(6− x2) · 120
.

For small x 6= 0, we have
x4(1 + o(x))

(6− x2) · 120
> 0, which further implies f(x) >

1

6
= f(0).

Therefore 0 is a (strict) local minimum.

Exercise 2.6.1. Find the local extrema by using quadratic approximations.

1. x3 − 3x+ 1 on R.

2. xe−x on R.

3. x log x on (0,+∞).

4. (x2 + 1)ex on R.

Exercise 2.6.2. Find the local extrema for the function y = y(x) implicitly given by x3 +
y3 = 6xy.
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Exercise 2.6.3. For p > 1, determine whether 0 is a local extreme for the functionx2 + |x|p sinx sin
1

x
, if x 6= 0,

0, if x = 0.

Exercise 2.6.4. Determine whether 0 is a local extreme.

1. x3 + x4.

2. sinx− x cosx.

3. tanx− sinx.

4.

(
1− x+

1

2!
x2

)
ex.

5.

(
1− x+

1

2!
x2 − 1

3!
x3

)
ex.

Exercise 2.6.5. Let f(0) = 1 and let f(x) be given by the following for x 6= 0. Determine
whether 0 is a local extreme.

1.
sinx

x+ ax2
. 2.

sinx

x+ bx3
. 3.

sinx

x+ ax2 + bx3
.

2.6.2 Convex Function

A function f is convex on an interval if for any x, y in the interval, the straight line
Lx,y connecting points (x, f(x)) and (y, f(y)) lies above the part of the graph of f
over [x, y]. This means

Lx,y(z) = f(x) +
f(y)− f(x)

y − x
(z − x) ≥ f(z) for any x ≤ z ≤ y.

The function is concave if Lx,y lies below the graph of f , which means changing
≥ f(z) above to ≤ f(z). A function f is convex if and only if −f is concave.

x z

Lx,y(z)

y

f(z)

Figure 2.6.1: Convex function.

By the geometric intuition illustrated in Figure 2.6.2, the following are equivalent
convexity conditions, for any x ≤ z ≤ y,

1. Lx,y(z) ≥ f(z).

2. slope(Lx,z) ≤ slope(Lx,y).
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3. slope(Lz,y) ≥ slope(Lx,y).

4. slope(Lx,z) ≤ slope(Lz,y).

Algebraically, it is not difficult to verify the equivalence.

x z y

Lx,yLx,z

Lz,y

Figure 2.6.2: Convexity by comparing slopes.

If a convex function f is differentiable, then we may take y → x+ in the inequality
slope(Lx,z) ≤ slope(Lx,y), and get f ′(x) ≤ slope(Lx,y). Similarly, we may take
z → y− in the inequality slope(Lz,y) ≥ slope(Lx,y), and get f ′(y) ≥ slope(Lx,y).
Combining the two inequalities, we get

x < y =⇒ f ′(x) ≤ f ′(y).

It turns out that the converse is also true.

Theorem 2.6.2. A differentiable function f on an interval is convex if and only if
f ′ is increasing. If f has second order derivative, then this is equivalent to f ′′ ≥ 0.

Similarly, a function f is concave if and only if f ′ is decreasing, and is also
equivalent to f ′′ ≤ 0 in case f ′′ exists.

The converse of Theorem 2.6.2 is explained by Figure 2.6.2. If f ′ is increasing,
then by the Mean Value Theorem (for the two equalities), we have

slope(Lx,z) = f ′(c) ≤ f ′(d) = slope(Lz,y).

A major application of the convexity is another interpretation of the convexity.
In the setup above, a number z between x and y means z = λx+ (1− λ)y for some
λ ∈ [0, 1]. Then the linear function Lx,y(z) = az + b preserves the linear relation

Lx,y(z) = a(λx+ (1− λ)y) + b

= λ(ax+ b) + (1− λ)(ay + b)

= λLx,y(x) + (1− λ)Lx,y(y)

= λf(x) + (1− λ)f(y).
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x z yc d

Lx,z
Lz,y

Figure 2.6.3: Increasing f ′(x) implies convexity.

Therefore the convexity means

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for any 0 ≤ λ ≤ 1.

The following generalizes the inequality.

Theorem 2.6.3 (Jensen’s inequality). If f is convex, and

λ1 + λ2 + · · ·+ λn = 1, 0 ≤ λ1, λ2, . . . , λn ≤ 1,

then

f(λ1x1 + λ2x2 + · · ·+ λnxn) ≤ λ1f(x1) + λ2f(x2) + · · ·+ λnf(xn).

By reversing the direction of inequality, we also get Jensen’s inequality for con-
cave functions.

In all the discussions about convexity, we may also consider the strict inequalities.
So we have a concept of strict convexity, and a differentiable function is strictly
convex on an interval if and only if its derivative is strictly increasing. Jensen’s
inequality can also be extended to the strict case.

Example 2.6.5. By (xp)′′ = p(p − 1)xp−2, we know xp is convex on (0,+∞) when
p ≥ 1 or p < 0, and is concave when 0 < p ≤ 1.

For p ≥ 1, Jensen’s inequality means that

(λ1x1 + λ2x2 + · · ·+ λnxn)p ≤ λ1x
p
1 + λ2x

p
2 + · · ·+ λnx

p
n.

In particular, if all λi =
1

n
, then we get(

x1 + x2 + · · ·+ xn
n

)p
≤ xp1 + xp2 + · · ·+ xpn

n
, for p ≥ 1, xi ≥ 0.

This means that the p-th power of the average is smaller than the average of the
p-th power.
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We note that (xp)′′ > 0 for p > 1. Therefore all the inequalities are strict,
provided some xi > 0 and 0 < λi < 1.

By replacing p with
p

q
and replacing xi with xqi , we get

(
xq1 + xq2 + · · ·+ xqn

n

) 1
q

≤
(
xp1 + xp2 + · · ·+ xpn

n

) 1
p

, for p > q > 0.

x

1

x2

x
1
2

x−
1
2

x−1

x−2

Figure 2.6.4: xp for various p.

Example 2.6.6. By (log x)′′ = − 1

x2
< 0, the logarithmic function is concave. Then

Jensen’s inequality tells us that

log(λ1x1 + λ2x2 + · · ·+ λnxn) ≥ λ1 log x1 + λ2 log x2 + · · ·+ λn log xn.

This is the same as

λ1x1 + λ2x2 + · · ·+ λnxn ≥ xλ1
1 x

λ2
2 · · · xλnn .

For the special case λi =
1

n
, we get

x1 + x2 + · · ·+ xn
n

≥ n
√
x1x2 · · ·xn.

In other words, the arithmetic mean is bigger than the geometric mean.

Exercise 2.6.6. Study the convexity.
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1. x3 + ax+ b.

2. x+ x
5
3 .

3. x+ xp.

4. (x2 + 1)ex.

5. e−x
2
.

6.
√
x2 + 1.

7.
1

x2 + 1
.

8.
x2 − 1

x2 + 1
.

9. log(x2 + 1).

10. xx.

11. x+ 2 sinx.

12. x sin(log x).

Exercise 2.6.7. Find the condition on A and B so that the function

f(x) =

{
Axp, if x ≥ 0,

B(−x)q, if x < 0,

is convex. Is the function necessarily differentiable at 0?

Exercise 2.6.8. Let p, q > 0 satisfy
1

p
+

1

q
= 1. Use the concavity of log x to prove Young’s

inequality
1

p
xp +

1

q
yq ≥ xy.

Exercise 2.6.9. For the case λ1 6= 1, Find suitable µ2, . . . , µn satisfying

λ1x1 + λ2x2 + · · ·+ λnxn = λ1x1 + (1− λ1)(µ2x2 + · · ·+ µnxn).

Then prove Jensen’s inequality by induction.

Exercise 2.6.10. Use the concavity of log x to prove that, for xi > 0, we have

x1 log x1 + x2 log x2 + · · ·+ xn log xn
x1 + x2 + · · ·+ xn

≤ log
x2

1 + x2
2 + · · ·+ x2

n

x1 + x2 + · · ·+ xn
≤ log(x1 + x2 + · · ·+ xn).

Exercise 2.6.11. Use Exercise 2.6.10 to show that f(p) = log(xp1 + xp2 + · · · + xpn)
1
p is

decreasing. Then explain

(xq1 + xq2 + · · ·+ xqn)
1
q ≥ (xp1 + xp2 + · · ·+ xpn)

1
p , for p > q > 0.

Note that the similar inequality in Example 2.6.5 is in reverse direction.

Exercise 2.6.12. Verify the convexity of x log x and then use the property to prove the
inequality (x+ y)x+y ≤ (2x)x(2y)y. Can you extend the inequality to more variables?

2.6.3 Sketch of Graph

We have learned the increasing and decreasing properties, and the convex and con-
cave properties. We may also pay attention to the symmetry properties such as even
or odd function, and the periodic property. Moreover, we should pay attention to
the following special points.



2.6. APPLICATION OF HIGH ORDER APPROXIMATION 159

1. Intercepts, where the graph of function intersects the axes.

2. Disruptions, where the functions are not continuous, or not differentiable.

3. Local extrema, which is often (but not restricted to) the places where the
function changes between increasing and decreasing.

4. Points of inflection, which is the place where the function changes between
convex and concave.

5. Infinity, including the finite places where the function tends to infinity, and
the behavior of the function at the infinity.

One infinity behavior is the asymptotes of a function. If a linear function a+ bx
satisfies

lim
x→+∞

(f(x)− a− bx) = 0,

then the linear function is an asymptote at +∞. If b = 0, then the line is a horizontal
asymptote. We also have similar asymptote at −∞ (perhaps with different a and
b). Moreover, if limx→x0 f(x) = ∞ at a finite x0, then the line x = x0 is a vertical
asymptote.

In subsequent examples, we sketch the graphs of functions and try to indicate
the characteristics listed above as much as possible.

Example 2.6.7. In Example 2.3.4, we determined the monotone property and the
local extrema of f(x) = x3 − 3x + 1. The second order derivative f ′′(x) = 6x also
tells us that f(x) is concave on (−∞, 0] and convex on [0,+∞), which makes 0 into
a point of inflection. Moreover, the function has no asymptotes. The function is
also symmetric with respect to the point (0, 1) (f(x)− 1 is an odd function). Based
on these information, we may sketch the graph.

x (−∞,−1) −1 (−1, 0) 0 (0, 1) 1 (1,+∞)
f = x3 − 3x+ 1 −∞← 3 0 −1 → +∞

f ′ = 3(x+ 1)(x− 1)
+ 0 − 0 +
↗ max ↘ min ↗

f ′′ = 6x
+ 0 −

infl

Example 2.6.8. In Example 2.3.6, we determined the monotone property of f(x) =
3
√
x2(x+1). The second order derivative f ′′(x) =

2(5x− 1)

9
3
√
x4

implies that the function

is concave on (−∞, 0) and on

(
0,

1

5

]
, convex on

[
1

5
,+∞

)
, with

1

5
as a point of

inflection. Moreover, we have limx→−∞ f(x) = −∞, limx→+∞ f(x) = +∞. The
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−3 −2 −1 0 1 2 3

3

1
min

max

infl

Figure 2.6.5: Graph of x3 − 3x+ 1.

function has no asymptote and no symmetry. We also note that limx→0
f(x)

x
=

limx→0
x+ 1

3
√
x

=∞. Therefore the tangent of f(x) at 0 is vertical.

x (−∞,−2
5
) −2

5
(−2

5
, 0) 0 (0, 1

5
) 1

5
(1

5
,+∞)

f −∞← 0.1518 0 0.1073 → +∞

f ′
+ 0 − no +
↗ max ↘ min ↗

f ′′
− no − 0 +

infl

max infl

−0.4 0.2min

Figure 2.6.6: Graph of
3
√
x2(x+ 1).

Example 2.6.9. In Example 2.3.15, we determined the monotone property of f(x) =
xe−x. From f ′′(x) = (x − 2)e−x, we also know the function is concave on (−∞, 2]
and convex on [2,+∞), with f(2) = e−2 as a point of inflection. Moreover, we
have limx→−∞ f(x) = −∞, limx→+∞ f(x) = 0, so that the x-axis is a horizontal
asymptote. The function has no symmetry.



2.6. APPLICATION OF HIGH ORDER APPROXIMATION 161

1 2

e−1
2e−2max infl

Figure 2.6.7: Graph of xe−x.

Example 2.6.10. In Example 2.3.7, we determined the monotone property and the

local extrema of f(x) =
x3

x2 − 1
. The function is not defined at ±1, and has limits

lim
x→1±

f(x) = ±∞, lim
x→−1±

f(x) = ∓∞.

These give vertical asymptotes at ±1. Moreover, we have

lim
x→∞

(f(x)− x) = 0.

Therefore y = x is a slant asymptote at ∞.

The second order derivative f ′′(x) =
2x(x2 + 3)

(x2 − 1)3
shows that the function is convex

on (−1, 0), (1,+∞), and is concave at the other two intervals. Therefore 0 is a point
of inflection.

We also know the function is odd. So the graph is symmetric with respect to
the origin.

Exercise 2.6.13. Use the graph of x3 − 3x+ 1 in Example 2.6.7 to sketch the graphs.

1. −x3 + 3x2 − 1.

2. x3 − 3x+ 2.

3. |x3 − 3x+ 1|.

4. x3 − 3x.

5. x3 − bx, b > 0.

6. ax3 − bx+ c, ab > 0.

Exercise 2.6.14. Use the graph of xe−x in Example 2.6.9 to sketch the graphs.

1. xex.

2. xe2x.

3. (x+ 1)ex.

4. (ax+ b)ex.

5. xax.

6. |x|e−|x−1|.

Exercise 2.6.15. Sketch the graphs.
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√
3

−
√

3

max

min

infl

Figure 2.6.8: Graph of
x3

x2 − 1
.

1. x− sinx.

2. |x− sinx|.

3. x− cosx.

4. x+ sinx.

5. x+ cosx.

6.
1

2
+ sinx cosx.

Exercise 2.6.16. Sketch the graphs.

1.
1

x2
. 2.

1

x2 + 1
. 3.

1

x2 − 1
. 4.

1

x2 + bx+ c
.

Exercise 2.6.17. Sketch the graphs.

1. (x2 + 1)p. 2. (x2 − 1)p. 3.
√

1− x2. 4.
√
ax2 + bx+ c.

Exercise 2.6.18. Sketch the graph of
ax+ b

cx+ d
by using the graph of

1

x
.

Exercise 2.6.19. Sketch the graphs on the natural domains of definitions.

1. x4 − 2x2 + 1.

2. x+
1

x
.

3.
x

x2 + 1
.

4.
x3

(x− 1)2
.

5. x
√
x− 1.

6.
√
x2 + 1− x.

7. x
1
3 (1− x)

2
3 .

8. x2e−x.

9.
1

1 + ex
.

10. e
1
x .

11. x log x.

12. x− log(1 + x).

13. log(1− log x).

14. log(1 + x4).

15. e−x sinx.
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16. x tanx. 17.
1

1 + sin2 x
. 18. 2 sinx+ sin 2x.

19. 2x− 4 sinx+ sin 2x.

2.7 Numerical Application

The linear approximation can be used to find approximate values of functions.

Example 2.7.1. The linear approximation of
√
x at x = 4 is

L(x) =
√

4 + (
√
x)′|x=4(x− 4) = 2 +

1

4
(x− 4).

Therefore the value of the square root near 4 can be approximately computed

√
3.96 ≈ 2 +

1

4
(−0.04) = 1.99,

√
4.05 ≈ 2 +

1

4
(0.05) = 2.0125.

Example 2.7.2. Assume some metal balls of radius r = 10 are selected to make a
ball bearing. If the radius is allowed to have 1% relative error, what is the maximal
relative error of the weight?

The weight of the ball is

W =
4

3
ρπr3.

where ρ is the density. The error ∆W of the weight caused by the error ∆r of the
radius is

∆W ≈ dW

dr
∆r = 4ρπr2∆r.

Therefore the relative error is
∆W

W
≈ 3

∆r

r
.

Given the relative error of the radius is no more than 1%, we have

∣∣∣∣∆rr
∣∣∣∣ ≤ 1%, so

that the relative error of the weight is

∣∣∣∣∆WW
∣∣∣∣ ≤ 3%.

Example 2.7.3. In Example 2.2.11, we computed the derivatives of the functions
y = y(x) and z = z(x) given by the equations x2 + y2 + z2 = 2 and x + y + z = 0,
which is really a circle in R3. The point P = (1, 0,−1) lies on the circle, where we
have

y(1) = 0, z(1) = −1, y′(1) =
1− (−1)

(−1)− 0
= −2, z′(1) =

1− 0

0− (−1)
= 1.
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Therefore

y(1.01) ≈ 0− 2 · 0.01 = −0.02, z(1.01) ≈ −1 + 1 · 0.01 = −0.99,

y(0.98) ≈ 0− 2 · (−0.02) = 0.04, z(0.98) ≈ −1 + 1 · (−0.02) = −1.02.

In other words, the points (1.01,−0.01,−0.99) and (0.98, 0.04,−1.02) are near (1, 0,−1)
and almost on the circle.

Exercise 2.7.1. For a > 0 and small x, derive

n
√
an + x ≈ a+

x

nan−1
.

Then find the approximate values.

1. 4
√

15. 2.
√

46. 3. 5
√

39. 4. 7
√

127.

Exercise 2.7.2. The period of a pendulum is T = 2π

√
L

g
, where L the length of the

pendulum and g is the gravitational constant. If the length of the pendulum is increased
by 0.4%, what is the change in the period?

2.7.1 Remainder Formula

We may get more accurate values by using high order approximations. On the other
hand, we have more confidence on the estimated values if we also know what the
error is. The following result gives a formula for the error.

Theorem 2.7.1 (Lagrange Form of the Remainder). If f(x) has (n + 1)-st order
derivative on (a, x), then the remainder of the n-th order Taylor expansion of f(x)
at a is

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1 for some c ∈ (a, x).

We only illustrate the argument for the case n = 2. We know that the remainder
satisfies R(a) = R′(a) = R′′(a) = 0. Therefore by Cauchy’s Means Value Theorem
(Theorem 2.4.5), we have

R2(x)

(x− a)3
=

R2(x)−R2(a)

(x− a)3 − (a− a)3
=

R′2(c1)

3(c1 − a)2
(a < c1 < x)

=
R′2(c1)−R′2(a)

3[(c1 − a)2 − (a− a)2]
=

R′′2(c2)

3 · 2(c2 − a)
(a < c2 < c1)

=
R′′2(c2)−R′′2(a)

3 · 2(c2 − a)
=
R′′′2 (c3)

3 · 2 · 1
=
f ′′′(c3)

3!
. (a < c3 < c2)

In the last step, we use R′′′2 = f ′′′ because the f − R2 is a quadratic function and
has vanishing third order derivative.
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A slight modification of the proof above actually gives a proof that the Taylor
expansion is high order approximation (Theorem 2.5.2).

Example 2.7.4. The error for the linear approximation in Example 2.7.1 can be esti-
mated by

R1(x) = −

1

4c
3
2

2!
∆x2 =

1

8c
3
2

∆x3.

For both approximate values, we have

|R1| ≤
1

8 · 4 3
2

0.052 = 0.0000390625 < 4× 10−5.

If we use the quadratic approximation at 4

√
x ≈ 2 +

1

4
(x− 4)− 1

64
(x− 4)2,

then we get better estimated values

√
3.96 ≈ 2 +

1

4
(−0.04)− 1

64
(−0.04)2 = 1.989975,

√
4.05 ≈ 2 +

1

4
(0.05)− 1

64
(0.05)2 = 2.0124609375.

The error can be estimated by

R2(x) =

3

8c
5
2

3!
∆x3 =

1

16c
5
2

∆x3.

For both computations, we have

|R2| ≤
1

16 · 4 5
2

0.053 = 0.00000025 = 2.5× 10−7.

The true values are
√

3.96 = 1.989974874213 · · · and
√

4.05 = 2.01246117975 · · · .

Example 2.7.5. The Taylor expansion of ex tells us

e = e1 = 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!
+Rn(1).

By

|Rn(1)| = ec

(n+ 1)!
1n+1 ≤ e

(n+ 1)!
, 0 < c < 1,

we know
|R13(1)| ≤ 0.000000000035 = 3.5× 10−11.
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On the other hand,

1 +
1

1!
+

1

2!
+ · · ·+ 1

13!
= 2.718281828447 · · · ,

Therefore e = 2.7182818284 · · · .

Exercise 2.7.3. Find approximate values by using Taylor expansions and estimate the er-
rors.

1. sin 1, 3rd order approximation.

2. log 2, 5th order approximation.

3. e−1, 5th order approximation.

4. arctan 2, 3rd order approximation.

Exercise 2.7.4. Find approximate values accurate up to the 10-th digit.

1. sin 1. 2.
√

4.05. 3. e−1. 4. tan 46◦.

Exercise 2.7.5. Find the approximate value of tan 1 accurate up to the 10-th digit by using
the Taylor expansions of sinx and cosx.

Exercise 2.7.6. If we use the Taylor expansion to calculate e accurate up to the 100-th
digit, what is the order of the Taylor expansion we should use?

2.7.2 Newton’s Method

The linear approximation can also be used to find approximate solutions of equa-
tions. To solve f(x) = 0, we start with a rough estimation x0 and consider the linear
approximation at x0

L0(x) = f(x0) + f ′(x0)(x− x0).

We expect the solution of the linear equation L0(x) = 0 to be very close to the
solution of f(x) = 0. The solution of the linear equation is easy to find

x1 = x0 −
f(x0)

f ′(x0)
.

Although x1 is not the exact solution of f(x) = 0, chances are it is an improvement
of the initial estimation x0.

To get an even better approximate solution, we repeat the process and consider
the linear approximation at x1

L1(x) = f(x1) + f ′(x1)(x− x1)

The solution of the linear equation L1(x) = 0

x2 = x1 −
f(x1)

f ′(x1)
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solution

L0 L1 L2 L3

x0 x1 x2 x3

Figure 2.7.1: Newton’s method.

is an even better estimation than x1. The idea leads to an inductively constructed
sequence

xn+1 = xn −
f(xn)

f ′(xn)
.

We expect the sequence to rapidly converge to the exact solution of f(x) = 0.

The scheme above for finding the approximate solution is called the Newton’s
method. The method may fail for various reasons. However, if the function is rea-
sonably good and the initial estimation x0 is sufficiently close to the exact solution,
then the method indeed produces a sequence that rapidly converges to the exact
solution. In fact, the error between xn and the exact solution c satisfies

|xn+1 − c| ≤M |xn − c|2

for some constant M that depends only on the function.

Example 2.7.6. By Example 1.7.5, the equation x3−3x+1 = 0 should have a solution
on (0.3, 0.4). By Example 1.7.6, the equation should also have a second solution > 1
and a third solution < 0. More precisely, by f(−2) = −1, f(−1) = 3, f(1) = −1,
f(2) = 3, the second solution is on (−2,−1) and the third solution is on (1, 2).
Taking −2, 0.3, 2 as initial estimations, we apply Newton’s method and compute
the sequence

xn+1 = xn −
x3
n − 3xn + 1

3(x2
n − 1)

=
2

3
xn +

2xn − 1

3(x2
n − 1)

.

We find the three solutions

−1.87938524157182 · · · , 0.347296355333861 · · · , 1.53208888623796 · · · .
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n x0 = −2 x0 = 0.3 x0 = 2
1 -1.88888888888889 0.346520146520147 1.66666666666667
2 -1.87945156695157 0.347296117887934 1.54861111111111
3 -1.87938524483667 0.347296355333838 1.53239016186538
4 -1.87938524157182 0.347296355333861 1.53208898939722
5 -1.87938524157182 0.347296355333861 1.53208888623797
6 1.53208888623796
7 1.53208888623796

Note that the initial estimation cannot be 1 or −1, because the derivative van-
ishes at the points. Moreover, if we start from 0.88, 0.89, 0.90, we get very different
sequences that respectively converge to the three sequences. We see that Newton’s
method can be very sensitive to the initial estimation, especially when the estimation
is close to where the derivative vanishes.

n x0 = 0.88 x0 = 0.89 x0 = 0.90
1 -0.5362647754137 -0.657267917268 -0.80350877192983
2 0.6122033746535 0.920119732577 1.91655789116111
3 0.2884916149262 -1.212642459862 1.63097998546252
4 0.3461342508923 -3.235117846394 1.54150263235725
5 0.3472958236620 -2.419800571908 1.53218794505509
6 0.3472963553337 -2.014098301161 1.53208889739446
7 0.3472963553339 -1.891076746708 1.53208888623796
8 -1.879485375060
9 -1.879385249013

10 -1.879385241572

Example 2.7.7. We solve the equation sinx+x cosx = 0 by starting with the estima-
tion x0 = 1. After five steps, we find the exact solution should be 0.325639452727856 · · · .

n xn
0 1.000000000000000
1 0.471924667505487
2 0.330968826345873
3 0.325645312076542
4 0.325639452734876
5 0.325639452727856
6 0.325639452727856

Exercise 2.7.7. Applying Newton’s method to solve x3− x− 1 = 0 with the initial estima-
tions 1, 0.6 and 0.57. What lesson can you draw from the conclusion?

Exercise 2.7.8. Use Newton’s method to find the unique positive root of f(x) = ex−x−2.
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Exercise 2.7.9. Use Newton’s method to find all the solutions of x2 − cosx = 0.

Exercise 2.7.10. Use Newton’s method to find the approximate values of
√

4.05 and e−1

accurate up to the 10-th digit.

Exercise 2.7.11. Use Newton’s method to find all solutions accurate up to the 6-th digit.

1. x4 = x+ 3. 2. ex = 3− 2x. 3. cos2 x = x. 4. x+ tanx = 1.

Note that one may rewrite the equation into another equivalent form and derive a
simpler recursive relation.

Exercise 2.7.12. The ancient Babylonians used the recursive relation

xn+1 =
1

2

(
xn +

a

xn

)
to get more an more accurate approximate values of

√
a. Explain the scheme by Newton’s

method.

Exercise 2.7.13. What approximate values does the recursive relation xn+1 = 2xn − ax2
n

give you? Explain by Newton’s method.

Exercise 2.7.14. Explain why Newton’s method does not work if we try to solve x3−3x+1 =
0 by starting at the estimation 1.

Exercise 2.7.15. Newton’s method fails to solve the following equations by starting at any
x0 6= 0. Why?

1. 3
√
x = 0. 2. sign(x)

√
|x| = 0.
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Chapter 3

Integration

3.1 Area and Definite Integral

3.1.1 Area below Non-negative Function

Let f(x) be a non-negative function on [a, b]. We wish to find the area of the region

G[a,b](f) = {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ f(x)}

between the graph of the function and the x-axis.

a

f

b

G[a,b](f)

Figure 3.1.1: The region between the function and the x-axis.

Our strategy is the following. For any x ∈ [a, b], let A(x) be the area of G[a,x](f),
which is part of the region over [a, x]. We will find how the function A(x) changes
and recover A(x) from its change. The area we wish to find is then the value A(b).
The subsequent argument assumes that f(x) is continuous.

Consider an interval [x, x+h] ⊂ [a, b], which implicitly assumes h > 0. Then the
change A(x+h)−A(x) is the area of G[x,x+h](f). Note that G[x,x+h](f) is sandwiched
between two rectangles

[x, x+ h]× [0,m] ⊂ G[x,x+h](f) ⊂ [x, x+ h]× [0,M ],

171
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where
m = min

[x,x+h]
f, M = max

[x,x+h]
f.

Since bigger region should have bigger area, we have

mh ≤ A(x+ h)− A(x) ≤Mh.

By h > 0, this is the same as

m ≤ A(x+ h)− A(x)

h
≤M. (3.1.1)

Since the (right) continuity of f(x) implies

lim
h→0+

m = f(x) = lim
h→0+

M,

by the sandwich rule, we further get the right derivative

A′+(x) = lim
h→0+

A(x+ h)− A(x)

h
= f(x). (3.1.2)

a

f

b

m

x

M

x+ h

G
[x
,x

+
h

](
f

)

Figure 3.1.2: Estimate the change of area.

The argument above assumes h > 0. For h < 0, we consider [x + h, x] ⊂ [a, b].
Then the change A(x+ h)−A(x) is the negative of the area of G[x+h,x](f), and the
interval [x+ h, x] has length −h. By the same reason as before, we get

m(−h) ≤ −(A(x+ h)− A(x)) ≤M(−h).

By−h > 0, we still get the inequality (3.1.1), and further application of the sandwich
rule gives the left derivative

A′−(x) = lim
h→0−

A(x+ h)− A(x)

h
= f(x).

We conclude that, for non-negative and continuous f(x), we have

A′(x) = f(x). (3.1.3)
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Example 3.1.1. To find the area of the region below f(x) = c over [a, b], by (3.1.3),
we have A′(x) = c = (cx)′. Then by Theorem 2.4.3, we get A(x) = cx+C. Further
by A(a) = 0, we get C = −ca and A(x) = c(x−a). Therefore the area of the region
is A(b) = c(b− a).

The region G[a,b](c) is actually a rectangle of base b − a and height c. The
computation of the area is consistent with the common sense.

Example 3.1.2. To find the area of the region below f(x) = x over [0, a], we start

with A′(x) = x =

(
1

2
x2

)′
. This implies A(x) =

1

2
x2 + C. By A(0) = 0, we further

get C = 0 and A(x) =
1

2
x2. Therefore the region has area A(a) =

1

2
a2.

The region is actually a triangle, more precisely half of the square of side length
a. The computation of the area is consistent with the common sense.

The pattern we see from the examples above is that, to find the area below a non-
negative function and over an interval [a, b], we first find a function F (x) satisfying
f(x) = F ′(x). Then by Theorem 2.4.3, A′(x) = F ′(x) implies A(x) = F (x) + C.
Further, by A(a) = 0, we get C = −F (a). Therefore A(x) = F (x)− F (a), and the
area we wish to find is

Area(G[a,b](f)) = F (b)− F (a).

This is the Newton-Leibniz formula. The function F is naturally called an an-
tiderivative of f .

Example 3.1.3. To find the area of the region below x2 and over [0, a], we use(
1

3
x3

)′
= x2. The area is

1

3
a3 − 1

3
03 =

1

3
a3.

More generally, for any p 6= −1 and 0 < a < b, by

(
1

p+ 1
xp
)′

= xp, the area of

the region below xp and over [a, b] is

1

p+ 1
(bp+1 − ap+1).

For example, the area of the region below
√
x and over [1, 2] is

2

3
x

3
2

∣∣∣∣x=2

x=1

=
2

3
(2

3
2 − 1

3
2 ) =

2

3
(2
√

2− 1).

Exercise 3.1.1. Find the area of the region below the function over the given interval.
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1 2

√
x

Figure 3.1.3: Area below parabola is
2

3
(2
√

2− 1).

1. xp on [0, 1], p > 0.

2. sinx on [0, π2 ].

3. ex on [0, a].

4.
1

x
on [1, a].

5.
√

1 + x on [1, 2].

6. log x on [1, a].

Exercise 3.1.2. Find the area of the region bounded by 1− x2 and the x-axis.

3.1.2 Definite Integral of Continuous Function

What do we get if we apply the Newton-Leibniz formula to general continuous
functions, which might become negative somewhere? The answer is the signed area.
This means that we count the region between the non-negative part of f and the
x-axis as having positive area and count the region between the non-positive part
of f and the x-axis as having negative area. See Figure 3.1.4.

f

−

+

Figure 3.1.4: Computation by the Newton-Leibniz formula gives signed area.

To justify our claim, let A(x) be the signed area for f(x) over [a, x]. What we
are really concerned with is the change of A(x) where f is negative. So we consider
[x, x+ h] ⊂ [a, b], with h > 0 and f < 0 on [x, x+ h]. The change A(x+ h)− A(x)
is the negative of the positive, “unsigned” area of the region

G[x,x+h](f) = {(t, y) : x ≤ t ≤ x+ h, 0 ≥ y ≥ f(t)}

between f and the x-axis along the interval [x, x+h]. We have the similar inclusion
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(see Figure 3.1.5, and note that [M, 0] ⊂ [m, 0] because 0 ≥M ≥ m)

[x, x+ h]× [M, 0] ⊂ G[x,x+h](f) ⊂ [x, x+ h]× [m, 0], m = min
[x,x+h]

f,M = max
[x,x+h]

f.

The heights of the rectangles are respectively −M and −m, and we get (beware of
the signs)

(−M)h ≤ −(A(x+ h)− A(x)) ≤ (−m)h.

Again we get the inequality (3.1.1) and subsequently the limit (3.1.2).
The discussion for the case h < 0 is similar, and we conclude that A′(x) = f(x).

a

f

b

x

m

M

x+ h

G
(f

)

Figure 3.1.5: Estimate the change of negative area.

The signed area is the definite integral of f(x) and is denoted

∫ b

a

f(x)dx. The

function f(x) is called the integrand and the ends a, b of the interval are called
the upper limit and lower limit. The argument above and the explanation before
Example 3.1.3 show that the definite integral can be computed by the Newton-
Leibniz formula ∫ b

a

f(x)dx = F (b)− F (a), where F ′(x) = f(x).

Example 3.1.4. By (x)′ = 1 and

(
1

2
x2

)′
= x, we get

∫ b

a

dx = b− a,
∫ b

a

xdx =
1

2
(b2 − a2).

In general, for any integer n 6= −1, we have∫ b

a

xndx =
1

n+ 1
(bn+1 − an+1).

However, for n < 0, a and b need to have the same sign. The reason is that we
derived the Newton-Leibniz formula under the assumption that the integrand is
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continuous. If a and b have different sign, then 0 ∈ [a, b], and xn is not continuous
on [a, b] for n < 0.

On the other hand, for any p, xp is defined for x > 0. Then for b ≥ a > 0, we
have ∫ b

a

xpdx =
1

p+ 1
(bp+1 − ap+1).

We note that xp is also defined at 0 for p ≥ 0, and the formula above holds for
p ≥ 0 and b ≥ a ≥ 0. The reason is that xp is right continuous at 0, and we derived
Newton-Leibniz formula by one-sided derivatives.

Example 3.1.5. By (ex)′ = ex and (log x)′ =
1

x
, we get∫ b

a

exdx = eb − ea,
∫ b

a

dx

x
= log b− log a = log

b

a
.

Note that the second integral requires b ≥ a > 0.

Example 3.1.6. By (sin x)′ = cosx and (cos x)′ = − sinx, we get∫ b

a

cosxdx = sin b− sin a,

∫ b

a

sinxdx = cos a− cos b.

For example, we have ∫ 0

−π
sinxdx = cos(−π)− cos 0 = −2.

Example 3.1.7. From the derivatives of arcsinx and arctanx, we get∫ b

a

dx√
1− x2

= arcsin b− arcsin a,

∫ b

a

dx

1 + x2
= arctan b− arctan a.

Of course, we need |a|, |b| < 1 in the first equality because the integrand is defined

only on the open interval (−1, 1). In particular, the area of the region below
1

1 + x2

and over [0, 1] is ∫ 1

0

dx

1 + x2
= arctan 1− arctan 0 =

π

4
.

We also note that

lim
a→−∞
b→+∞

∫ b

a

dx

1 + x2
= lim

b→+∞
arctan b− lim

a→−∞
arctan a =

π

2
−
(
−π

2

)
= π.

So the area of the unbounded region between
1

1 + x2
and the x-axis is π.

Exercise 3.1.3. Use the area meaning of definite integral to directly find the value.
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1.

∫ 1

−1

√
1− x2dx. 2.

∫ 3

0
(x− 2)dx. 3.

∫ b

a
|x− 1|dx.

Exercise 3.1.4. Compute and compare∫ 2

0
x3dx,

∫ 2

0
x5dx,

∫ 2

0
4x3dx,

∫ 2

0
6x5dx,

∫ 2

0
(4x3 + 6x5)dx.

What can you observe about the relation between∫ b

a
f(x)dx,

∫ b

a
g(x)dx,

∫ b

a
cf(x)dx,

∫ b

a
(f(x) + g(x))dx.

Exercise 3.1.5. Compute definite integral.

1.

∫ 2

−1
(x2 − 3x− 4)dx.

2.

∫ 2

0
(3x+ 1)2dx.

3.

∫ 2

0
(3x+ 1)(x− 3)dx.

4.

∫ 8

0

√
3x+ 1dx.

5.

∫ 1

0
(3 + x

√
x)dx.

6.

∫ 2

1

(
x+

1

x

)2

dx.

7.

∫ b

0
ex+adx.

8.

∫ 1

0
(e−x + sinπx)dx.

9.

∫ π
4

0
secx tanxdx.

Exercise 3.1.6. For non-negative integers m and n, prove that∫ 2π

0
cosmx sinnxdx = 0;

∫ 2π

0
cosmx cosnxdx =


0, if m 6= n,

π, if m = n 6= 0,

2π, if m = n = 0;∫ 2π

0
sinmx sinnxdx =

{
0, if m 6= n or m = n = 0,

π, if m = n 6= 0.

Exercise 3.1.7. Compute

∫ b

a

3
√
xdx and

∫ b

a

1
3
√
x
dx. Explain for what range of a, b are the

formulae valid.

Exercise 3.1.8. What is wrong with the equality?

1.

∫ 1

−1

1

x2
dx = −1

x

∣∣∣∣x=1

x=−1

= 2. 2.

∫ π

0
sec2 xdx = tanπ − tan 0 = 0.

Exercise 3.1.9. What is the area of the unbounded region between
1√

1− x2
and the x-axis,

over the interval (−1, 1)?
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3.1.3 Property of Area and Definite Integral

Since the definite integral is the signed area, the usual properties of area is reflected
as properties of the definite integral. An important property of area is the additivity.
Specifically, if X ∩ Y has zero area, then the area of X ∪ Y should be the area of X
plus the area of Y . Translated to definite integral, this means∫ c

a

f(x)dx =

∫ b

a

f(x)dx+

∫ c

b

f(x)dx. (3.1.4)

The equality can be used to calculate the definite integral of “piecewise continuous”
functions.

Example 3.1.8. The definite integral of the function (which is not continuous at 0)

f(x) =

{
−2x, if − 1 ≤ x < 0,

ex, if 0 ≤ x ≤ 1,

on [−1, 1] is∫ 1

−1

f(x)dx =

∫ 0

−1

f(x)dx+

∫ 1

0

f(x)dx =

∫ 0

−1

(−2x)dx+

∫ 1

0

exdx

= −x2|0−1 + ex|10 = e.

1

ex

−1

−2x

Figure 3.1.6: Definite integral of a piecewise continuous function.

We note that the computation of

∫ 0

−1

f(x)dx actually reassigns the value f(0) = 0

to make the function continuous on [−1, 0]. The modification happens inside the
vertical line x = 0. Since the vertical line has zero area, this does not affect the
whole integral.

In general, changing the value of the integrand at finitely many places does not
affect the integral.
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Presumably, the definite integral

∫ b

a

f(x)dx is defined only for the case a ≤ b,

and the equality (3.1.4) implicitly assumes a ≤ b ≤ c. However, by∫ a

a

f(x)dx = 0,

and by taking c = a in (3.1.4), we get∫ a

b

f(x)dx = −
∫ b

a

f(x)dx.

This extends the definite integral to the case the upper limit is smaller than the lower
limit. With such extension, the equality (3.1.4) holds for any combination of a, b, c.
Moreover, the extended definite integral is still computed by the antiderivative as
before.

Another important property of area is positivity. Translated into definite inte-
gral, this means

f ≥ 0 =⇒
∫ b

a

f(x)dx ≥ 0, for a < b. (3.1.5)

Note that if a > b, then

∫ b

a

f(x)dx ≤ 0. The positivity is further extended to

monotonicity in Example 3.5.5.
If we shift the graph under f(x) over [a, b] by d, we get the graph under f(x−d)

over [a+ d, b+ d]. Since the area is not changed by shifting, we get∫ b+d

a+d

f(x− d)dx =

∫ b

a

f(x)dx. (3.1.6)

See Exercise for more examples of properties of area implying properties of definite
integral.

In Section 3.5, we will introduce more properties from the the viewpoint of
computation (i.e., Newton-Leibniz formula). Some of these properties cannot be
easily explained by properties of area.

Exercise 3.1.10. Suppose

∫ 2

0
f(x)dx = 3,

∫ 4

5
f(x)dx = 2,

∫ 0

5
f(x)dx = 0. Find

∫ 4

2
f(x)dx.

Exercise 3.1.11. Use area to explain the equalities.

1.

∫ −a
−b

f(−x)dx =

∫ b

a
f(x)dx.

2.

∫ b

a
cf(x)dx = c

∫ b

a
f(x)dx.
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3.

∫ b

a
f(cx)dx = c−1

∫ cb

ca
f(x)dx.

Then express

∫ b

a
f(Ax+B)dx as some multiple of the definite integral of f(x) over some

interval.

Exercise 3.1.12. Compute the integrals.

1.

∫ b

0
axdx.

2.

∫ b

a
(1 + 2x)ndx.

3.

∫ 2

−1
sign(x)dx.

4.

∫ 2

−1
x2sign(x)dx.

5.

∫ 2

−1
|x|dx.

6.

∫ −1

2
|x|dx.

7.

∫ 2

0
|x2 − 3x+ 2|dx.

8.

∫ 2π

0
| sinx|dx.

9.

∫ 0

2π
| sinx|dx.

Exercise 3.1.13. Compute the integrals.

1.

∫ 2

0
f(x)dx, f(x) =

{
x2, if x < 1,

x−2, if x ≥ 2.

2.

∫ 2

−2
f(x)dx, f(x) =

{
e2|x|, if |x| < 1,

e−x, if |x| ≥ 1.

3.

∫ π

0
f(x)dx, f(x) =

{
sinx, if x < π

2 ,

cosx, if x ≥ π
2 .

4.

∫ π

−π
f(x)dx, f(x) =

{
sinx, if |x| < π

2 ,

cosx, if |x| ≥ π
2 .

3.2 Rigorous Definition of Integral

3.2.1 What is Area?

The definite integral is defined as the signed area. Therefore the rigorous definition
of integral relies on the rigorous definition of area. Any reasonable definition of area
should have the following three properties (the area of a subset X ⊂ R2 is denoted
µ(X)):

1. Bigger subsets have bigger area: X ⊂ Y implies µ(X) ≤ µ(Y ).

2. Areas can be added: If µ(X ∩ Y ) = 0, then µ(X ∪ Y ) = µ(X) + µ(Y ).

3. Rectangles have the usual area: µ(〈a, b〉 × 〈c, d〉) = (b− a)(d− c).



3.2. RIGOROUS DEFINITION OF INTEGRAL 181

Here 〈a, b〉 can mean any of [a, b], (a, b), (a, b], or [a, b). A carefully review of the
argument in Section 3.1 shows that nothing beyond the three properties are used.

Suppose a plane region A ⊂ R2 is a union of finitely many rectangles, A = ∪ni=1Ii,
such that the intersections between Ii are at most lines. Since lines have zero area
by the third property, we may use the second property to further define µ(A) =∑n

i=1 µ(Ii). We give such a plane region the temporary name “good region”, since
we have definite idea about the area of a good region. (Strictly speaking, we still
need to argue that

∑n
i=1 µ(Ii) is independent of the decomposition A = ∪ni=1Ii.)

Figure 3.2.1: Good region.

For any (bounded) subset X ⊂ R2, we may try to approximate X by good
regions, from inside as well as from outside. In other words, we consider good
regions A and B satisfying A ⊂ X ⊂ B. Then by the first property of area, we must
have

µ(A) ⊂ µ(X) ⊂ µ(B).

Note that µ(A) and µ(B) have been defined, and µ(X) is yet to be defined. So we
introduce the inner area (the maximum should really be the supremum)

µ∗(X) = max{µ(A) : A ⊂ X, A is a good region},

as the lower bound for µ(X), and the outer area (the minimum should really be the
infimum)

µ∗(X) = min{µ(B) : B ⊃ X, B is a good region},

as the upper bound for µ(X). We say that the subset X has area (or Jordan
measurable) if µ∗(X) = µ∗(X), and the common value is the area µ(X) of X. If
µ∗(X) 6= µ∗(X), then we say X has no area.

The subset X has area if and only if for any ε > 0, there are good regions A
and B, such that A ⊂ X ⊂ B and µ(B) − µ(A) < ε. In other words, we can
find good inner and outer approximations, such that the difference between the
approximations can be arbitrarily small.
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B

X

A

Figure 3.2.2: Approximation by good regions.

Example 3.2.1. A point can be considered as a reduced rectangle and has area 0. If X
consists of finitely many points, then we can take B = X be the union of all “point
rectangles” in X. Since µ(B) = 0, we get µ∗(X) = 0. By 0 ≤ µ∗(X) ≤ µ∗(X), we
also have µ∗(X) = 0. Therefore finitely many points has area 0.

Example 3.2.2. Consider the triangle with vertices (0, 0), (1, 0) and (1, 1). We parti-
tion the interval [0, 1] into n parts of equal length

[0, 1] = ∪ni=1

[
i− 1

n
,
i

n

]
.

Correspondingly, we have the inner and outer approximations of the triangle

An = ∪ni=1

[
i− 1

n
,
i

n

]
×
[
0,
i− 1

n

]
, Bn = ∪ni=1

[
i− 1

n
,
i

n

]
×
[
0,
i

n

]
.

They have area

µ(An) =
n∑
i=1

1

n

i− 1

n
=

1

2n
(n− 1), µ(Bn) =

n∑
i=1

1

n

i

n
=

1

2n
(n+ 1).

By taking sufficiently big n, the difference µ(Bn)−µ(An) =
1

n
can be arbitrarily

small. Therefore the triangle has area, and the area is given by limn→∞ µ(An) =

limn→∞ µ(Bn) =
1

2
. This justifies the conclusion of Example 3.1.2 for the case a = 1.

Example 3.2.3. For an example of subsets without area, i.e., satisfying µ∗(X) 6=
µ∗(X), let us consider the subset X = (Q ∩ [0, 1])2 of all rational pairs in the unit
square.
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1

inner approx.

1

outer approx.

Figure 3.2.3: Approximating triangle.

Since the only rectangles contained in X are single points, any good region
A ⊂ X must be finitely many points. Therefore µ(A) = 0 for any good region
A ⊂ X, and µ∗(X) = 0.

On the other hand, if B is a good region containing X, then B must almost
contain the whole square [0, 1]2, with the only exception of finitely many horizontal
or vertical (irrational) line segments. Therefore we have µ(B) ≥ µ([0, 1]2) = 1. This
implies µ∗(X) ≥ 1 (show that µ∗(X) = 1!).

Exercise 3.2.1. Use inner and outer approximations to explain that any rectangle has area
given by the multiplication of two sides. This justifies Example 3.1.1.

Exercise 3.2.2. Explain that a (not necessarily horizontal or vertical) straight line segment
has area 0.

Exercise 3.2.3. Explain that the region between y = x and the x-axis over [0, a] has area
1

2
a2. This fully justifies the computation in Example 3.1.2.

Exercise 3.2.4. Explain that the subset X = (Q∩ [0, 1])× [0, 1] of all vertical rational lines
in the unit square has no area.

Exercise 3.2.5. Show that if X ⊂ Y , then µ∗(X) ≤ µ∗(Y ) and µ∗(X) ≤ µ∗(Y ). In
particular, we have µ(X) ≤ µ(Y ) in case both X and Y have areas. The property is used
in deriving (3.1.1).

3.2.2 Darboux Sum

After the rigorous definition of area, we can give the rigorous definition of definite
integral.

Definition 3.2.1. A function f(x) is Riemann integrable if the region

G[a,b](f) = {(x, y) : a ≤ x ≤ b, y is between 0 and f(x)}
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has area. Moreover, the Riemann integral is∫ b

a

f(x)dx = µ
(
G[a,b](f) ∩H+

)
− µ

(
G[a,b](f) ∩H−

)
,

where
H+ = {(x, y) : y ≥ 0}, H− = {(x, y) : y ≤ 0}

are the upper and lower half planes.

Suppose f ≥ 0 on [a, b]. As indicated by Figure 3.2.4, for any inner approxima-
tion of G[a,b](f), we can always choose “full vertical strips” to get a better approxima-
tion for G[a,b](f). Here better means closer to the expected value of µ(G[a,b](f)). The
outer approximations have similar improvements by full vertical strips. Therefore
we only need to consider the approximations by full vertical strips.

a b a bxi−1 xi

mi

Figure 3.2.4: Better inner approximations by vertical strips.

An approximation by full vertical strips is determined by a partition of the in-
terval

P : a = x0 < x1 < · · · < xn = b.

On the i-th interval [xi−1, xi], the inner strip has height mi = min[xi−1,xi] f (the mini-
mum should really be the infimum), and the outer strip has heightMi = max[xi−1,xi] f
(the maximum should really be the supremum). Therefore the inner and outer ap-
proximations are

AP = ∪ni=1[xi−1, xi]× [0,mi) ⊂ X ⊂ BP = ∪ni=1[xi−1, xi]× [0,Mi].

The areas of the two approximations are the lower and upper Darboux sums

L(P, f) = µ(AP ) =
n∑
i=1

mi(xi − xi−1),

U(P, f) = µ(BP ) =
n∑
i=1

Mi(xi − xi−1).

The Riemann integrability of f means that G[a,b](f) has area, which further
means that the difference between inner and outer approximations can be arbitrarily
small. Therefore we get the following criterion for the integrability.
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Theorem 3.2.2 (Riemann Criterion). A bounded function f on [a, b] is Riemann
integrable, if and only if for any ε > 0, there is a partition P , such that

U(P, f)− L(P, f) =
n∑
i=1

(
max

[xi−1,xi]
f − min

[xi−1,xi]
f

)
(xi − xi−1) < ε.

The quantity
ω[xi−1,xi]f = max

[xi−1,xi]
f − min

[xi−1,xi]
f

measures how much the value of f fluctuates on [xi−1, xi] and is called the oscillation
of the function on the interval. Since the continuity of a function can imply that such
oscillations are uniformly small, continuous functions are always Riemann integrable.
The criterion also implies that monotone functions are Riemann integrable. On the
other hand, there are functions that are not Riemann integrable.

Example 3.2.4. Consider the Dirichlet function D(x) on [0, 1]. We always have

min
[xi−1,xi]

D = 0, max
[xi−1,xi]

D = 1.

Therefore U(P, f)− L(P, f) = 1 cannot be arbitrarily small. We conclude that the
Dirichlet function is not Riemann integrable.

The example is closely related to Example 3.2.3. See Exercise 3.2.4.

We note that U(P, f) − L(P, f) is the area of the good subset BP − AP =
∪ni=1[xi−1, xi]× [mi,Mi]. If we consider all the partitions P , the all such good subsets
are essentially all the outer approximations of the graph {(x, f(x)) : a ≤ x ≤ b} of
f (a curve, not including the part below f). Therefore Theorem 3.2.2 basically says
that a function is Riemann integrable if and only if the graph curve of the function
has zero area.

The graph curve is part of the boundary of G(f). In this viewpoint, Theorem
3.2.2 is a special case of the following.

Theorem 3.2.3. A bounded subset X ⊂ R2 has area if and only if its boundary ∂X
has zero area.

We remark that the theory of area can be easily extended to the theory of
volume for subsets in Rn. We may then get the rigorous definition of multivariable
Riemann integrals on subsets of Euclidean spaces, where the subsets should have
volume themselves. The high dimensional versions of Theorems 3.2.2 and 3.2.3 are
still valid.

Further extension of the area theory introduces countably many in place of
finitely many. The result is the modern theory of Lebesgue measure and Lebesgue
integral.



186 CHAPTER 3. INTEGRATION

3.2.3 Riemann Sum

Suppose f is Riemann integrable. When the partition gets more and more refined,
the upper and lower Darboux sums, as the areas of the outer and inner approxima-

tions, will become closer to the integral

∫ b

a

f(x)dx. Now choose φi satisfying

mi ≤ φi ≤Mi.

Then we get the Riemann sum

S(P, f) =
n∑
i=1

φi(xi − xi−1)

sandwiched between the two Darboux sums

L(P, f) ≤ S(P, f) ≤ U(P, f).

We conclude that S(P, f) will also become closer to the integral

∫ b

a

f(x)dx.

A useful case of the Riemann sum is obtained by taking φi = f(x∗i ) to be the
values of some sample points in the partition intervals

S(P, f) =
n∑
i=1

f(x∗i )(xi − xi−1), x∗i ∈ [xi−1, xi].

This is what is usually called the Riemann sum in most textbooks.

Theorem 3.2.4. Suppose f is Riemann integrable on [a, b]. Then for any ε > 0,
there is a partition P0 of [a, b], such that for any partition P obtained by adding
more partition points to P0 (we say P is a refinement of P0), we have∣∣∣∣S(P, f)−

∫ b

a

f(x)dx

∣∣∣∣ < ε.

The statement above is very similar to the limit of sequences and functions, and
we may write ∫ b

a

f(x)dx = lim
P
S(P, f).

The subtlety here is that refinement of partitions replaces n > N or |x− a| < δ.

3.3 Numerical Calculation of Integral

3.3.1 Left and Right Rule

Although Riemann integrals can be computed by the Newton-Leibniz formula, it
is often impossible to find the exact formula of a function F satisfying F ′ = f .
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Moreover, even if we can find a formula for F , it might be too complicated to
evaluate. For many practical applications, it is sufficient to find an approximate
value of the integration. Many efficient numerical schemes have been invented for
this purpose.

All the schemes are the extensions of the Riemann sum in Section 3.2.3. Usually
one starts with a partition that evenly divides the interval

Pn : a = x0 < x1 = a+ h < · · · < xi = a+ ih < · · · < xn = b = a+ nh,

where

h =
b− a
n

= xi − xi−1

is the step size of the partition. By taking all the sample points to be the left of the
partition intervals, we get x∗i = xi−1 = a+ (i− 1)h and the left rule

Ln = h(f(x0) + f(x1) + · · ·+ f(xn−1)).

By taking all the sample points to be the right of the partition interval, we get
x∗i = xi = a+ ih and the right rule

Rn = h(f(x1) + f(x2) + · · ·+ f(xn)).

a ba b a ba b

Figure 3.3.1: Left and right rules.

Example 3.3.1. For f(x) = x on [0, 1], we have

Ln =
1

n

(
0

n
+

1

n
+ · · ·+ n− 1

n

)
=

1

n2
(0 + 1 + · · ·+ (n− 1)) =

1

n2

1

2
(n− 1)n =

n− 1

2n
,

Rn =
1

n

(
1

n
+

2

n
+ · · ·+ n

n

)
=

1

n2
(1 + 2 + · · ·+ n) =

1

n2

1

2
n(n+ 1) =

n+ 1

2n
.

Both converge to
1

2
=

∫ 1

0

xdx as n→∞.
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Example 3.3.2. To compute the integral of f(x) =
1

1 + x2
on [0, 1], we take n = 4.

The partition is

P4 : 0 < 0.25 < 0.5 < 0.75 < 1, h = 0.25.

The values of f(x) at the five partition points are

1.000000, 0.941176, 0.800000, 0.640000, 0.500000.

Then we get the following approximate values of

∫ 1

0

dx

1 + x2

L4 = 0.25× (1.000000 + 0.941176 + 0.800000 + 0.640000) ≈ 0.845294,

R4 = 0.25× (0.941176 + 0.800000 + 0.640000 + 0.500000) ≈ 0.720294.

By Example 3.1.7, the actual value is
π

4
= 0.7853981634 · · · .

Exercise 3.3.1. Find Ln and Rn and confirm the value of related integral.

1. f(x) = x on [a, b].

2. f(x) = x2 on [0, 1].

3. f(x) = 2x on [0, 1].

4. f(x) = ax on [0, 1].

Exercise 3.3.2. Explain the identity.

1. limn→∞

(
1

n2
+

2

n2
+ · · ·+ n− 1

n2

)
=

∫ 1

0
xdx

2. limn→∞

(
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n

)
=

∫ 1

0

dx

1 + x
.

3. limn→∞

(
n

n2 + 12
+

n

n2 + 22
+ · · ·+ n

n2 + n2

)
=

∫ 1

0

dx

1 + x2
.

4. limn→∞
1

n

(
sin

π

n
+ sin

2π

n
+ · · ·+ sin

(n− 1)π

n

)
=

∫ 1

0
sinπxdx.

Exercise 3.3.3. Interpret the limit as integration.

1. limn→∞
1p + 2p + · · ·+ np

np+1
.

2. limn→∞
1

n

∑n
k=1 f

(
a+ k

b− a
n

)
.

Exercise 3.3.4. By interpreting

∫ 2

1
log xdx, find limn→∞

1

n
n

√
(2n)!

n!
.
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3.3.2 Midpoint Rule and Trapezoidal Rule

The left and right rules are quite primitive approximations of the integral. A better
choice is the middle points

x̄i =
xi−1 + xi

2
= a+

2i− 1

2
h

and the corresponding Riemann sum

Mn = h(f(x̄1) + f(x̄2) + · · ·+ f(x̄n)).

Another choice is the average of the Riemann sums using the left and right points.

Tn =
Ln +Rn

2
=
h

2
(f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)).

The two approximation schemes are the midpoint rule and the trapezoidal rule.

a b a ba b a b

Figure 3.3.2: Midpoint and trapezoidal rules.

Example 3.3.3. For f(x) = x on [0, 1], we have

Mn =
1

n

(
1

2n
+

3

2n
+ · · ·+ 2n− 1

2n

)
=

1

2n2
(1 + 3 + · · ·+ (2n− 1)) =

1

2n2
n2 =

1

2
,

Tn =
1

2

(
n− 1

2n
+
n+ 1

2n

)
=

1

2
.

Both happen to be equal to
1

2
=

∫ 1

0

xdx.
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Example 3.3.4. For f(x) = x2 on [0, 1], we have

Mn =
1

n

(
12

4n2
+

32

4n2
+ · · ·+ (2n− 1)2

4n2

)
=

1

4n3
[(12 + 22 + · · ·+ (2n)2)− 22(12 + 23 + · · ·+ n2)]

=
1

4n3

(
1

6
2n(2n+ 1)(4n+ 1)− 1

6
n(n+ 1)(2n+ 1)

)
=

4n2 − 1

12n2
,

Tn =
1

2n

(
02

n2
+ 2

12

n2
+ 2

22

n2
+ · · ·+ 2

(n− 1)2

n2
+
n2

n2

)
=

1

2n3
[2(12 + 22 + · · ·+ n2)− n2]

=
1

2n3

(
2

1

6
n(n+ 1)(2n+ 1)− n2

)
=

2n2 + 1

6n2
.

Compared with the actual value

∫ 1

0

x2dx =
1

3
, the errors are

1

12n2
and

1

6n2
.

Example 3.3.5. We apply the midpoint and trapezoidal rules to

∫ 1

0

dx

1 + x2
. For

n = 4, we have

M4 = 0.25× (0.984615 + 0.876712 + 0.719101 + 0.566372) ≈ 0.786700,

T4 =
0.25

2
× (1.000000 + 2× 0.941176 + 2× 0.800000 + 2× 0.640000 + 0.500000)

≈ 0.782794.

For n = 8, we have h = 0.125 and the following values.

i xi
1

1 + x2
i

x̄i
1

1 + x̄2
i

0 0 1.000000
1 0.125 0.984615 0.0625 0.996109
2 0.25 0.941176 0.1875 0.966038
3 0.325 0.876712 0.3125 0.911032
4 0.5 0.800000 0.4375 0.839344
5 0.625 0.719101 0.5625 0.759644
6 0.75 0.640000 0.6875 0.679045
7 0.875 0.566372 0.8125 0.602353
8 1 0.500000 0.9375 0.532225

Then we get the approximations

M8 ≈ 0.785721, T8 ≈ 0.784747.
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Compared with the actual value

∫ 1

0

dx

1 + x2
=
π

4
= 0.7853981634 · · · , the follow-

ing are the errors of various schemes.

error n = 4 n = 8
|Rn − I| 0.065104 0.031901
|Ln − I| 0.059896 0.030599
|Mn − I| 0.001302 0.000323
|Tn − I| 0.002604 0.000651

We observe that the midpoint and trapezoidal rules are much more accurate,
and the error for the midpoint rule is about half of the error for the trapezoidal rule.
Moreover, doubling the number of partition points improves the error by a factor of
4 for the two rules. The following gives an estimation of the errors.

Theorem 3.3.1. Suppose f ′′(x) is continuous and bounded by K2 on [a, b], then∣∣∣∣∫ b

a

f(x)dx−Mn

∣∣∣∣ ≤ K2(b− a)3

24n2
,

∣∣∣∣∫ b

a

f(x)dx− Tn
∣∣∣∣ ≤ K2(b− a)3

12n2
.

The estimations are derived in Exercises 3.5.9 and 3.5.17.

Exercise 3.3.5. To compute the integral

∫ b

a
x2dx, for any partition of [a, b], we take x∗i =√

1

3
(x2
i−1 + xi−1xi + x2

i ) ∈ [xi−1, xi]. Show that the Riemann sum is exactly the value of

the integral. How can you generalize this to

∫ b

a
xndx?

Exercise 3.3.6. For the integral

∫ b

a
x2dx, we take any partition of [a, b], in which the

intervals may not have the same length. Estimate the error of the various schemes in
terms of the size δ = maxni=1(xi − xi−1) of the partition.

Exercise 3.3.7. Apply the midpoint and trapezoidal rules to the integral and compare with
the actual value.

1.

∫ 2

1

dx

x
, n = 6, 12. 2.

∫ π

0
sinxdx, n = 4, 12.

Exercise 3.3.8. Apply the midpoint and trapezoidal rules to the integral. Moreover, esti-
mate the number of partition points needed for the approximation to be accurate up to
10−6.
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1.

∫ π

0
cosx2dx, n = 5, 10.

2.

∫ π

0

sinx

x
dx, n = 5, 10.

3.

∫ 2

0

1√
1 + x3

dx, n = 5, 10.

4.

∫ 1

0
ex

2
dx, n = 10.

5.

∫ 2

1
e

1
xdx, n = 10.

6.

∫ 2

1

log x

1 + x
dx, n = 10.

Exercise 3.3.9. Show that T2n =
1

2
(Mn + Tn).

Exercise 3.3.10. Prove that if f is a concave positive function, then Tn ≤
∫ b

a
f(x)dx < Mn.

3.3.3 Simpson’s Rule

The midpoint rule is based on the constant approximation, and the trapezoidal rule
is based on linear approximation (actually not quite, as average of two constant
approximations). We may expect better approximation by using quadratic curves.

Since a quadratic curve is determined by three points, we try to approximate f(x)
on the interval [xi−1, xi+1] by the quadratic function Q(x) = A(x−xi)2+B(x−xi)+C
satisfying

f(xi−1) = Q(xi−1) = Ah2 −Bh+ C,

f(xi) = Q(xi) = C,

f(xi+1) = Q(xi+1) = Ah2 +Bh+ C.

Then

∫ xi+1

xi−1

f(x)dx is approximated by (the first equality uses (3.1.6))

∫ xi+1

xi−1

Q(x)dx =
2

3
Ah3 + 2Ch =

h

3
(f(xi−1) + 4f(xi) + f(xi+1)).

Suppose n is even. Then we may apply the quadratic approximations to [x0, x2],
[x2, x4], . . ., [xn−2, xn]. Adding such approximations together, we get an approxima-

tion of

∫ b

a

f(x)dx

Sn =
h

3
(f(x0)+4f(x1)+2f(x2)+4f(x3)+2f(x4)+· · ·+2f(xn−2)+4f(xn−1)+f(xn)).

This is Simpson’s rule. Observe that Sn =
1

3
(2Tn +Mn

2
) is the weighted average of

the trapezoidal (with step size h) and midpoint (with step size 2h) rules.
The errors in Simpson’s rule can be estimated by the bound on the fourth order

derivative.
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Theorem 3.3.2. Suppose f (4)(x) is continuous and bounded by K4 on [a, b], then∣∣∣∣∫ b

a

f(x)dx− Sn
∣∣∣∣ ≤ K4(b− a)5

180n4
.

A consequence of the theorem is that doubling the partition improves the error
by a factor of 16!

Example 3.3.6. Applying Simpson’s rule to

∫ 1

0

dx

1 + x2
for n = 4, we use the same

data from Example 3.3.1 to get

S4 =
0.25

3
× (1.000000 + 4× 0.941176 + 2× 0.800000 + 4× 0.640000 + 0.500000)

≈ 0.785392.

The error |Sn − I| = 0.000540 is comparable to the midpoint and trepezoidal rule
for n = 8.

How many partition points are needed in order to get the approximate value
accurate up to the 6-th digit? To answer the question, we compute the derivatives

f (4)(x) =
24(5x4 − 10x2 + 1)

(1 + x2)5
, f (5)(x) = −240x(x2 − 3)(3x2 − 1)

(1 + x2)6
.

From f (5)(x), the extrema of f (4)(x) on [0, 1] can only be at 0,
1√
3

or 1. By

|f (4)(0)| = 24,

∣∣∣∣f (4)

(
1√
3

)∣∣∣∣ =
81

8
, |f (4)(1)| = 3,

we get K4 = 24. Then the question becomes

24

180n4
≤ 10−6.

Therefore we need n ≥ 19.1. Since n should be an even integer, this means n ≥ 20.
We may carry out the similar estimation for the midpoint and trapezoidal rules.

We find K2 = |f ′′(0)| = 2, so that the estimations become

2

24n2
≤ 10−6,

2

12n2
≤ 10−6.

The answers are respectively n ≥ 289 and n ≥ 409.

Exercise 3.3.11. Repeat Exercise 3.3.7 for the Simpson’s rule.

Exercise 3.3.12. Repeat Exercise 3.3.8 for the Simpson’s rule.
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Exercise 3.3.13. If we apply Simpson’s rule to

∫ 1

0

dx

1 + x2
to get an approximate value for

π accurate up to 10−6, how many partition points do we need?

Exercise 3.3.14. Simpson’s 3/8 rule is obtained by using cubic instead of quadratic approx-
imation. Derive the formula for this rule.

3.4 Indefinite Integral

3.4.1 Fundamental Theorem of Calculus

The Newton-Leibniz formula is derived from A′(x) = f(x), where A(x) =

∫ x

a

f(t)dt

is the signed area over [a, x]. The equality is summarized below.

Theorem 3.4.1 (Fundamental Theorem of Calculus). If f(x) is continuous at x, then

d

dx

∫ x

a

f(t)dt = f(x).

Note that the continuity was used critically in our argument for A′(x) = f(x).

Example 3.4.1. Let f(x) be a continuous function. To find the derivative of

∫ x2

a

f(t)dt,

we note that the integral is a composition∫ x2

a

f(t)dt = A(x2), A(x) =

∫ x

a

f(t)dt.

By the chain rule and the Fundamental Theorem of Calculus, we have

d

dx

∫ x2

a

f(t)dt =
dA(x2)

dx
= A′(x2)2x = 2xf(x2).

The Fundamental Theorem also implies the following derivatives

d

dx

∫ x

a

f(t2)dt = f(x2),

d

dx

∫ x

a

f(t)2dt = f(x)2,

d

dx

(∫ x

a

f(t)dt

)2

= 2f(x)

∫ x

a

f(t)dt.
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Example 3.4.2. The function f(x) =

∫ x

0

et
2

dt cannot be expressed as combinations

of the usual elementary functions. Still, we know f ′(x) = ex
2
. We also have

d

dx

∫ x2

x

et
2

dt =
d

dx

(∫ x2

0

et
2

dt−
∫ x

0

et
2

dt

)
= 2xex

4 − ex2

.

Example 3.4.3. For the sign function

sign(x) =


1, if x > 0,

0, if x = 0,

−1, if x < 0,

we have

A(x) =

∫ x

0

sign(x)dx = |x|, A′(x) =


1, if x > 0,

no, if x = 0,

−1, if x < 0.

We note that A(x) is not differentiable at 0, exactly the place where the sign function
is not continuous. The example shows that the continuity assumption cannot be
dropped from the Fundamental Theorem.

Example 3.4.4. The sine integral function is

Si(x) =

∫ x

0

sin t

t
dt.

Since the integrand can be made continuous by assigning value 1 at 0, we know

Si′(x) =


sinx

x
, if x 6= 0,

1, if x = 0.

Therefore the function Si(x) is strictly increasing on the following intervals

. . . , [−5π,−4π], [−3π,−2π], [−π, π], [2π, 3π], [4π, 5π], . . . ,

and is strictly decreasing on the following intervals

. . . , [−4π,−3π], [−2π,−π], [π, 2π], [3π, 4π], . . . .

This implies that Si(x) has local maxima at . . . ,−6π,−4π,−2π, π, 3π, 5π, . . . , and
has local minima at . . . ,−5π,−3π,−π, 2π, 4π, 6π, . . . . Moreover, we can also calcu-
late the second order derivative

Si′′(x) =


x cosx− sinx

x2
, if x 6= 0,

0, if x = 0,

and find the convexity property of Si(x).
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Example 3.4.5. Suppose f is a continuous function satisfying

2

∫ x

0

tf(t)dt = x

∫ x

0

f(t)dt.

Then by taking derivative on both sides, we get

2xf(x) = xf(x) +

∫ x

0

f(t)dt.

Let F (x) =

∫ x

0

f(t)dt. Then the equation is the same as xF ′(x) = F (x). This

implies (
F (x)

x

)′
=
xF ′(x)− F (x)

x2
= 0.

Therefore

∫ x

0

f(t)dt = F (x) = Cx for a constant C, and we further find that

f(x) = C is a constant.

Exercise 3.4.1. Find the derivative of function.

1.

∫ x

0
t3dt. 2.

∫ x2

0
t3dt. 3.

∫ x3

0
t2dt. 4.

∫ x3

x2

t2dt.

Exercise 3.4.2. Find the derivative of function.

1.

∫ x

1

dt

1 + t3
.

2.

∫ x2

1
log(1 + t2)dt.

3.

∫ π

x
cos t2dt.

4.

∫ 1

x2

√
1 +
√
tdt.

5.

∫ π

tanx
arctan tdt.

6.

∫ cotx

tanx
(1 + t2)

3
2dt.

Exercise 3.4.3. Let f(x) be a continuous function. Find the derivative.

1.

∫ b

x2

f(t)dt.

2.

∫ x2

x
f(t)dt.

3.

∫ x

a
f(t2)dt.

4.

∫ x

a
ef(t)dt.

5.

∫ b

x
f(sin t)dt.

6.

∫ cosx

sinx
f(t)dt.

7.

∫ f(x)

0
f(t)dt.

8.

∫ f−1(x)

0
f(t)dt.

In the 7-th problem, f is differentiable. In the 8-th problem, f is invertible and
differentiable.

Exercise 3.4.4. Study the monotone and convex properties, including the extrema and the
points of inflection.
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1.

∫ x

0

dt

1 + t+ t2
. 2.

∫ x

0
sin

πt2

2
dt. 3.

2√
π

∫ x

0
e−t

2
dt.

Exercise 3.4.5. Find continuous functions f(x) satisfying the equality.

1.

∫ x

0
f(t)dt =

∫ 1

x
f(t)dt on [0, 1].

2. A

∫ x

0
tf(t)dt = x

∫ x

0
f(t)dt on (0,+∞).

3. (f(x))2 = 2

∫ x

0
f(t)dt on (−∞,+∞).

4.

∫ x

0
f(t)dt = (2x− 1)e2x +

∫ x

0
e−tf(t)dt on (−∞,+∞).

Exercise 3.4.6. Find the limit.

1. limx→0
1

x

∫ x

0

sin t

t
dt.

2. limx→0
1

x3

∫ x

0
sin t2dt.

3. limx→+∞

(∫ x

0
et

2
dt

)2

∫ x

0
e2t2dt

.

Exercise 3.4.7. Prove that for a positive continuous function f(x) on (0,+∞), the function

g(x) =

(∫ x

0
tf(t)dt

)2

∫ x

0
f(t)dt

is strictly increasing on (0,+∞).

Exercise 3.4.8. Discuss where f(x) is not continuous and where

∫ x

0
f(t)dt is not differen-

tiable.

1. f(x) =

{
x, if x 6= 0,

1, if x = 0,
.

2. f(x) =

{
x, if x > 0,

1, if x ≤ 0,
.

3. f(x) =


(
x2 sin

1

x

)′
, if x 6= 0,

0, if x = 0,

.

3.4.2 Indefinite Integral

A function F is an antiderivative of f if F ′ = f . By Theorem 2.4.3, the antiderivative
is unique up to adding constants. Therefore we denote all the antiderivatives of f
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by ∫
f(x)dx = F (x) + C, for some F (x) satisfying F ′(x) = f(x).

This is the indefinite integral of f .
The Newton-Leibniz formula says that the definite integral of a continuous func-

tion can be calculated from the antiderivative∫ b

a

f(x)dx = F (b)− F (a).

The Fundamental Theorem of Calculus says that the signed area gives one an-
tiderivative, and can be used as F (x) above∫

f(x)dx =

∫ x

a

f(t)dt+ C.

Example 3.4.6. By

(xp+1)′ = (p+ 1)xp, (log |x|)′ = 1

x
, (ex)′ = ex,

we get ∫
xpdx =


xp+1

p+ 1
+ C, for p 6= −1,

log |x|+ C, for p = −1;

∫
exdx = ex + C.

More generally, we have

∫
(ax+ b)pdx


(ax+ b)p+1

(p+ 1)a
+ C, for p 6= −1,

1

a
log |ax+ b|+ C, for p = −1;

∫
axdx =

ax

log a
+ C.

Example 3.4.7. The antiderivative of the logarithmic function is more complicated∫
log |x|dx = x log |x| − x+ C.

The equality can be verified by taking the derivative

(x log |x| − x)′ = log |x|+ x
1

x
− 1 = log |x|.

Example 3.5.9 gives the systematic way of deriving

∫
log |x|dx.
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Example 3.4.8. The derivatives of the trigonometric functions give us∫
cosxdx = sinx+ C,

∫
sinxdx = − cosx+ C,∫

sec2 xdx = tanx+ C,

∫
secx tanxdx = secx+ C.

The antiderivatives of tan x and secx are more complicated, and are given in Ex-
ample 3.5.27.

Example 3.4.9. The derivative of the inverse sine function gives∫
dx√

1− x2
= arcsinx+ C,

∫
dx√
a2 − x2

= arcsin
x

a
+ C, a > 0.

Similarly, the derivative of the inverse tangent function gives∫
dx

x2 + 1
= arctanx+ C,

∫
dx

x2 + a2
=

1

a
arctan

x

a
+ C.

The similar integrals

∫
dx

x2 − a2
and

∫
dx√
x2 + a

are given in Exercise 3.4.10 and

Examples 3.5.2, 3.5.31, 3.5.32.

Exercise 3.4.9. Compute the integrals.

1.

∫
4
√

1− xdx.

2.

∫
1

3
√

2x+ 1
dx.

3.

∫
axdx.

4.

∫
csc2 xdx.

5.

∫
cscx cotxdx.

6.

∫
dx

cos2 x
.

Exercise 3.4.10. Verify the antiderivatives.

1.

∫
log |x|
x

dx =
1

2
(log |x|)2 + C.

2.

∫
eax cos bxdx =

eax

a2 + b2
(a cos bx+ b sin bx) + C.

3.

∫
cos(ax+ b)dx =

1

a
sin(ax+ b) + C.

4.

∫ √
a2 − x2dx =

a2

2
arcsin

x

a
+

1

2
x
√
a2 − x2 + C, a > 0.

5.

∫
dx

x2 − a2
=

1

2a
log

∣∣∣∣x− ax+ a

∣∣∣∣+ C.

6.

∫
dx√
x2 + a

= log
∣∣∣x+

√
x2 + a

∣∣∣+ C.
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7.

∫ √
x2 + adx =

1

2
x
√
x2 + a+

a

2
log
∣∣∣x+

√
x2 + a

∣∣∣+ C.

Exercise 3.4.11. If

∫
f(x)dx = F (x) + C, then what is

∫
f(ax + b)dx? Apply your

conclusion to compute the integrals.

1.

∫
log |a+ bx|dx.

2.

∫
sin(ax+ b)dx.

3.

∫
sec2(3x− 1)dx.

4.

∫
dx√

1− (x− 1)2
.

5.

∫
dx√

x(1− x)
.

6.

∫
dx

x2 + 2x+ 2
.

Exercise 3.4.12. Find the antiderivative of x(ax2 + b)p. Then compute the integrals.

1.

∫
x
√
x2 + 3dx. 2.

∫
xdx

x2 + 1
. 3.

∫
xdx√
4− x2

.

Exercise 3.4.13. Compute the integrals.

1.

∫
x sin(ax2 + b)dx. 2.

∫
xeax

2+bdx. 3.

∫
x2(ax3 + b)pdx.

One should not just mindlessly compute the antiderivative. Sometimes we need
to consider the meaning of antiderivative and question whether the answer makes
sense.

Example 3.4.10. Without much thinking, we may write∫
|x|dx =


1

2
x2 + C, if x ≥ 0,

−1

2
x2 + C, if x < 0.

However, the constant C in the two cases cannot be independently chosen because
the antiderivative must be differentiable and is therefore continuous at 0. The more
sensible answer is ∫

|x|dx =


1

2
x2, if x ≥ 0

−1

2
x2, if x < 0

+ C.

In other words, the constant C is two cases must be equal.
For another example, instead of

f(x) =

{
ex, if x ≥ 0,

1, if x < 0,

∫
f(x)dx =

{
ex + C, if x ≥ 0,

x+ C, if x < 0,

we should have ∫
f(x)dx =

{
ex, if x ≥ 0

x+ 1, if x < 0
+ C.
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Exercise 3.4.14. Compute indefinite integral.

1.

{
x2, if x ≤ 0,

sinx, if x > 0.
. 2.

{
1− x2, if |x| ≤ 1,

sin(1− |x|), if |x| > 1.
.

Exercise 3.4.15. Does the sign function

sign(x) =


1, if x > 0,

0, if x = 0,

−1, if x < 0,

have antiderivative? Does the function have definite integral? What do you learn from
the example?

3.5 Properties of Integration

Computationally, integration is the reverse of differentiation. Therefore properties
of differentiation have corresponding properties of integration.

3.5.1 Linear Property

Suppose F (x) and G(x) are antiderivatives of f(x) and g(x). Then the linear prop-
erty of the derivative

(F (x) +G(x))′ = F ′(x) +G′(x) = f(x) + g(x), (cF (x))′ = cF ′(x) = cf(x),

implies the linear property of the antiderivative∫
(f(x) + g(x))dx =

∫
f(x)dx+

∫
g(x)dx,

∫
cf(x)dx = c

∫
f(x)dx.

By the Newton-Leibniz formula, we get the linear property for the definite integral∫ b

a

(f(x) + g(x))dx = (F (b) +G(b))− (F (a) +G(a))

= (F (b)− F (a)) + (G(b)−G(a)) =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx,∫ b

a

cf(x)dx = cF (b)− cF (a) = c(F (b)− F (a)) = c

∫ b

a

f(x)dx.

Example 3.5.1. We have∫
x(1 + x)2dx =

∫
(x+ 2x2 + x3)dx =

∫
xdx+ 2

∫
x2dx+

∫
x3dx

=
1

2
x2 +

2

3
x3 +

1

4
x4 + C.
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This furthers gives the definite integral∫ 1

0

x(1 + x)2dx =
1

2
(12 − 02) +

2

3
(13 − 03) +

1

4
(14 − 04) =

17

12
.

On the other hand, it would be very complicated to compute

∫
x(x+ 1)10dx by

the binomial expansion of (1 + x)10. The following is much simpler∫
x(x+ 1)10dx =

∫
((x+ 1)− 1)(x+ 1)10dx =

∫
(x+ 1)11dx−

∫
(x+ 1)10dx

=
1

12
(x+ 1)12 − 1

11
(x+ 1)11 + C =

1

12 · 11
(11x− 1)(x+ 1)11 + C.

Exercise 3.5.1. Compute the integrals.

1.

∫
x
√
x+ 1dx.

2.

∫
x(ax+ b)pdx.

3.

∫
x2(ax+ b)pdx.

4.

∫
(x− 1)(x+ 1)

4
3dx.

5.

∫
(x− 1)(x+ 1)pdx.

6.

∫
x

(x+ 1)10
dx.

7.

∫
x2 − x+ 1

(x+ 1)10
dx.

8.

∫
x− 1√
x
dx.

9.

∫ (
x− 1

x

)2

dx.

10.

∫ (
x− 1

x2

)2

dx.

11.

∫ (
x− 1

x+ 1

)2

dx.

12.

∫
(x− 1)2

(x+ 1)4
dx.

Exercise 3.5.2. Find A,B satisfying

ax+ b

cx+ d
= A+

B

cx+ d
.

Then compute the antiderivatives of
ax+ b

cx+ d
and

(
ax+ b

cx+ d

)2

.

Exercise 3.5.3. Compute the integrals.

1.

∫
(ex − e−x)2dx. 2.

∫
(2x + 3x)2dx. 3.

∫
2x+1 − 3x−1

6x
dx.

Example 3.5.2. To find the antiderivative of
1

x2 − a2
, we use

1

x2 − a2
=

1

(x− a)(x+ a)
=

1

2a

(
1

x− a
− 1

x+ a

)
to get ∫

dx

x2 − a2
=

1

2a
log |x− a| − 1

2a
log |x+ a|+ C =

1

2a
log

∣∣∣∣x− ax+ a

∣∣∣∣+ C.
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This furthers gives the definite integral∫ 3

2

1

x2 − 1
dx =

1

2
log

∣∣∣∣3− 1

3 + 1

∣∣∣∣− 1

2
log

∣∣∣∣2− 1

2 + 1

∣∣∣∣ =
1

2
log

3

2
.

As noted in Example 3.1.4, we should not blindly use the Newton-Leibniz formula
in competing the definite integral. For example, we cannot get∫ 2

0

1

x2 − 1
dx =

1

2
log

∣∣∣∣2− 1

2 + 1

∣∣∣∣− 1

2
log

∣∣∣∣0− 1

0 + 1

∣∣∣∣ = −1

2
log 3,

because the interval [0, 2] contains 1, where the integrand approaches infinity.

Example 3.5.3. The idea in Example 3.5.2 can be extended∫
dx

x(x+ 1)(x+ 2)
=

∫
1

x

(
1

x+ 1
− 1

x+ 2

)
dx =

∫ (
1

x(x+ 1)
− 1

x(x+ 2)

)
dx

=

∫ [(
1

x
− 1

x+ 1

)
− 1

2

(
1

x
− 1

x+ 2

)]
dx

=
1

2
log |x| − log |x+ 1|+ 1

2
log |x+ 2|+ C

=
1

2
log

∣∣∣∣x(x+ 2)

(x+ 1)2

∣∣∣∣+ C,∫
dx

(x2 − 1)2
=

1

4

∫ (
1

x− 1
− 1

x+ 1

)2

dx

=
1

4

∫ (
1

(x− 1)2
+

1

(x+ 1)2
− 2

(x+ 1)(x− 1)

)
dx

=
1

4

∫ [
1

(x− 1)2
+

1

(x+ 1)2
−
(

1

x− 1
− 1

x+ 1

)]
dx

=
1

4

(
− 1

x− 1
− 1

x+ 1
+ log

∣∣∣∣x+ 1

x− 1

∣∣∣∣)+ C

= − x

2(x2 − 1)
+

1

4
log

∣∣∣∣x+ 1

x− 1

∣∣∣∣+ C.

Exercise 3.5.4. Compute the integrals.

1.

∫
xdx

x2 − 1
.

2.

∫
x2dx

x2 − 1
.

3.

∫
dx

x2 + 3x+ 2
.

4.

∫
(2x+ 1)dx

x2 + 3x+ 2
.

5.

∫ 1

0

(2x+ 1)dx

x2 + 3x+ 2
.

6.

∫
x2dx

x2 + 3x+ 2
.

7.

∫
x2dx

x2 + 1
.

8.

∫
dx

(x2 + 1)(x2 + 4)
.

9.

∫
x2dx

(x2 + 1)(x2 + 4)
.
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Exercise 3.5.5. Compute the integrals.

1.

∫
dx

(x+ a)(x+ b)
. 2.

∫
xdx

(x+ a)(x+ b)
. 3.

∫
dx

(x+ a)(x+ b)(x+ c)
.

Example 3.5.4. By trigonometric formula, we have∫ π

0

sin2 xdx =

∫ π

0

1

2
(1− cos 2x)dx =

1

2

∫ π

0

xdx− 1

2

∫ π

0

cos 2xdx

=
1

4
(π2 − 02)− 1

4
(sin 2π − sin 0) =

1

4
π2.

Similar idea gives∫
sin2 xdx =

1

2

∫
(1− cos 2x)dx =

1

2
x− 1

4
sin 2x+ C,∫

sinx cos 2xdx =
1

2

∫
(sin 3x− sinx)dx = −1

6
cos 3x+

1

2
cosx+ C,∫

tan2 xdx =

∫
(sec2 x− 1)dx = tanx− x+ C.

Exercise 3.5.6. Compute the integrals.

1.

∫
cosx sinxdx.

2.

∫ π

0
sin2 x cosxdx.

3.

∫
cos2 xdx.

4.

∫
sin3 xdx.

5.

∫
cosx sin 2xdx.

6.

∫
cot2 xdx.

7.

∫ π
2

0
sinx cos 2xdx.

8.

∫ π

0
| sinx cos 2x|dx.

9.

∫ π

0
| sinx− cosx|dx.

Example 3.5.5. For f ≥ g and a ≤ b, by the inequality (3.1.5) and the linearity of
definite integral, we have∫ b

a

f(x)dx−
∫ b

a

g(x)dx =

∫ b

a

(f(x)− g(x))dx ≥ 0.

Therefore we have

f ≥ g =⇒
∫ b

a

f(x)dx ≥
∫ b

a

g(x)dx, for a < b.

The inequality corresponds to Theorem 2.3.3 that uses the derivatives to compare
functions. However, it is more direct to get the inequality by using the non-negativity
of area.

If we apply the inequality to −|f | ≤ f ≤ |f |, then we get∫ b

a

|f(x)|dx ≥
∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ , for a < b.
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Example 3.5.6 (Average). The average of a function f on [a, b] is
1

b− a

∫ b

a

f(x)dx.

If m ≤ f ≤M on [a, b], then

m(b− a) =

∫ b

a

mdx ≤
∫ b

a

f(x)dx ≤
∫ b

a

Mdx = M(b− a).

This implies that the average of f lies between m and M , which is consistent with
our intuition.

For continuous f , we may take m and M to be the minimum and maximum of
f on [a, b]. By the Intermediate Value Theorem, any value between m and M can
be reached by the function. Therefore the average

1

b− a

∫ b

a

f(x)dx = f(c), for some c ∈ (a, b).

This conclusion is the Integral Mean Value Theorem.

Example 3.5.7. Consider the function F (x) =

∫ x

0

sin t2

t
dt. The 4-th order Taylor

expansion T (x) = x − x3

6
of sin x means that, for any ε > 0, there is δ > 0, such

that
|x| < δ =⇒ | sinx− T (x)| ≤ ε|x|4.

Then for t between 0 and x, we have

|x| <
√
δ =⇒ |t2| < δ =⇒ | sin t2 − T (t2)| ≤ ε|t|8,

so that

|x| <
√
δ =⇒

∣∣∣∣sin t2t − t− t5

6

∣∣∣∣ =

∣∣∣∣sin t2t − 1

t
T (t2)

∣∣∣∣ ≤ ε|t|7.

Therefore

|x| <
√
δ =⇒

∣∣∣∣F (x)− x2

2
− x6

36

∣∣∣∣ =

∣∣∣∣∫ x

0

(
sin t2

t
− t− t5

6

)
dt

∣∣∣∣ ≤ ε

∫ x

0

|t|7dt =
ε

8
|x|8.

This means exactly the 7-th order approximation of F (x)

F (x) =
1

2
x2 +

1

36
x6 + o(x8).

Example 3.5.8. Suppose f(x) has second order derivative on [a, b]. We may take the

linear approximation at the middle point c =
a+ b

2
. By the Lagrange form of the

remainder (Theorem 2.7.1), we get

f(x) = f(c) + f ′(c)(x− c) +
f ′′(x̄)

2
(x− c)2,
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where x̄ depends on x and lies between x and c. Then we have∣∣∣∣∫ b

a

(f(x)− f(c)− f ′(c)(x− c))dx
∣∣∣∣ =

∣∣∣∣∫ b

a

f ′′(x̄)

2
(x− c)2dx

∣∣∣∣
By the linear property of the integral, we have the left side∫ b

a

(f(x)− f(c)− f ′(c)(x− c))dx =

∫ b

a

f(x)dx− f(c)

∫ b

a

dx− f ′(c)
∫ b

a

(x− c)dx

=

∫ b

a

f(x)dx− f(c)(b− a).

Let K2 be the bound for the second order derivative. In other words, |f ′′| ≤ K2 on
[a, b]. Then the right side∣∣∣∣∫ b

a

f ′′(x̄)

2
(x− c)2dx

∣∣∣∣ ≤ ∫ b

a

|f ′′(x̄)|
2

(x− c)2dx ≤ K2

2

∫ b

a

(x− c)2dx =
K2

24
(b− a)3.

We conclude the inequality∣∣∣∣∫ b

a

f(x)dx− f(c)(b− a)

∣∣∣∣ ≤ K2

24
(b− a)3.

Exercise 3.5.7. Show that the integration of n-th order approximation is (n + 1)-st order
approximation. Specifically, find high order approximation of function at 0.

1.

∫ x

0

cos t− 1

t
dt, order 5.

2.

∫ √x
0

sin t− t
t2

dt, order 4.

3.

∫ 0

−x2

et − 1

t
dt, order 5.

4.

∫ x

−x

log(1 + t)

t
dt, order 7.

Exercise 3.5.8. Derive an estimation for

∣∣∣∣∫ b

a
f(x)dx− f(a)(b− a)

∣∣∣∣ in terms of the bound

K1 of f on [a, b].

Exercise 3.5.9. Apply the estimation in Example 3.5.8 to each interval of a partition and
derive the error formula for the midpoint rule in Theorem 3.3.1.

3.5.2 Integration by Parts

The Leibniz rule says that, if F (x) and G(x) are antiderivatives of f(x) and g(x),
then

(F (x)G(x))′ = F ′(x)G(x) + F (x)G′(x) = f(x)G(x) + F (x)g(x).
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In other words, F (x)G(x) is an antiderivative of f(x)G(x) + F (x)g(x), or

F (x)G(x) + C =

∫
f(x)G(x)dx+

∫
F (x)g(x)dx.

If we use the differential notation

dF (x) = F ′(x)dx = f(x)dx, dG(x) = G′(x)dx = g(x)dx,

then the equality becomes∫
F (x)dG(x) = F (x)G(x)−

∫
G(x)dF (x).

The equality can be used in the following way. To compute an integral

∫
h(x)dx,

we separate the integrand into a product h(x) = F (x)g(x) of two parts and integrate

the second part to get

∫
g(x)dx = G(x) + C. Then

∫
h(x)dx =

∫
F (x)dG(x),

which by the equality above is converted into the computation of another integral∫
G(x)dF (x) that exchanges F (x) andG(x). This method of computing the integral

is called the integration by parts.
By Newton-Leibniz formula, the integration by parts for indefinite integral im-

plies the method for definite integral∫ b

a

F (x)dG(x) = F (b)G(b)− F (a)G(a)−
∫ b

a

G(x)dF (x).

The use of Newton-Leibniz formula requires that f = F ′ and g = G′ to be con-
tinuous. Then it is not hard to extend the equality to the case that F and G are
continuous on [a, b] and have continuous derivatives at all but finitely many points
on [a, b].

Example 3.5.9. The antiderivative of the logarithmic function in Example 3.4.7 may
be derived by using the integration by parts (taking F (x) = log |x| and G(x) = x)∫

log |x|dx = x log |x| −
∫
xd log |x| = x log |x| −

∫
x(log |x|)′dx

= x log |x| −
∫
dx = x log |x| − x+ C.

The antiderivative x log |x| − x just obtained can be further used∫
x log |x|dx =

∫
xd(x log |x| − x) = x(x log |x| − x)−

∫
(x log |x| − x)dx

= x2 log x− x2 −
∫
x log |x|dx+

1

2
x2.
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Solving the equation, we get∫
x log |x|dx =

1

2
x2 log x− 1

4
x2 + C.

The following is an alternative way of applying the integration by parts to the same
integral ∫

x log |x|dx =
1

2

∫
log |x|d(x2) =

1

2
x2 − 1

2

∫
x2d(log |x|)

=
1

2
x2 log |x| − 1

2

∫
x2 1

x
dx =

1

2
x2 log |x| − 1

4
x2 + C.

We may compute

∫
xp log xdx by the similar idea.

Example 3.5.10. The integral in Example 3.5.1 can also be computed by using the
integration by parts∫

x(x+ 1)10dx =
1

11

∫
xd(x+ 1)11 (integrate (x+ 1)10 part)

=
1

11
x(x+ 1)11 − 1

11

∫
(x+ 1)11dx (exchange two parts)

=
1

11
x(x+ 1)11 − 1

12 · 11
(x+ 1)12 + C.

Example 3.5.11. Using integration by parts, we have∫
x2e−xdx = −

∫
x2de−x = −x2e−x + 2

∫
xe−xdx

= −x2e−x − 2

∫
xde−x = −x2e−x − 2xe−x + 2

∫
e−xdx

= −(x2 + 2x+ 2)e−x + C.

In general, we have the recursive formula∫
xnaxdx =

1

log a
xnax − n

log a

∫
xn−1axdx.

Exercise 3.5.10. Compute the integral.

1.

∫
x(ax+ b)pdx. 2.

∫
x2(ax+ b)pdx. 3.

∫
(x− 1)(x+ 1)pdx.

Exercise 3.5.11. Compute the integral.
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1.

∫
(x2 − 1)axdx. 2.

∫
(x+ ax)2dx. 3.

∫
xexdx

(x+ 1)2
.

Exercise 3.5.12. Compute the integral.

1.

∫
x2 log |x|dx.

2.

∫
xp log xdx.

3.

∫
(log |x|)2dx.

4.

∫
xp(log |x|)2dx.

5.

∫
x log(x+ 1)dx.

6.

∫
x log

1 + x

1− x
dx.

Exercise 3.5.13. Derive the recursive formula for

∫
(log |x|)ndx. How about

∫
xp(log x)ndx?

Exercise 3.5.14. Compute

∫ 1

0
xnaxdx.

Exercise 3.5.15. For natural numbers m,n, show that

∫ 1

0
xm(1− x)ndx =

m!n!

(m+ n+ 1)!
.

Exercise 3.5.16. Compute the integral.

1.

∫
log(
√
x+ a+

√
x− a)dx.

2.

∫
log(
√
a+ x−

√
a− x)dx.

3.

∫ (
log(x+ a)

x+ b
+

log(x+ b)

x+ a

)
dx.

4.

∫
x√

1 + x2
log(x+

√
1 + x2)dx.

5.

∫
x log(x+

√
1 + x2)√

1 + x2
dx.

6.

∫ (
log(x+

√
1 + x2)

)2
dx.

Exercise 3.5.17. Let f have second order derivative on [a, b].

1. Show that for any constants A and B, we have∫ b

a
f(x)dx =

(
(x+A)f(x)− 1

2
((x+A)2 +B)f ′(x)

)b
a

+
1

2

∫ b

a
((x+A)2 +B)f ′′(x)dx.

2. By choosing suitable A and B in the first part, show that∫ b

a
f(x)dx =

f(a) + f(b)

2
(b− a) +

∫ b

a
((x+A)2 + 2B)f ′′(x)dx,

and ∫ b

a
|(x+A)2 + 2B|dx =

1

12
(b− a)3.

3. Use the second part to derive the error formula for the trapezoidal rule in Theorem
3.3.1.
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Example 3.5.12. Using the integration by parts, we have∫
x cosxdx =

∫
xd sinx = x sinx−

∫
sinxdx = x sinx+ cosx+ C.

The idea can be extended to product of xn, sin ax and cos bx for various a and b∫
x sinx sin 2xdx =

1

2

∫
x(cos 3x− cosx)dx =

1

2

∫
xd

(
1

3
sin 3x− sinx

)
=

1

6
x(sin 3x− 3 sinx)− 1

6

∫
(sin 3x− 3 sinx)dx

=
1

6
x sin 3x− 1

2
x sinx+

1

18
cos 3x− 1

2
cosx+ C.

An example of the definite integral is∫ π
2

0

x2 sinxdx = −
∫ π

2

0

x2d cosx = −
(π

2

)2

cos
π

2
+ 02 cos 0 +

∫ π
2

0

2x cosxdx

= 2

∫ π
2

0

xd sinx = 2
π

2
sin

π

2
− 2 · 0 sin 0− 2

∫ π
2

0

sinxdx

= π + 2 cos
π

2
− 2 cos 0 = π − 2.

Example 3.5.13. Let

I0 =

∫
eax cos bxdx, J0 =

∫
eax sin bxdx.

We have

I0 = a−1

∫
cos bxdeax = a−1eax cos bx− a−1

∫
eaxd cos bx

= a−1eax cos bx+ a−1bJ0,

J0 = a−1

∫
sin bxdeax = a−1eax sin bx− a−1

∫
eaxd sin bx

= a−1eax sin bx− a−1bI0.

Solving the system for I0 and J0, we get∫
eax cos bxdx =

eax

a2 + b2
(a cos bx+ b sin bx) + C,∫

eax sin bxdx =
eax

a2 + b2
(−b cos bx+ a sin bx) + C.

Let

I1 =

∫
xex cosxdx, J1 =

∫
xex sinxdx.
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Using the earlier computation of I0 and J0, we have

I1 =

∫
x cosxdex = xex cosx−

∫
(cosx− x sinx)exdx

= xex cosx− 1

2
ex(cosx+ sinx) + J1.

Similarly, we have

J1 = xex sinx− 1

2
ex(− cosx+ sinx)− I1.

Solving the two equations, we get∫
xex cosxdx =

1

2
xex(cosx+ sinx)− ex sinx+ C,∫

xex sinxdx =
1

2
xex(− cosx+ sinx) + ex cosx+ C.

Example 3.5.14. Let

Im,n =

∫
cosm x sinn xdx.

If n 6= 0, then we may integrate a copy of sin x to get

Im,n = −
∫

cosm x sinn−1 xd cosx

= − cosm+1 x sinn−1 x

+

∫
(−m cosm−1 x sinn x+ (n− 1) cosm+1 x sinn−2 x) cosxdx

= − cosm+1 x sinn−1 x

+

∫
(−m cosm x sinn x+ (n− 1) cosm x(1− sin2 x) sinn−2 x)dx

= − cosm+1 x sinn−1 x− (m+ n− 1)Im,n − (n− 1)Im,n−2.

Therefore (the formula can be directly verified for n = 0)

Im,n = − 1

m+ n
cosm+1 x sinn−1 x+

n− 1

m+ n
Im,n−2, m+ n 6= 0.

The formula reduces the power of sine by 2. If we first integrate a copy of cosx,
then we get another recursive relation that reduces the power of cosine by 2

Im,n =
1

m+ n
cosm−1 x sinn+1 x+

m− 1

m+ n
Im−2,n, m+ n 6= 0.
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On the other hand, we can also express Im,n−2 and Im−2,n in terms of Im,n. After
substituting n by n+ 2, we get recursive relations that increase the power by 2

Im,n =
1

n+ 1
cosm+1 x sinn+1 x+

m+ n+ 2

n+ 1
Im,n+2, n 6= −1,

= − 1

m+ 1
cosm+1 x sinn+1 x+

m+ n+ 2

m+ 1
Im+2,n, m 6= −1.

Here is a concrete example of using the recursive relation∫
cos4 x sin6 xdx = I4,6 = − 1

4 + 6
cos4+1 x sin6−1 x+

6− 1

4 + 6
I4,6−2

= − 1

10
cos5 x sin5 x+

5

10
I4,4

= − 1

10
cos5 x sin5 x+

5

10

(
−1

8
cos5 x sin3 x+

3

8
I4,2

)
= − cos5 x

(
1

10
sin5 x+

5

10 · 8
sin3 x

)
+

5 · 3
10 · 8

(
−1

6
cos5 x sinx+

1

6
I4,0

)
= − cos5 x

(
1

10
sin5 x+

5

10 · 8
sin3 x+

5 · 3
10 · 8 · 6

sinx

)
+

5 · 3 · 1
10 · 8 · 6

(
1

4
cos3 x sinx+

3

4
I2,0

)
= − cos5 x

(
1

10
sin5 x+

5

10 · 8
sin3 x+

5 · 3
10 · 8 · 6

sinx

)
+

5 · 3 · 1
10 · 8 · 6

1

4
cos3 x sinx+ +

5 · 3 · 1
10 · 8 · 6

3

4

(
1

2
cosx sinx+

1

2
I0,0

)
= − cos5 x

(
1

10
sin5 x+

5

10 · 8
sin3 x+

5 · 3
10 · 8 · 6

sinx

)
+

5 · 3 · 1
10 · 8 · 6

(
1

4
cos3 x+

3 · 1
4 · 2

cosx

)
sinx+ +

5 · 3 · 1
10 · 8 · 6

3 · 1
4 · 2

x+ C.

Here is another example that requires increasing the power∫
sin2 x

cos4 x
dx = I−4,2 = − 1

−4 + 1
cos−4+1 x sin2+1 x+

−4 + 2 + 2

−4 + 1
I−4+2,2

=
1

3

sin3 x

cos3 x
+ C.

Applying the recursive relation to the definite integral, we have∫ π
2

0

sinn xdx = − 1

n
cosx sinn−1 x

∣∣∣∣π2
0

+
n− 1

n

∫ π
2

0

sinn−2 xdx =
n− 1

n

∫ π
2

0

sinn−2 xdx.
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Then we get

∫ π
2

0

sinn xdx =
n− 1

n

n− 3

n− 2
· · ·
∫ π

2

0

sin0 or 1 xdx =


(n− 1)!!

n!!

π

2
, if n is even,

(n− 1)!!

n!!
, if n is odd.

Here sin0 or 1 x takes power 0 for even n and takes power 1 for odd n. Moreover, we
used the double factorial

n!! = n(n− 2)(n− 4) · · · =

{
2k(2k − 2)(2k − 4) · · · 4 · 2, if n = 2k,

(2k + 1)(2k − 1)(2k − 3) · · · 3 · 1, if n = 2k + 1.

Exercise 3.5.18. Find the recursive relations for

∫
xp cos axdx and

∫
xp sin axdx. Then

compute the integral.

1.

∫
x cos2 xdx.

2.

∫
x3 cos2 xdx.

3.

∫
x cos2 x sin 2xdx.

4.

∫
x3 cos2 x sin 2xdx.

5.

∫ π

0
x6 cosxdx.

6.

∫ π
2

0
x5 sin 2xdx.

Exercise 3.5.19. Find the recursive relations for

∫
xpeax cos bxdx and

∫
xpeax sin bxdx.

Then compute the integral.

1.

∫
x2e−x sin 3xdx. 2.

∫
x22x cosxdx. 3.

∫
x3ex cos2 xdx.

Exercise 3.5.20. Compute the integral.

1.

∫
sin6 xdx.

2.

∫
cos8 xdx.

3.

∫
cos8 x sin6 xdx.

4.

∫
cos3 x sin2 xdx.

5.

∫
cos3 x sin5 xdx.

6.

∫
cos−2 x sin2 xdx.

7.

∫
dx

cos6 x
.

8.

∫
dx

sin2 x cos2 x
.

Exercise 3.5.21. Show that

∫ π
2

0
sin2m x cos2n xdx =

(2m)!(2n)!

22m+2n+1m!n!(m+ n)!
for natural

numbers m,n. Can you find

∫ π
2

0
sinm x cosn xdx?

Exercise 3.5.22. Use (tanx)′ = sec2 x = tan2 x + 1 to derive the recursive formula for∫
secm x tann xdx similar to Example 3.5.14 and then find the value of

∫ π
4

0
tan2n xdx.



214 CHAPTER 3. INTEGRATION

Example 3.5.15. Let

Ip =

∫
(ax2 + bx+ c)pdx, a 6= 0, b2 6= 4ac.

We have

Ip = x(ax2 + bx+ c)p −
∫
xd(ax2 + bx+ c)p

= x(ax2 + bx+ c)p −
∫
px(2ax+ b)(ax2 + bx+ c)p−1dx.

We try to express px(2ax+ b) as a combination of (ax2 + bx+ c) and (ax2 + bx+ c)′,
up to adding a constant

2pax2 + pbx = A(ax2 + bx+ c) +B(ax2 + bx+ c)′ + C.

We get A = 2p, B = − pb
2a

, C =
p(b2 − 4ac)

2a
. Then

Ip = x(ax2 + bx+ c)p − A
∫

(ax2 + bx+ c)pdx

−B
∫

(ax2 + bx+ c)p−1(ax2 + bx+ c)′dx− C
∫

(ax2 + bx+ c)p−1dx

= x(ax2 + bx+ c)p − AIp −
B

p
(ax2 + bx+ c)p − CIp−1.

This gives us the recursive relation

Ip =
1

(2p+ 1)2a
(2ax+ b)(ax2 + bx+ c)p − p(b2 − 4ac)

(2p+ 1)2a
Ip−1, p 6= −1

2
.

On the other hand, we may also express Ip−1 in terms of Ip. After substituting p by
p+ 1, we get

Ip =
1

(p+ 1)(b2 − 4ac)
(2ax+ b)(ax2 + bx+ c)p+1− (2p+ 3)2a

(p+ 1)(b2 − 4ac)
Ip+1, p 6= −1.

For the special case

Ip =

∫
(ax2 + b)pdx, a, b 6= 0,

the recursive relations become

Ip =
1

2p+ 1
x(ax2 + b)p +

2pb

2p+ 1
Ip−1, p 6= −1

2
;

Ip = − 1

2(p+ 1)b
x(ax2 + b)p+1 +

2p+ 3

2(p+ 1)b
Ip+1, p 6= −1.
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For the special cases of p = −1

2
,−1, Ip is given by Exercise 3.4.10 (and will be

derived in Examples 3.5.30, 3.5.31, 3.5.32)∫
dx√
a2 − x2

= arcsin
x

a
+ C, a > 0,∫

dx√
x2 + a

= log
∣∣∣x+

√
x2 + a

∣∣∣+ C,∫
dx

x2 − a2
=

1

2a
log

∣∣∣∣x− ax+ a

∣∣∣∣+ C,∫
dx

x2 + a2
=

1

a
arctan

x

a
+ C.

Then the recursive relations can be used to compute Ip when p is an integer or a
half integer. For example, we have∫ √

a2 − x2dx = I 1
2

=
1

2 · 1
2

+ 1
x(a2 − x2)

1
2 +

2 · 1
2
a2

2 · 1
2

+ 1
I 1

2
−1

=
1

2
x
√
a2 − x2 +

a2

2
arcsin

x

a
+ C,∫

(a2 − x2)
3
2dx = I 3

2
=

1

2 · 3
2

+ 1
x(a2 − x2)

3
2 +

2 · 3
2
a2

2 · 3
2

+ 1
I 3

2
−1

=
1

4
x(a2 − x2)

3
2 +

3a2

4

(
1

2
x
√
a2 − x2 +

a2

2
arcsin

x

a

)
+ C

= −1

8
x(2x2 − 5a2)

√
a2 − x2 +

3a4

8
arcsin

x

a
+ C,∫

dx

(x2 + a2)2
= I−2 = − 1

2(−2 + 1)a2
x(x2 + a2)−2+1 +

2(−2) + 3

2(−2 + 1)a2
I−2+1

=
x

2a2(x2 + a2)
+

1

2a3
arctan

x

a
+ C.

Exercise 3.5.23. Compute the integral.

1.

∫
x2
√
a2 − x2dx.

2.

∫
x
√
a2 − x2dx.

3.

∫
(x+b)2

√
a2 − x2dx.

4.

∫
x2dx√
a2 − x2

.

5.

∫
dx

(a2 − x2)
3
2

.

6.

∫
xdx

(a2 − x2)
3
2

.

7.

∫
dx

(a2 − x2)
5
2

.

8.

∫
dx

(a2 − x2)3
.

9.

∫
xdx

(a2 − x2)3
.

Exercise 3.5.24. Compute the integral.
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1.

∫
x2
√
x2 + adx.

2.

∫
x
√
x2 + adx.

3.

∫
x2dx√
x2 + a

.

4.

∫
xdx√
x2 + a

.

5.

∫
(x2 + a)

3
2dx.

6.

∫
dx

(x2 + a)
3
2

.

7.

∫
dx

(x2 + a2)3
.

8.

∫
xdx

(x2 + a2)3
.

9.

∫
x2dx

(x2 + a2)3
.

Exercise 3.5.25. Combine the ideas of Exercise 3.4.11 and Example 3.5.15 to compute the
integral.

1.

∫
dx

(x2 + 2x+ 2)2
.

2.

∫
dx√

x2 + 2x+ 2
.

3.

∫
dx

(x2 + 2x+ 2)
3
2

.

4.

∫
(x2 + 2x+ 2)

3
2dx.

5.

∫ √
x(1− x)dx.

6.

∫
dx

(x(1− x))
3
2

.

3.5.3 Change of Variable

The chain rule says that, if

∫
f(y)dy = F (y) + C is the indefinite integral of f(y),

and φ(x) is a differentiable function, then

F (φ(x))′ = F ′(φ(x))φ′(x) = f(φ(x))φ′(x).

In other words, F (φ(x)) is the antiderivative of f(φ(x))φ′(x), or∫
f(φ(x))φ′(x)dx = F (φ(x)) + C =

∫
f(y)dy

∣∣∣∣
y=φ(x)

.

If we use the differential notation dφ(x) = φ′(x)dx, then the equality becomes∫
f(φ(x))dφ(x) =

∫
f(y)dy

∣∣∣∣
y=φ(x)

.

The right side means computing the antiderivative of the function of y first, and
then substituting y = φ(x) into the antiderivative. This is the change of variable
formula. By Newton-Leibniz formula, we further get the change of variable formula
for definite integral∫ b

a

f(φ(x))φ′(x)dx =

∫ b

a

f(φ(x))dφ(x) =

∫ φ(b)

φ(a)

f(y)dy.

Example 3.5.16. If

∫
f(y)dy = F (y) + C, then by letting y = ax+ b, we have∫

f(ax+ b)dx =
1

a

∫
f(ax+ b)d(ax+ b) =

1

a
F (ax+ b) + C.
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For example,∫
(2x+ 1)pdx =y=2x+1

1

2

∫
ypdy =

yp+1

2(p+ 1)
+ C =

(2x+ 1)p+1

2(p+ 1)
+ C,∫

sin(3x− 2)dx =y=3x−2
1

3

∫
sin ydy = −1

3
cos y + C = −1

3
cos(3x− 2) + C,∫

dx

x2 + 2x+ 2
=

∫
dx

(x+ 1)2 + 1
=y=x+1

∫
dx

y2 + 1

= arctan y + C = arctan(x+ 1) + C.

Example 3.5.17. The following is a simple change of variable∫
xex

2

dx =y=x2

1

2

∫
eydy =

1

2
ey + C =

1

2
ex

2

+ C.

The idea is a “mini-integration” of xdx that can be expressed more clearly by writing∫
xex

2

dx =

∫
ex

2 1

2
d(x2) =

1

2
ex

2

+ C.

After the mini-integration, we view x2 as the new variable.

The following are more examples following the mini-integration idea∫
dx

x log x
=

∫
1

log x

(
dx

x

)
=

∫
1

log x
d(log x) = log | log x|+ C,∫

dx

x2 + a2
=

∫
d

a2
((

x
a

)2
+ 1
) =

∫
d
(
x
a

)
a
((

x
a

)2
+ 1
) =

1

a
arctan

x

a
+ C,

∫
xdx

x4 + a4
=

1

2

∫
d(x2)

(x2)2 + a4
=

1

2a2
arctan

x2

a2
+ C.

Example 3.5.18. The integral in Example 3.5.1 was computed in Example 3.5.10
again by using the integration by parts. The integral can also be computed by
change of variable.

Let y = x+ 1. Then∫
x(x+ 1)10dx =

∫
(y − 1)y10dy =

∫
(y10 − y11)dy =

1

11
y11 − 1

12
y12 + C.

Substituting y = x+ 1 back, we get∫
x(x+ 1)10dx =

1

11
(x+ 1)11 − 1

12
(x+ 1)12 + C.
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By the same change, we have∫ (
x− 1

x+ 1

)4

dx =y=x+1

∫
(y − 2)4

y4
dy

=

∫
(1− 4 · 2y−1 + 6 · 22y−2 − 4 · 23y−3 + 24y−4)dy

= x+ 1− 8 log |x+ 1|

− 24(x+ 1)−1 + 16(x+ 1)−2 − 16

3
(x+ 1)−3 + C

= x− 8(9x2 + 12x+ 5)

3(x+ 1)3
− 8 log |x+ 1|+ C.

Note that the second C is the first C plus 1.
Compare the above with the computation of definite integral∫ 1

0

(
x− 1

x+ 1

)4

dx =y=x+1

∫ 2

1

(y − 2)4

y4
dy

=

∫ 2

1

(1− 4 · 2y−1 + 6 · 22y−2 − 4 · 23y−3 + 24y−4)dy

=

(
y − 8 log y − 24y−1 + 16y−2 − 16

3
y−3

)2

1

= 1− 8 log 2− 24

(
1

2
− 1

)
+ 16

(
1

4
− 1

)
− 16

3

(
1

8
− 1

)
=

17

3
− 8 log 2.

Note that the evaluation is done by using the new variable y instead of the old x.

Example 3.5.19. The integrals of inverse trigonometric functions can also be com-
puted by combining integration by parts and change of variable∫

arcsinxdx = x arcsinx−
∫

xdx√
1− x2

= x arcsinx+
1

2

∫
d(1− x2)√

1− x2

= x arcsinx+
√

1− x2 + C.

Alternatively, we may simply introduce the trigonometric function as the new vari-
able. For example, by y = arcsinx, x = sin y, we have∫

arcsinxdx =

∫
yd(sin y) = y sin y −

∫
sin ydy

= y sin y + cos y + C = x arcsinx+
√

1− x2 + C.

Note that cos y =
√

1− x2 is non-negative because x ∈ [−1, 1] and y ∈ [−π
2
, π

2
]. The

integration by parts used in both computations are essentially the same.
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The idea for integrating arcsinx can also be used to compute

∫
xm(arcsinx)ndx

and

∫
xm(arctanx)ndx.

Example 3.5.20. To compute

∫
dx√
ex + a

, we introduce

y =
√
ex + a, y2 = ex + a, 2ydy = exdx.

Then ∫
dx√
ex + a

=

∫ 2y

ex
dy

y
=

∫
2dy

y2 − a
.

By Examples 3.4.9 and 3.5.2, we have

∫
dx√
ex + a

=


1√
a

log

∣∣∣∣y −√−ay +
√
−a

∣∣∣∣+ C =
1√
a

log

∣∣∣∣√ex + a−
√
a√

ex + a+
√
a

∣∣∣∣+ C, if a > 0,

2√
−a

arctan
y√
−a

+ C =
2√
−a

arctan

√
−e

x

a
− 1 + C, if a < 0.

Example 3.5.21. To compute

I =

∫ π

0

x sinx

1 + cos2 x
dx,

we introduce y = π − x. Then

I = −
∫ 0

π

(π − y) sin y

1 + cos2 y
dy = π

∫ π

0

sin y

1 + cos2 y
dy −

∫ π

0

y sin y

1 + cos2 y
dy

= π

∫ π

0

sin y

1 + cos2 y
dy − I.

Therefore

I =
π

2

∫ π

0

sin y

1 + cos2 y
dy = −π

2

∫ cosπ

cos 0

1

1 + z2
dz

=
π

2

∫ 1

−1

dz

1 + z2
=
π

2
(arctan 1− arctan(−1)) =

π2

4
.

Note that the computation of the definite integral makes use of the new variable z
only. There is no need to go back to the original variable x.

Exercise 3.5.26. Compute the integral.
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1.

∫
(x2 + 1)(2x− 1)10dx.

2.

∫
log(2x− 1)dx.

3.

∫
x log(2x− 1)dx.

4.

∫
cos(2x− 1)dx.

5.

∫
e3x cos(2x− 1)dx.

6.

∫
sin(2x+ 1) cos(2x− 1)dx.

Exercise 3.5.27. Compute the integral.

1.

∫
x

x2 + 1
dx.

2.

∫
bx+ c

x2 + a2
dx.

3.

∫
x

(x2 + 1)p
dx.

4.

∫
x(x2 + a2)pdx.

5.

∫
x3
√
x2 + 1dx.

6.

∫
x3dx

3
√
x2 + a2

.

Exercise 3.5.28. Compute the integral.

1.

∫
sinx sin(cosx)dx.

2.

∫ √
x sin(1 + x

3
2 )dx.

3.

∫
cotxdx.

4.

∫
x tanx2dx.

5.

∫
1

x
tan(log x)dx.

6.

∫
sin(log x)dx.

7.

∫
sinxdx

a+ cos2 x
.

8.

∫
sin 2xdx

a+ cos2 x
.

9.

∫
sin 2x

√
a+ cos2 xdx.

10.

∫
cosxdx√
a+ cos2 x

.

11.

∫
sinx cosxdx√

a2 sin2 x+ b2 cos2 x
.

12.

∫
sinx cosxdx

sin4 x+ cos4 x
.

Exercise 3.5.29. Compute the integral.

1.

∫
arccosxdx.

2.

∫
arcsinxdx√

1− x2
.

3.

∫ √
1− x2 arcsinxdx.

4.

∫
x
√

1− x2 arcsinxdx.

5.

∫
dx√

1− x2 arccosx
.

6.

∫
x3 arccosx√

1− x2
dx.

7.

∫
x2 arccosxdx.

8.

∫
arcsinx

x2
dx.

9.

∫
(arccosx)2dx.

10.

∫
x arctanxdx.

11.

∫
(arctanx)2

1 + x2
dx.

12.

∫
dx

(1 + x2) arctanx
.

Exercise 3.5.30. Compute the integral.

1.

∫
x3ex

2
dx.

2.

∫
e
√
xdx.

3.

∫
e−
√
x

√
x
dx.

4.

∫ √
xe
√
xdx.

5.

∫
ecosx sinxdx.

6.

∫
exdx

1 + ex
.
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7.

∫
dx

1 + ex
. 8.

∫
dx

ex + e−x
. 9.

∫ √
ex + adx.

Exercise 3.5.31. Find a recursive relation for

∫
(ex + a)pdx. Then compute

∫
(ex + a)

5
2dx

and

∫
dx

(ex + a)3
.

Exercise 3.5.32. Compute the integral.

1.

∫
dx

x
√

1 + log x
.

2.

∫
dx

x log x log(log x)
.

3.

∫
1

x2 − 1
log

x+ 1

x− 1
dx.

4.

∫
log(x+ 1)− log x

x(x+ 1)
dx.

Exercise 3.5.33. Compute the integral.

1.

∫
f ′(x)

f(x)p
dx. 2.

∫
f ′(x)

1 + f(x)2
dx. 3.

∫
2f(x)f ′(x)dx.

Exercise 3.5.34. Prove the equalties

1.

∫ π
2

0
f(sinx)dx =

∫ π
2

0
f(cosx)dx. 2.

∫ π

0
xf(sinx)dx =

π

2

∫ π

0
f(sinx)dx.

Exercise 3.5.35. Explain why we cannot use the change of variable y =
1

x
to compute the

integral

∫ 1

−1

dx

1 + x2
.

Exercise 3.5.36. Suppose f is continuous on an open interval containing [a, b]. Find the

derivative
d

dt

∫ b

a
f(x+ t)dx.

Exercise 3.5.37. Explain the equalities in Exercise 3.1.11 by change of variable.

Exercise 3.5.38. Prove that

∫ a

−a
f(x)dx = 2

∫ a

0
f(x)dx for even function f . Prove that∫ a

−a
f(x)dx = 0 for odd function f .

Example 3.5.22. To compute

∫
dx

1 +
√
x− 1

, we simply let y =
√
x− 1. Then x =

y2 + 1, dx = 2ydy, and∫
dx

1 +
√
x− 1

=

∫
2ydy

1 + y
= 2

∫ (
1− 1

1 + y

)
dy

= 2y − 2 log(1 + y) + C = 2
√
x− 1− 2 log(1 +

√
x− 1) + C.
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Example 3.5.23. By taking y = x6, we get rid of the square root and cube root at
the same time.∫

dx√
x+ 3
√
x

=x=y6

∫
6y5dy

y3 + y2
= 6

∫
y3dy

y + 1

= 6

∫
(y3 + 1)− 1dy

y + 1
= 6

∫ (
y2 − y + 1− 1

1 + y

)
dy

= 2y3 − 3y2 + 6y − 6 log(1 + y) + C

= 2
√
x− 3 3

√
x+ 6 6

√
x− 6 log(1 + 6

√
x) + C.

Example 3.5.24. To compute

∫
dx√

x+ 1 +
√
x+ 1

, we introduce

y =
√
x+ 1 +

√
x.

Then
1

y
=
√
x+ 1−

√
x, y +

1

y
= 2
√
x+ 1, y − 1

y
= 2
√
x,

and

x =
1

4

(
y − 1

y

)2

, dx =
1

2

(
y − 1

y3

)
dy.

Therefore∫
dx√

x+ 1 +
√
x+ 1

=

∫ 1
2

(
y − 1

y3

)
dy

y + 1
=

1

2

∫
(y − 1)(y + 1)(y2 + 1)

(y + 1)y3
dy

=
1

2

∫ (
1− 1

y
+

1

y2
− 1

y3

)
dy

=
1

2

(
y − log |y| − 1

y
+

1

2y2

)
+ C

= −1

2
log(
√
x+ 1 +

√
x) +

√
x+

1

4
(
√
x+ 1 +

√
x)2 + C.

Example 3.5.25. The change of variable in Example 3.5.24 can be used for in-
tegrating other functions involving

√
x+ a and

√
x+ b. For example, to com-

pute

∫ √
x+ 1

x− 1
dx, which makes sense for x > 1 or x ≤ −1, we introduce y =

√
x+ 1 +

√
x− 1 for x > 1. Then

2

y
=
√
x+ 1−

√
x− 1, y +

2

y
= 2
√
x+ 1, y − 2

y
= 2
√
x− 1,

and

x =
1

4

(
y − 2

y

)2

+ 1, dx =
1

2

(
1− 4

y4

)
ydy.
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Therefore by x > 1, we have∫ √
x+ 1

x− 1
dx =

∫ y + 2
y

y − 2
y

1

2

(
1− 4

y4

)
ydy =

1

2

∫ (
y +

4

y
+

4

y3

)
dy

=
1

4
y2 + 2 log |y| − 1

y2
+ C = 2 log |y|+ 1

4

(
y +

2

y

)(
y − 2

y

)
+ C

=
1

4
log(
√
x+ 1 +

√
x− 1) +

√
x2 − 1 + C.

For x ≤ −1, we may introduce y =
√
−x+ 1−

√
−x− 1. Then we have∫ √

x+ 1

x− 1
dx =

1

2

∫ (
y +

4

y
+

4

y3

)
dy = 2 log |y|+ 1

4

(
y +

2

y

)(
y − 2

y

)
+ C

=
1

4
log(
√
−x− 1−

√
−x+ 1)−

√
x2 − 1 + C.

Example 3.5.26. The integral

∫ √
x

1− x
dx is comparable to the integral in Example

3.5.25. Yet the similar change of variable does not work, due to the requirement
0 ≤ x < 1. So we introduce

y =

√
x

1− x
, x =

y2

1 + y2
, dx =

2y

(1 + y2)2
dy,

and get∫ √
x

1− x
dx =

∫
y

2y

(1 + y2)2
dy = 2

∫ (
1

1 + y2
− 1

(1 + y2)2

)
dx

= − y

1 + y2
+ arctan y + C = −

√
x(1− x) + arctan

√
x

1− x
+ C.

The last computation in Example 3.5.15 is used here.
Note that the idea here can also be applied to the integral in Example 3.5.25, by

introducing y =

√
x+ 1

x− 1
. The advantage of the approach is that we do not need to

distinguish x > 1 and x ≤ 1.

Exercise 3.5.39. Compute the integrals in Example 3.5.24 and 3.5.25 by using change of
variable similar to Example 3.5.26.

Exercise 3.5.40. Compute the integral.
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1.

∫
(1 +

√
x)pdx.

2.

∫
(1 + 3

√
x)pdx.

3.

∫
(
√
x+
√
x+ 1)pdx.

4.

∫
1 +
√
x

1 + 3
√
x
dx.

5.

∫ √
1 + x2

x
dx.

6.

∫
dx

x
√

1 + x2
.

Example 3.5.27. We can use (cosx)′ = − sinx, (sin x)′ = cosx and cos2 x+sin2 x = 1
to calculate the antiderivative of cosm x sinn x, in which either m or n is odd.∫

sin3 xdx = −
∫

sin2 xd cosx =

∫
(cos2 x− 1)d cosx

=
1

3
cos3 x− cosx+ C,∫

cos4 x sin5 xdx = −
∫

cos4 x sin4 xd cosx = −
∫

cos4 x(1− cos2 x)2d cosx

= −
∫

(cos4 x− 2 cos6 x+ cos8 x)d cosx

= −1

5
cos5 x+

2

7
cos7 x− 1

9
cos9 x+ C,∫

tanxdx =

∫
sinx

cosx
dx = −

∫
d cosx

cosx
= − log | cosx|+ C,∫

secxdx =

∫
dx

cosx
=

∫
d sinx

cos2 x
=

∫
d sinx

1− sin2 x

=
1

2
log

1 + sin x

1− sinx
+ C =

1

2
log

(1 + sin x)2

1− sin2 x
+ C = log

1 + sin x

| cosx|
+ C

= log | secx+ tanx|+ C.

Example 3.5.28. Similar to Example 3.5.27, we can also use (tanx)′ = sec2 x, (sec x)′ =
secx tanx and sec2 x = 1 + tan2 x to calculate the antiderivative of secm x tann x.∫

secx tan3 xdx =

∫
tan2 xd secx =

∫
(sec2 x− 1)d secx =

1

3
sec3 x− secx+ C,∫

sec4 xdx =

∫
(tan2 x+ 1)d tanx =

1

3
tan3 x+ tanx+ C,∫

tan4 xdx =

∫
(sec2 x− 1)2dx =

∫
(sec4 x− 2 sec2 x+ 1)dx

=

(
1

3
tan3 x+ tanx

)
− 2 tanx+ x+ C

=
1

3
tan3 x− tanx+ x+ C,

The following is computed in Example 3.5.14 by more complicated method∫
sin2 x

cos4 x
dx =

∫
sec2 x tan2 xdx =

∫
tan2 xd tanx =

1

3
tan3 x+ C.
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Example 3.5.29. The method of Example 3.5.28 cannot be directly applied to the
antiderivatives of secn x and tann x for odd n. Instead, the idea of Example 3.5.27
can be used.

Using the integration by parts, we have∫
sec3 xdx =

∫
secxd tanx = secx tanx−

∫
tanxd secx

= secx tanx−
∫

tan2 x secxdx = secx tanx−
∫

(sec2 x− 1) secxdx

= secx tanx−
∫

sec3 xdx+

∫
secxdx.

Then with the help of Example 3.5.27, we get∫
sec3 xdx =

1

2
secx tanx+

1

2

∫
secxdx

=
1

2
secx tanx+

1

2
log | secx+ tanx|+ C.

In fact, the integral

∫
sec3 xdx is I−3,0 in Example 3.5.14, and the expression above

in terms of

∫
secxdx is the expression of I−3,0 in terms of I−1,0.

Example 3.5.27 also gives∫
tan3 xdx =

∫
tanx(sec2 x− 1)dx =

∫
tanxd tanx−

∫
tanxdx

=
1

2
tan2 x+ log | cosx|+ C.

Exercise 3.5.41. Compute the integral.

1.

∫
cos3 x sin2 xdx.

2.

∫
cos3 x sin5 xdx.

3.

∫
dx

cos6 x
.

4.

∫
dx

sin2 x cos2 x
.

5.

∫
dx

sinx cosx
.

6.

∫
cos−3 x sin5 xdx.

Exercise 3.5.42. Compute the integral.

1.

∫
cscxdx.

2.

∫
tan3 xdx.

3.

∫
tan6 x sec4 xdx.

4.

∫
tann x sec4 xdx.

5.

∫
cot6 x csc4 xdx.

6.

∫
tan2 x secxdx.

7.

∫
tan3 x secxdx.

8.

∫
tan5 x sec7 xdx.

9.

∫
tan3 x cos2 xdx.
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10.

∫
cot5 x sin4 xdx. 11.

∫
csc4 x cot6 xdx. 12.

∫
x tanx secxdx.

Exercise 3.5.43. Compute the integral.

1.

∫
x3e−x

2
cosx2dx.

2.

∫
x sin(log x)dx.

3.

∫
(sinx)p cos3 xdx.

4.

∫
cos 2xdx

sin2 x cos2 x
.

5.

∫
a sinx+ b cosx

sin 2x
dx.

6.

∫
dx

a sinx+ b cosx
.

7.

∫
1 + sinx

1 + cosx
dx.

8.

∫
dx

1 + cosx
.

9.

∫
dx

a+ tanx
.

10.

∫
A sinx+B cosx

a sinx+ b cosx
dx.

11.

∫
dx

a sin2 x+ b cos2 x
.

12.

∫
A sinx+B cosx

a sin2 x+ b cos2 x
dx.

13.

∫
dx√

2 + sinx+ cosx
.

14.

∫
sinxdx√

2 + sinx+ cosx
.

15.

∫
xdx

cos2 x
.

Exercise 3.5.44. Show that there are constants An, Bn, Cn, such that∫
dx

(a sinx+ b cosx)n
=

An sinx+Bn cosx

(a sinx+ b cosx)n−1
+ Cn

∫
dx

(a sinx+ b cosx)n−2
.

Exercise 3.5.45. For |a| 6= |b|, show that there are constants An, Bn, Cn, such that∫
dx

(a+ b cosx)n
=

A sinx

(a+ b cosx)n−1
+B

∫
dx

(a+ b cosx)n−1
+ C

∫
dx

(a+ b cosx)n−2
.

Exercise 3.5.46. How to calculate

∫
(A sinx+B cosx+ C)dx

(a sinx+ b cosx+ c)n
?

Exercise 3.5.47. Compute

∫
dx

cos(x+ a) cos(x+ b)
by using

tan(x+ a)− tan(x+ b) =
sin(a− b)

cos(x+ a) cos(x+ b)
.

Use the similar idea to compute the following integral.

1.

∫
dx

sin(x+ a) cos(x+ b)
.

2.

∫
tan(x+ a) tan(x+ b)dx.

3.

∫
dx

sinx− sin a
.

4.

∫
dx

cosx+ cos a
.

Example 3.5.30. To integrate a function of
√
a2 − x2, with a > 0, we may introduce

x = a sin y, dx = a cos ydy. Note that the function makes sense only for |x| ≤ a.

Correspondingly, we take y = arcsin
x

a
∈
[
−π

2
,
π

2

]
. This implies cos y ≥ 0, and

√
a2 − x2 = a cos y.
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The following example is also computed in Example 3.5.15.∫ √
a2 − x2dx = a2

∫
cos2 ydy =

a2

2

∫
(1 + cos 2y)dy

= a2

(
1

2
y +

1

4
sin 2y

)
+ C =

a2

2
(y + sin y cos y) + C

=
a

2
arcsin

x

a
+

1

2
x
√
a2 − x2 + C.

We may also use x = a cos y instead of x = a sin y.∫
dx

a+
√
a2 − x2

=

∫
a sin ydy

a+ a sin y
=

∫
sin y(1− sin y)dy

(1 + sin y)(1− sin y)

=

∫ (
sin y

cos2 y
− sin2 y

cos2 y

)
dy =

∫
(sec y tan y − sec2 y + 1)dy

= sec y − tan y + y + C =
a

x
− a

x

√
1− x2

a2
+ arccos

x

a
+ C.

The following is an example of definite integral.∫ 1

0

(1− x2)pdx = −
∫ 0

π
2

(1− cos2 y)p sin ydy =

∫ π
2

0

sin2p+1 ydy.

By Example 3.5.15, we know the specific value when 2p+ 1 is a natural number.∫ 1

0

(1− x2)ndx =
(2n)!!

(2n+ 1)!!
,

∫ 1

0

(1− x2)n−
1
2dx =

(2n− 1)!!

(2n)!!

π

2
.

Example 3.5.31. To integrate a function of
√
x2 + a2, with a > 0, we may introduce

x = a tan y, dx = a sec2 ydy. We have y = arctan
x

a
∈
[
−π

2
,
π

2

]
and
√
x2 + a2 =

a sec y.
With the help of Example 3.5.27, we have∫

dx√
x2 + a2

=

∫
a sec2 ydy

a sec y
=

∫
sec ydy

= log | sec y + tan y|+ C = log(
√
x2 + a2 + x) + C.

With the help of Example 3.5.29, we have∫ √
x2 + a2xdx =

∫
a2 sec3 ydy =

a2

2
sec y tan y +

a2

2
log | sec y + tan y|+ C

=
1

2
x
√
x2 + a2 +

a2

2
log(
√
x2 + a2 + x) + C.

One may verify that the two integrals satisfy the recursive relation in Example
3.5.15.
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Example 3.5.32. To integrate a function of
√
x2 − a2, with a > 0, we may introduce

x = a sec y, dx = a sec y tan ydy. We have y = arcsec
x

a
= arccos

a

x
∈ [0, π] and

√
x2 − a2 = ±a tan y, where the sign depends on whether x ≥ a or x ≤ −a.

With the help of Example 3.5.28, we have∫
dx√
x2 − a2

=

∫
a sec y tan ydy

±a tan y
=

∫
sec ydy

= ± log | sec y + tan y|+ C = ± log
∣∣∣x±√x2 − a2

∣∣∣+ C

= log
∣∣∣x+

√
x2 − a2

∣∣∣+ C,∫ √
x2 − a2dx =

∫
(±a tan y)a sec y tan ydy = ±a2

∫
(sec3 y − sec y)dy

= ±a
2

2
sec y tan y ∓ a2

2
log | sec y + tan y|+ C

=
1

2
x
√
x2 − a2 − log

∣∣∣x+
√
x2 − a2

∣∣∣+ C.

Combing with Example 3.5.31, for positive as well as negative a, we have∫
dx√
x2 + a

= log
∣∣∣x+

√
x2 + a

∣∣∣+ C,∫ √
x2 + adx =

1

2
x
√
x2 + b+

a

2
log
∣∣∣x+

√
x2 + a

∣∣∣+ C.

Example 3.5.33. By completing the square, a quadratic function ax2 + bx+ c can be

changed to a(y2 + d), where y = x+
b

2a
and d =

4ac− b2

4a2
. For example, if b2 < 4ac,

then ∫
dx

ax2 + bx+ c
=

∫
dy

a(y2 + (
√
d)2)

=
1

a
√
d

arctan
y√
d

+ C

=
2√

4ac− b2
arctan

2ax+ b√
4ac− b2

+ C.

Using the recursive relation in Example 3.5.15, we further get∫
dx

(ax2 + bx+ c)2
=

2ax+ b

(4ac− b2)(ax2 + bx+ c)
− 4a

(4ac− b2)
3
2

arctan
2ax+ b√
4ac− b2

+ C.

If b2 ≥ 4ac, then by the similar idea, we may get∫
dx

ax2 + bx+ c
=

∫
dy

a(y2 − (
√
−d)2)

=
1

2a
√
−d

log

∣∣∣∣y −√−dy +
√
−d

∣∣∣∣+ C

=
1√

b2 − 4ac
arctan

∣∣∣∣2ax+ b−
√
b2 − 4ac

2ax+ b+
√
b2 − 4ac

∣∣∣∣+ C.
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In fact, the quadratic function has two real roots, and it is more direct to calculate
the integral by using

ax2 + bx+ c = a(x− x1)(x− x2), x1, x2 =
−b±

√
b2 − 4ac

2a
,

and the idea of Examples 3.5.2 and 3.5.3.

Example 3.5.34. We further use the idea of Example 3.5.33 to convert the antideriva-
tives of functions of

√
ax2 + bx+ c to the computations in Examples 3.5.30, 3.5.31

and 3.5.32. For example, by

x(1− x) =
1

22
−
(
x2 − 2

1

2
x+

1

22

)
=

1

22
−
(
x− 1

2

)2

=
1

22
(1− (2x− 1)2),

we let y = 2x− 1 and get∫
dx√

x(1− x)
=

∫
dy√

1− y2
= arcsin y + C = arcsin(2x− 1) + C.

Moreover, for 0 ≤ x < 1, we get∫ √
x

1− x
dx =

∫
xdx√
x(1− x)

=

∫ y+1
2
dy√

1− y2
= −

∫
d(1− y2)

4
√

1− y2
+

∫
dy

2
√

1− y2

=
1

4

√
1− y2 +

1

2
arcsin y + C =

1

2

√
x(1− x) +

1

2
arcsin(2x− 1) + C.

The reader is left to verify that the result is the same as the one in Example 3.5.26.

Exercise 3.5.48. Compute the integral.

1.

∫
xdx√
1− x2

.

2.

∫
(ax2 + bx+ c)dx√

1− x2
.

3.

∫
dx

x
√

1− x2
.

4.

∫
x2dx

(a2 − x2)
3
2

.

5.

∫
dx

x(a2 − x2)
3
2

.

6.

∫
(x2 + a2)

3
2dx.

7.

∫
dx

x(x2 + a2)
3
2

.

8.

∫
x3dx

(x2 + a2)
3
2

.

9.

∫
(x(x+ 1))

3
2dx.

10.

∫
x2
√

1− x2dx.

11.

∫
dx

1−
√

1− x2
.

12.

∫
dx√

1 + x2 +
√

1− x2
.

13.

∫
xdx√

1 + x2 +
√

1− x2
.

14.

∫
dx

a+
√
x2 + a2

.

15.

∫
xdx

a+
√
x2 + a2

.

Exercise 3.5.49. Compute the integral.
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1.

∫
sinx log tanxdx.

2.

∫
arctan

√
xdx.

3.

∫
log(sinx)

sin2 x
dx.

4.

∫
esinx

(
cos2 x+

1

cos2 x

)
dx.

Exercise 3.5.50. Derive the formula

∫
dx√

ax2 + bx+ c
=


1√
a

log

(
2ax+ b√

a
+
√
ax2 + bx+ c

)
+ C, if a > 0,

1√
−a

arcsin
−2ax− b√
b2 − 4ac

+ C, if a < 0.

Exercise 3.5.51. Use the change of variable y = x± 1

x
to compute the integral.

1.

∫
x2 + 1

x4 + 1
dx.

2.

∫
x2 − 1

x4 + 1
dx.

3.

∫
dx

x4 + 1
dx.

4.

∫ 2

1
2

(
1 + x− 1

x

)
ex+ 1

xdx.

3.6 Integration of Rational Function

A rational function is the quotient of two polynomials. Examples 3.5.2, 3.5.3, 3.5.18,
3.5.33 are some typical examples of integrating rational functions. In this section,
we systematically study how to integrate rational functions and how to convert some
integrations into the integration of rational functions.

3.6.1 Rational Function

Example 3.6.1. The idea in Example 3.5.2 can be extended to the integral of rational
functions whose denominator is a product of linear functions. For example, to

integrate
x2 − 2x+ 3

x(x+ 1)(x+ 2)
, we postulate

x2 − 2x+ 3

x(x+ 1)(x+ 2)
=
A

x
+

B

x+ 1
+

C

x+ 2
.

The equality is the same as

x2 − 2x+ 3 = A(x+ 1)(x+ 2) +Bx(x+ 2) + Cx(x+ 1).

Taking x = 0,−1,−2, we get

3 = 2A, 6 = −B, 11 = −2C.
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Therefore∫
x2 − 2x+ 3

x(x+ 1)(x+ 2)
dx =

∫ (
3

2x
− 6

x+ 1
− 11

2(x+ 2)

)
dx

=
3

2
log |x| − 6 log |x+ 1| − 11

2
log |x+ 2|+ C.

Example 3.6.2. If some real root of the denominator has multiplicity, then we need

more sophisticated postulation. For example, to integrate
x2 − 2x+ 3

x(x+ 1)3
, we postulate

x2 − 2x+ 3

x(x+ 1)3
=
A

x
+

B

x+ 1
+

C

(x+ 1)2
+

D

(x+ 1)3
.

This is the same as

x2 − 2x+ 3 = A(x+ 1)3 +Bx(x+ 1)2 + Cx(x+ 1) +Dx.

Taking various values, we get

x = 0: 3 = A, x = −1: 6 = −D,

(coefficient of) x3 : 0 = A+B,
d

dx

∣∣∣∣
x=−1

: − 4 = D − C.

Therefore A = 3, B = −3, C = −2, D = −6, and (C below means the general
constant, and is different from the coefficient C = −2 above)∫

x2 − 2x+ 3

x(x+ 1)3
dx =

∫ (
3

x
− 3

x+ 1
− 2

(x+ 1)2
− 6

(x+ 1)3

)
dx

= 3 log

∣∣∣∣ x

x+ 1

∣∣∣∣+
2

x+ 1
+

3

(x+ 1)2
+ C

= 3 log

∣∣∣∣ x

x+ 1

∣∣∣∣+
2x+ 5

(x+ 1)2
+ C.

Example 3.6.3. In Examples 3.5.2, 3.6.1, 3.6.2, the numerator has lower degree than
the denominator. In general, we need to divide polynomials for this to happen.

For example, to integrate
x5

(x+ 1)2(x− 1)
, we first divide x5 by (x + 1)2(x − 1) =

x3 + x2 − x− 1.

x2 − x+ 2

x3 + x2 − x− 1
)

x5

− x5 − x4 + x3 + x2

− x4 + x3 + x2

x4 + x3 − x2 − x
2x3 − x
− 2x3 − 2x2 + 2x+ 2

− 2x2 + x+ 2
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Then

x5

(x+ 1)2(x− 1)
= x2 − x+ 2 +

−2x2 + x+ 2

(x+ 1)2(x− 1)

= x2 − x+ 2− 9

4(x+ 1)
+

1

2(x+ 1)2
+

1

4(x− 1)
,

and

∫
x5

(x+ 1)2(x− 1)
dx =

x3

3
− x2

2
+ 2x− 9

4
log |x+ 1| − 1

2(x+ 1)
+

1

4
log |x− 1|+ C.

Exercise 3.6.1. Compute the integral.

1.

∫
x2dx

1 + x
.

2.

∫
dx

x2 + x− 2
.

3.

∫
xdx

x2 + x− 2
.

4.

∫
x5dx

x2 + x− 2
.

5.

∫
(2− x)2dx

2− x2
.

6.

∫
x4dx

1− x2
.

7.

∫
dx

x(1 + x)(2 + x)
.

8.

∫
dx

x2(1 + x)
.

9.

∫
dx

(x+ a)2(x+ b)2
.

The examples above illustrate how to integrate rational functions of the form
bmx

m + bm−1x
m−1 + · · ·+ b1x+ b0

(x− a1)n1(x− a2)n2 · · · (x− ak)nk
. This means exactly that all the roots of the

denominator are real. In general, however, a real polynomial may have complex
roots, and a conjugate pair of complex roots corresponds to a real quadratic factor.

Example 3.6.4. To integrate
1

x3 − 1
, we note that x3 = (x − 1)(x2 + x + 1), where

x2 + x+ 1 has a conjugate pair of complex roots. We postulate

1

x3 − 1
=

A

x− 1
+

Bx+ C

x2 + x+ 1
.

This means 1 = A(x2 + x+ 1) + (Bx+ C)(x− 1) and gives

x = 0: 1 = A− C; x = 1: 1 = 3A; x2 : 0 = A+B.
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Therefore A =
1

3
, B = −1

3
, C = −2

3
, and∫

dx

x3 − 1
=

1

3

∫
dx

x− 1
+

1

3

∫
−x− 2

x2 + x+ 1
dx

=
1

3
log |x− 1| − 1

6

∫
d(x2 + x+ 1)

x2 + x+ 1
+

1

2

∫
dx

x2 + x+ 1

=
1

3
log |x− 1| − 1

6
log(x2 + x+ 1)− 1

2

∫
dx(

x+ 1
2

)2
+
(√

3
2

)2

=
1

6
log

(x− 1)2

x2 + x+ 1
− 1

2

1
√

3
2

arctan
x+ 1

2√
3

2

+ C

=
1

6
log

(x− 1)2

x2 + x+ 1
− 1√

3
arctan

2x+ 1√
3

+ C.

Example 3.6.5. To integrate
x2

(x4 − 1)2
, we postulate

x2

(x4 − 1)2
=

x2

(x− 1)2(x+ 1)2(x2 + 1)2

=
A1

x− 1
+

A2

(x− 1)2
+

B1

x+ 1
+

B2

(x+ 1)2
+
C1x+D1

x2 + 1
+
C2x+D2

(x2 + 1)2
.

Since changing x to −x does not change the left side, we see that A1 = −B1,
A2 = B2, C1 = C2 = 0, and the equality becomes

x2

(x4 − 1)2
=

2A1

x2 − 1
+ 2A2

x2 + 1

(x2 − 1)2
+

D1

x2 + 1
+

D2

(x2 + 1)2
.

It is then easy to find A1 = − 1

16
, A2 =

1

16
, D1 = 0, D2 = −1

4
. Therefore with the

help of Example 3.5.15,∫
x2

(x4 − 1)2
dx =

∫ (
− 1

16(x− 1)
+

1

16(x− 1)2

+
1

16(x+ 1)
+

1

16(x+ 1)2
− 1

4(x2 + 1)2

)
dx

=
1

16
log

∣∣∣∣x+ 1

x− 1

∣∣∣∣− 1

16(x− 1)

− 1

16(x+ 1)
− x

8(x2 + 1)
− 1

8
arctanx+ C

= − x3

4(x4 − 1)
+

1

16
log

∣∣∣∣x+ 1

x− 1

∣∣∣∣− 1

8
arctanx+ C.
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Example 3.6.6. To integrate the rational function
(x2 + 1)4

(x3 − 1)2
, we first notice that the

degree of the numerator is higher. Therefore we divide (x2 + 1)4 by (x3 − 1)2.

x2 + 4

x6 − 2x3 + 1
)

x8 + 4x6 + 6x4 + 4x2 + 1
− x8 + 2x5 − x2

4x6 + 2x5 + 6x4 + 3x2 + 1
− 4x6 + 8x3 − 4

2x5 + 6x4 + 8x3 + 3x2 − 3

This means that

(x2 + 1)4

(x3 − 1)2
= x2 + 4 +

2x5 + 6x4 + 8x3 + 3x2 − 3

(x3 − 1)2
.

Since x3 − 1 = (x− 1)(x2 + x+ 1), we postulate

2x5 + 6x4 + 8x3 + 3x2 − 3

(x3 − 1)2
=

A1

x− 1
+

A2

(x− 1)2
+

B1x+ C1

x2 + x+ 1
+

B2x+ C2

(x2 + x+ 1)2
.

This can be interpreted as an expression for 2x5 + 6x4 + 8x3 + 3x2 − 3, which gives

x = 0: − 3 = −A1 + A2 + C1 + C2,

x = 1: 16 = 9A2,

x = −1: − 4 = −2A1 + A2 + 4(−B1 + C1) + 4(−B2 + C2),

x5 : 2 = A1 +B1,

x4 : 6 = A1 + A2 −B1 + C1,

d

dx

∣∣∣∣
x=1

: 32 = 9A1 + 18A2.

Solving the system, we get

A2 =
32

9
, A1 =

16

9
, B1 = −14

9
, C1 = −8

9
, B2 = 0, C2 = −1

3
.
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Then∫
(x2 + 1)4

(x3 − 1)2
dx =

1

3
x3 + 4x+

∫
32

9(x− 1)
dx+

∫
16

9(x− 1)2
dx

−
∫

14x+ 8

9(x2 + x+ 1)
dx−

∫
1

3(x2 + x+ 1)2
dx

=
1

3
x3 + 4x+

32

9
ln |x− 1| − 16

9(x− 1)

−
∫

7d(x2 + x+ 1)

9(x2 + x+ 1)
−
∫

dx

9(x2 + x+ 1)
−
∫

dx

3(x2 + x+ 1)2

=
1

3
x3 + 4x+

32

9
log |x− 1| − 16

9(x− 1)
− 7

9
log(x2 + x+ 1)

−
∫

dx

9(x2 + x+ 1)
−
∫

dx

3(x2 + x+ 1)2
.

By

x2 + x+ 1 =

(
x+

1

2

)2

+

(√
3

2

)2

,
x+ 1

2√
3

2

=
2x+ 1√

3
,

and Example 3.5.15, we have∫
dx

x2 + x+ 1
=

2√
3

arctan
2x+ 1√

3
+ C,

and

∫
dx

(x2 + x+ 1)2
=

x+
1

2

2
(√

3
2

)2

(x2 + x+ 1)
+

1

2
(√

3
2

)3 arctan
2x+ 1√

3
+ C

=
2x+ 1

3(x2 + x+ 1)
+

4

3
√

3
arctan

2x+ 1√
3

+ C.

Combining everything together, we get∫
(x2 + 1)4

(x3 − 1)2
dx =

1

3
x3 + 4x− 6x2 + 5x+ 5

3(x3 − 1)
+

13

3
log |x− 1| − 7

9
log |x3 − 1|

− 2

3
√

3
arctan

2x+ 1√
3

+ C.

In general, the numerator of a rational function is a product of (x + a)m and
(x2 + bx + c)n, where b2 < 4c so that the factor x2 + bx + c has no real root. After
dividing the numerator by the denominator, we can make sure the numerator has
lower degree than the denominator. When the numerator has lower degree, the
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rational function can then be expressed as a sum: For each factor (x + a)m of the
denominator, we have terms

A1

x+ a
+

A2

(x+ a)2
+ · · ·+ Am

(x+ a)m
,

and for each factor (x2 + bx+ c)n of the denominator, we have terms

B1x+ C1

x2 + bx+ c
+

B2x+ C2

(x2 + bx+ c)2
+ · · ·+ Bnx+ Cn

(x2 + bx+ c)n
.

The computation is then reduced to the integration of the terms.
We have ∫

A

(x+ a)m
dx =

−
1

(m− 1)(x+ a)m−1
+ C, if m > 1,

log |x+ a|+ C, if m = 1.

The quadratic term can be split into two parts∫
Bx+ C

(x2 + bx+ c)n
dx =

B

2

∫
d(x2 + bx+ c)

(x2 + bx+ c)n
+

(
C − B

2

)∫
dx

(x2 + bx+ c)n
.

The first part is easy to compute

∫
d(x2 + bx+ c)

(x2 + bx+ c)n
=

−
1

(n− 1)(x2 + bx+ c)n−1
+ C, if n > 1,

log |x2 + bx+ c|+ C, if n = 1.

The second part can be computed by the recursive relation in Example 3.5.15∫
dx

(x2 + bx+ c)n

=
1

(4c− b2)(n− 1)

(
2x+ b

(x2 + bx+ c)n−1
+ 2(2n− 3)

∫
dx

(x2 + bx+ c)n−1

)
.

For n = 1, 2, we have∫
dx

x2 + bx+ c
=

2√
4c− b2

arctan
2x+ b√
4c− b2

+ C,∫
dx

(x2 + bx+ c)2
=

2x+ b

(4c− b2)(x2 + bx+ c)
+

4

(4c− b2)
3
2

arctan
2x+ b√
4c− b2

+ C.

Exercise 3.6.2. Compute the integral.
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1.

∫
(1 + x)2dx

1 + x2
.

2.

∫
(2x2 + 3)dx

x3 + x2 − 2
.

3.

∫
dx

x3 − 1
.

4.

∫
(x+ 1)3dx

x3 + 1
.

5.

∫
dx

(x+ 1)(x2 + 1)
.

6.

∫
dx

x(x+ 1)(x2 + x+ 1)
.

7.

∫
dx

(x+ 1)(x2 + 1)(x3 + 1)
.

8.

∫
dx

(x2 + a2)(x2 + b2)
.

9.

∫
x3dx

(x2 + 1)2
.

10.

∫
x2dx

(x2 + 4x+ 6)2
.

11.

∫
dx

x4 − 1
.

12.

∫
x2dx

x4 − 1
.

13.

∫
dx

(x4 − 1)2
.

14.

∫
dx

x4 + 4
.

15.

∫
dx

x4 + x2 + 1
.

16.

∫
dx

x6 + 1
.

17.

∫
xdx

(x− 1)2(x2 + 2x+ 2)
.

18.

∫
(x4 + 4x3 + 4x2 + 4x+ 4)dx

x(x+ 2)(x2 + 2x+ 2)2
.

3.6.2 Rational Function of n

√
ax+ b

cx+ d

Using suitable changes of variables, some integrals can be changed to integrals of
rational functions.

Example 3.6.7. To integrate

√
x− 2

x− 1
, we introduce

y =

√
x− 2

x− 1
, x =

y2 − 2

y2 − 1
, dx =

2y

(y2 − 1)2
dy.

Then for x ≥ 2, we have∫ √
x− 2

x− 1
dx =

∫
y

2y

(y2 − 1)2
dy =

∫
1

2

(
1

y − 1
− 1

y + 1
+

1

(y − 1)2
+

1

(y + 1)2

)
=

1

2
log

∣∣∣∣y − 1

y + 1

∣∣∣∣− y

y2 − 1
+ C

=
1

2
log

∣∣∣∣√x− 2−
√
x− 1√

x− 2 +
√
x− 1

∣∣∣∣−
√

x−2
x−1

x−2
x−1
− 1

+ C

= log(
√
x− 1−

√
x− 2) +

√
(x− 1)(x− 2) + C.
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For x ≤ 1, the answer is log(
√

2− x−
√

1− x)−
√

(2− x)(1− x) + C.
The same substituting can be used to compute that, for x > 2,∫

dx

x
√
x2 − 3x+ 2

=

∫
dx

x
√

(x− 1)(x− 2)
=

∫ √
x− 2

x− 1

dx

x(x− 2)

=

∫ √
x− 2

x− 1

dx

x(x− 2)
= −

∫
dy

y2 − 2

=
1

2
√

2
log

∣∣∣∣∣y +
√

2

y −
√

2

∣∣∣∣∣+ C =
1

2
√

2
log

√
2x− 2 +

√
x− 2√

2x− 2−
√
x− 2

+ C.

For the case x < 1, the answer is − 1

2
√

2
log

√
2− 2x+

√
2− x√

2− 2x−
√

2− x
+ C.

Example 3.6.8. For y = 3

√
x

x+ 1
, we have

1

y3
= 1 +

1

x
and

− 3

y4
dy = − 1

x2
dx = −

(
1− 1

y3

)2

dx.

Therefore by Example 3.6.4, we have∫
dx

3
√
x3 + x2

=

∫
1

x
3

√
x

x+ 1
dx =

∫ (
1− 1

y3

)
y
− 3
y4dy

−
(

1− 1
y3

)2 =

∫
3dy

y3 − 1

=
1

2
log

(y − 1)2

y2 + y + 1
−
√

3 arctan
2y + 1√

3
+ C

=
1

2
log

(y − 1)3

y3 − 1
−
√

3 arctan
2y + 1√

3
+ C

=
3

2
log( 3
√
x+ 1− 3

√
x)−

√
3 arctan

1√
3

(
2 3

√
x

x+ 1
+ 1

)
+ C.

In general, a function involving n

√
ax+ b

cx+ d
can be integrated by introducing

y =
n

√
ax+ b

cx+ d
, x =

dyn − b
−cyn + a

, dx = n(ad− bc) yn−1

(cyn − a)2
dy.

Exercise 3.6.3. Compute the integral.

1.

∫
dx

1 +
√
x

. 2.

∫
dx√

x(1 + x)
. 3.

∫
x 3
√

2 + x

x+ 3
√

2 + x
dx.
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4.

∫
x3

3
√
x2 + 1

dx.

5.

∫
dx

3
√
x+ 4
√
x
dx.

6.

∫
dx

4
√
x3(a− x)

.

7.

∫ √
x+ 1 +

√
x− 1√

x+ 1−
√
x− 1

dx.

8.

∫ √
1− x
1 + x

dx.

9.

∫
1

x2

√
1− x
1 + x

dx.

10.

∫
1

x2
3

√
1− x
1 + x

dx.

11.

∫
dx

2
√
x+
√
x+ 1 + 1

.

12.

∫
dx

√
x+ a+

√
x+ b+ c

.

13.

∫
1 +
√
x+ a

1 +
√
x+ b

dx.

14.

∫ √
x− a
x− b

dx.

15.

∫ √
x− a
b− x

dx.

16.

∫ √
(x− a)(x− b)dx.

17.

∫ √
(x− a)(b− x)dx.

18.

∫
x
√

(x− a)(b− x)dx.

19.

∫
x

√
x− a
x− b

dx.

20.

∫
xdx√

(x− a)(x− b)
.

Exercise 3.6.4. Compute the integral.

1.

∫ √
1 + exdx. 2.

∫
dx√

1 + ex +
√

1− ex
. 3.

∫
dx√
ax + b

.

Exercise 3.6.5. Suppose R is a rational function. Suppose r, s are rational numbers such

that r+s is an integer. Find a suitable change of variable, such that

∫
R(x, (ax+b)r(cx+

d)s)dx is changed into the antiderivative of a rational function.

Exercise 3.6.6. Suppose r, s, t are rational numbers. For each of the following cases, find

a suitable change of variable, such that

∫
xr(a+ bxs)tdx is changed into the integral of a

rational function.

1. t is an integer.

2.
r + 1

s
is an integer.

3.
r + 1

s
+ t is an integer.

A theorem by Chebyshev1 says that these are the only cases that the antiderivative can
be changed to the integral of a rational function.

1Pafnuty Lvovich Chebyshev, born 1821 in Okatovo (Russia), died 1894 in St Petersburg (Rus-
sia). Chebyshev’s work touches many fields of mathematics, including analysis, probability, number
theory and mechanics. Chebyshev introduced his famous polynomials in 1854 and later generalized
to the concept of orthogonal polynomials.



240 CHAPTER 3. INTEGRATION

3.6.3 Rational Function of sinx and cosx

A rational function of sinx and cos x can be integrated by introducing

y = tan
x

2
, sinx =

2y

1 + y2
, cosx =

1− y2

1 + y2
, dx =

2

1 + y2
dy.

Example 3.6.9. For a 6= 0, we have∫
dx

a+ sinx
=

∫
2dy(

a+ 2y
1+y2

)
(1 + y2)

=

∫
2dy

ay2 + 2y + a
.

If |a| > 1, then∫
dx

a+ sinx
=

1

a
√

1− 1
a2

arctan
y + 1

a√
1− 1

a2

+C =
2

sign(a)
√
a2 − 1

arctan
a tan x

2
+ 1

√
a2 − 1

+C.

If |a| < 1, then

∫
dx

a+ sinx
=

1

a
√

1
a2 − 1

log

∣∣∣∣∣∣∣
y + 1

a
−
√

1
a2 − 1

y +
1

a
+
√

1
a2 − 1

∣∣∣∣∣∣∣+ C

=
1

sign(a)
√

1− a2
log

∣∣∣∣∣a tan x
2

+ 1−
√

1− a2

a tan x
2

+ 1 +
√

1− a2

∣∣∣∣∣+ C.

If |a| = 1, then ∫
dx

a+ sinx
=
−2

ay + 1
+ C =

−2

a tan x
2

+ 1
+ C.

The example can be extended to

∫
dx

a+ b sinx+ c cosx
. We have

b sinx+ c cosx =
√
b2 + c2 sin(x+ θ),

where θ is any fixed angle satisfying sin θ =
b√

b2 + c2
and cos θ =

c√
b2 + c2

. Then∫
dx

a+ b sinx+ c cosx
=

∫
dy

a+
√
b2 + c2 sin y

, y = x+ θ.

Example 3.6.10. Rational functions of sinx and cosx can be integrated by a simpler
substitution if it has additional property. For example, to integrate the function

sinx

sinx+ cosx
, we introduce

y = tanx, x = arctan y, dx =
dy

y2 + 1
.
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Here we use the tangent of the full angle x, instead of half the angle in Example
3.6.9. Then∫

sinxdx

sinx+ cosx
=

∫
tanxdx

tanx+ 1
=

∫ y dy
y2+1

y + 1
=

1

4
log

y2 + 1

(y + 1)2
+

1

2
arctan y + C

=
1

2
x− 1

2
log | sinx+ cosx|+ C.

The key point here is that the integrand is a rational function R(sinx, cosx) that
satisfies R(−u,−v) = R(u, v). In this case, the integrad can always be written as a
rational function of tanx, and the change of variable can be applied.

Example 3.6.11. Note that rational function
cosx

cosx sinx+ sin3 x
of sinx and cosx is

odd in the sinx variable. This is comparable to the function cosm x sinn x for the case
n is odd. We may introduce the same change of variable y = cosx, dy = − sinxdx
like the earlier example and get∫

cosxdx

cosx sinx+ sin3 x
=

∫
cosx sinxdx

cosx sin2 x+ (sin2 x)2
=

∫
−ydy

y(1− y2) + (1− y2)2

=
1√
5

log

∣∣∣∣∣y − 1+
√

5
2

y − 1−
√

5
2

∣∣∣∣∣+
1

2
log

∣∣∣∣y − 1

y + 1

∣∣∣∣+ C

=
1√
5

log

∣∣∣∣∣2 cosx− 1−
√

5

2 cosx− 1 +
√

5

∣∣∣∣∣+
1

2
log

1− cosx

1 + cos x
+ C.

Similarly, a rational function of sinx and cosx that is odd in the cos x variable
can be integrated by introducing x = sin y. If R(−u,−v) = R(u, v), then we may

introduce y = tanx to compute

∫
R(sinx, cosx)dx.

Exercise 3.6.7. Compute the integral.

1.

∫
1− r2

1− 2r cosx+ r2
dx, |r| < 1.

2.

∫
dx

a− cos 2x
.

3.

∫
dx

a+ tanx
.

4.

∫
dx

cosx+ tanx
.

5.

∫
dx

sinx+ tanx
.

6.

∫
dx

2 sinx+ sin 2x
.

7.

∫
sin2 x

1 + sin2 x
dx.

8.

∫
dx

sin(x+ a) sin(x+ b)
.

9.

∫
dx

(1 + cos2 x)(2 + sin2 x)
.

10.

∫
(1 + sinx)dx

sinx(1 + cosx)
.
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11.

∫
dx

(a+ cosx) sinx
.

12.

∫
(sinx+ cosx)dx

sinx(sinx− cosx)
.

13.

∫
dx

(a+ cos2 x) sinx
.

14.

∫
dx

a2 sin2 x+ b2 cos2 x
.

15.

∫
1− tanx

1 + tanx
dx.

16.

∫ √
tanxdx.

3.7 Improper Integral

The definition of Riemann integral requires both the function and the interval to
be bounded. If either the function or the interval is unbounded, then the integral
is improper. We may still make sense of an improper integral if it can be viewed as
the limit of usual integral of bounded function on bounded interval.

3.7.1 Definition and Property

Example 3.7.1. The function e−x is bounded on the unbounded interval [0,+∞). To

make sense of the improper integral

∫ +∞

0

e−xdx, we consider the integral on any

bounded interval ∫ b

0

e−xdx = 1− e−b.

As the bounded interval approaches [0,+∞), we get

lim
b→+∞

∫ b

0

e−xdx = lim
b→+∞

(1− e−b) = 1.

Therefore the improper integral

∫ +∞

0

e−xdx has value 1. Geometrically, this means

that the area of the unbounded region under the graph of the function e−x and over
the interval [0,+∞) is 1.

Example 3.7.2. The function log x is unbounded on the bounded interval (0, 1]. Since

the integral

∫ 1

0

log xdx is improper at 0+, we consider the integral over [ε, 1] for ε > 0

∫ 1

ε

log xdx = (x log x− x)
∣∣∣x=1

x=ε
= −1− ε log ε+ ε.

Since the right side converges to −1 as ε→ 0+, the improper integral converges and
has value ∫ 1

0

log xdx = lim
ε→0+

∫ 1

ε

log xdx = −1.
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1

e−x

1

log x

Figure 3.7.1: The unbounded region has area 1.

The unbounded region measured by this improper integral is actually the same as
the one in Example 3.7.1, up to a rotation.

Example 3.7.3. Consider the improper integral

∫ +∞

a

dx

xp
, where a > 0. We have

∫ b

a

dx

xp
=


b1−p − a1−p

1− p
, if p 6= 1,

log b− log a, if p = 1.

As b→ +∞, we get ∫ +∞

a

dx

xp
=


a1−p

p− 1
, if p > 1,

diverge, if p ≤ −1.

Example 3.7.4. The integral

∫ 1

0

dx

xp
is improper at 0+ for p > 0. For ε > 0, we have

∫ 1

ε

dx

xp
=


1− ε1−p

1− p
, if p 6= 1,

− log ε, if p = 1.

As ε→ 0+, we get ∫ 1

0

dx

xp
=


1

1− p
, if p < 1,

diverge, if p ≥ 1.



244 CHAPTER 3. INTEGRATION

By the same argument, for a < b, the improper integrals

∫ b

a

(x − a)pdx and∫ b

a

(b− x)pdx converge if and only if p > −1.

Example 3.7.5. The integral

∫ +∞

−∞

dx

x2 + 1
is improper at +∞ and −∞. The integral

on a bounded interval is ∫ b

a

dx

x2 + 1
= arctan b− arctan a.

Then we get∫ +∞

−∞

dx

x2 + 1
= lim

a→−∞
b→+∞

∫ b

a

dx

x2 + 1
= lim

b→+∞
arctan b− lim

a→−∞
arctan a =

π

2
−
(
−π

2

)
= π.

Example 3.7.6. Since ∫ b

0

cosxdx = sin b

diverges as b→ +∞, the improper integral

∫ +∞

0

cosxdx diverges.

In general, an integral may be improper at several places. We may divide the
interval into several parts, such that each part contains exactly one improperness.
If an integral has one improperness at +∞ or −∞, then we study the limit of the
integral on bounded intervals. If an integral has one improperness at a+ or a−, then
we study the limit of the integral on intervals [a+ ε, b] or [b, a− ε].

Example 3.7.7. A naive application of the Newton-Leibniz formula would tell us∫ 1

−1

dx

x
= (log |x|)

∣∣∣x=1

x=−1
= log 1− log 1 = 0.

However, the computation is wrong since the integrand
1

x
is not continuous on

[−1, 1]. In fact, the integral

∫ 1

−1

dx

x
is improper on both sides of 0, and we need

both improper integrals

∫ 0

−1

dx

x
and

∫ 1

0

dx

x
to converge and then get

∫ 1

−1

dx

x
=

∫ 0

−1

dx

x
+

∫ 1

0

dx

x
.
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Since ∫ 1

0

dx

x
= lim

ε→0+

∫ 1

ε

dx

x
= lim

ε→0+
− log ε = +∞

diverges, the improper integral

∫ 1

0

dx

x
diverges, so that

∫ 1

−1

dx

x
also diverges.

Example 3.7.8. To compute the improper integral

∫ 0

−∞
xexdx, we start with integra-

tion by parts on a bounded interval∫ 0

b

xexdx =

∫ 0

b

xdex = −beb −
∫ 0

b

exdx = −beb − 1 + eb.

Taking b→ −∞ on both sides, we get∫ 0

−∞
xexdx = −1.

The example shows that the integration by parts can be extended to improper
integrals, simply by taking the limit of the integration by parts formula for the usual
proper integrals.

Example 3.7.9. For a > 1, consider the improper integral

∫ +∞

a

dx

x(log x)p
. We have∫ b

a

dx

x(log x)p
=

∫ b

a

d(log x)

(log x)p
=

∫ log b

log a

dy

yp
.

Taking b→ +∞ on both sides, we get∫ +∞

a

dx

x(log x)p
=

∫ +∞

log a

dy

yp
.

The equality means that the improper integral on the left converges if and only if
the improper integral on the right converges, and the two values are the same. By

Example 3.7.3, we see that the improper integral

∫ +∞

a

dx

x(log x)p
converges if and

only if p < 1, and ∫ +∞

a

dx

x(log x)p
= −(log a)p+1

p+ 1
, if p < 1.

The example shows that the change of variable can also be extended to improper
integrals, simply by taking the limit of the change of variable formula for the usual
proper intervals.

Exercise 3.7.1. Determine the convergence of improper integrals and evaluate the conver-
gent ones.
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1.

∫ +∞

0
xpdx.

2.

∫ 1

0

dx

x(− log x)p
.

3.

∫ +∞

0
axdx.

4.

∫ 0

−∞
axdx.

5.

∫ 1

−1

dx

1− x2
.

6.

∫ +∞

2

dx

1− x2
.

7.

∫ 1

−1

dx√
1− x2

.

8.

∫ π
2

0
tanxdx.

9.

∫ π

0
secxdx.

Exercise 3.7.2. Determine the convergence of improper integrals and evaluate the conver-
gent ones.

1.

∫ +∞

1

dx

x+ 1
.

2.

∫ +∞

−∞

xdx

x2 + 1
.

3.

∫ +∞

1

dx
3
√
x+ 1

.

4.

∫ +∞

0

x2dx

x3 + 1
.

5.

∫ +∞

0

x2dx

(x3 + 1)2
.

6.

∫ +∞

0

dx

x(x+ 1)(x+ 2)
.

7.

∫ +∞

0

dx√
x(1 + x)

.

8.

∫ 9

1

dx
3
√
x− 9

.

9.

∫ +∞

0
xexdx.

10.

∫ +∞

0
xe−x

2
dx.

11.

∫ +∞

0
e−
√
xdx.

12.

∫ 1

0
x log xdx.

13.

∫ +∞

1

log x

x2
dx.

14.

∫ 1

0

log x√
x
dx.

15.

∫ +∞

0

x arctanx

(1 + x2)2
dx.

16.

∫ +∞

0
e−ax cos bxdx.

17.

∫ +∞

0
e−ax sin bxdx.

18.

∫ +∞

0
e−x| sinx|dx.

Exercise 3.7.3. Prove that

lim
n→∞

1

n

(
log

1

n
+ log

2

n
+ · · ·+ log

n

n

)
=

∫ 1

0
log xdx.

Note that the left side is a “Riemann sum” for the right side. However, since the integral is
improper, we cannot directly use the fact that the Riemann sum converges to the integral.

Moreover, the limit is the same as limn→∞

n
√
n!

n
= e−1.

3.7.2 Comparison Test

The improper integral is defined by taking limit. Therefore there is always the
problem of convergence.

The convergence of the improper integral

∫ +∞

a

f(x)dx means the convergence

of the function I(b) =

∫ b

a

f(x)dx as b→ +∞. The Cauchy criterion for the conver-
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gence is that, for any ε > 0, there is N , such that

b, c > N =⇒ |I(c)− I(b)| =
∣∣∣∣∫ c

b

f(x)dx

∣∣∣∣ < ε.

The Cauchy criterion for the convergence of other types of improper integrals is

similar. For example, if the integral

∫ b

a

f(x)dx is improper at a+, then the integral

converges if and only if for any ε > 0, there is δ > 0, such that

c, d ∈ (a, a+ δ) =⇒
∣∣∣∣∫ d

c

f(x)dx

∣∣∣∣ < ε.

The Cauchy criterion shows that the convergence of an improper integral depends
only on the behavior of the function near the improper place. Moreover, the Cauchy
criterion also implies the following test for convergence.

Theorem 3.7.1 (Comparison Test). If |f(x)| ≤ g(x) on (a, b) and the integral

∫ b

a

g(x)dx

converges, then

∫ b

a

f(x)dx also converges.

Note that if |f | ≤ g, then | |f | | ≤ g. Therefore whenever we use the comparison

test, we may always conclude that

∫ b

a

|f(x)|dx also converges.

We say that

∫ b

a

f(x)dx absolutely converges if

∫ b

a

|f(x)|dx converges. The com-

parison test tells us that absolute convergence implies convergence.

Here we justify the comparison test for the integral

∫ +∞

a

f(x)dx that is improper

at +∞. The convergence of

∫ +∞

a

g(x)dx implies that for any ε > 0, there is N ,

such that

c > b > N =⇒
∫ c

b

g(x)dx < ε.

The assumption |f(x)| ≤ g(x) further implies that for c > b,∣∣∣∣∫ c

b

f(x)dx

∣∣∣∣ ≤ ∫ c

b

|f(x)|dx ≤
∫ c

b

g(x)dx.

Combining the two implications, we get

c > b > N =⇒
∣∣∣∣∫ c

b

f(x)dx

∣∣∣∣ ≤ ∫ c

b

g(x)dx < ε.

This verifies the Cauchy criterion for the convergence of

∫ +∞

a

f(x)dx.



248 CHAPTER 3. INTEGRATION

Example 3.7.10. We know
1√

x3 + 1
< x−

3
2 for x ≥ 1. Since

∫ +∞

1

x−
3
2dx converges,

by the comparison test, we know

∫ +∞

1

dx√
x3 + 1

also converges. We note that∫ +∞

0

dx√
x3 + 1

converges too because only the behavior of the function for big x

(i.e., near +∞) is involved.

Example 3.7.11. To determine the convergence of

∫ +∞

0

e−x
2

dx, we use 0 < e−x
2 ≤

e−x for x ≥ 1. By Example 3.7.1 and the comparison test, we know

∫ +∞

1

e−x
2

dx

converges. Since

∫ 1

0

e−x
2

dx is a proper integral, we know

∫ +∞

0

e−x
2

dx also con-

verges.

Example 3.7.12. To determine the convergence of

∫ +∞

1

log x

xp
dx, p > 0, we use the

comparison
log x

xp
≥ 1

xp
> 0 for x ≥ e. For p ≤ 1, the divergence of

∫ +∞

1

1

xp
dx

implies the divergence of

∫ +∞

1

log x

xp
dx.

For p > 1, although we also know the convergence of

∫ +∞

1

1

xp
dx, the comparison

above cannot be used to conclude the convergence of

∫ +∞

1

log x

xp
dx. Instead, we

choose q satisfying p > q > 1. Then by

lim
x→+∞

log x

xp
1

xq

= lim
x→+∞

log x

xp−q
= 0,

we have

∣∣∣∣ log x

xp

∣∣∣∣ ≤ 1

xq
for sufficiently large x. By the convergence of

∫ +∞

1

dx

xq
,

therefore, we know the converges of

∫ +∞

1

log x

xp
dx.

We conclude that

∫ +∞

1

log x

xp
dx converges if and only if p > 1.

Example 3.7.13. The integral

∫ 1

0

dx√
x(1− x)

is improper at 0+ and 1−. By applying
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the idea of Example 3.7.12 to

lim
x→0+

1√
x(1− x)

1√
x

= 1, lim
x→1−

1√
x(1− x)

1√
1− x

= 1,

and the convergence of

∫ 1

0

dx√
x

and

∫ 1

0

dx√
1− x

, we know that

∫ 1

0

dx√
x(1− x)

con-

verges.

Exercise 3.7.4. Compare the integrals I =

∫ +∞

a
f(x)dx and J =

∫ +∞

a
g(x)dx that are

improper at +∞.

1. Prove that if limx→+∞
f(x)

g(x)
converges, g(x) ≥ 0 for sufficiently large x, and J

converges, then I also converges.

2. Prove that if limx→+∞
f(x)

g(x)
converges to a nonzero number, and g(x) ≥ 0 for

sufficiently large x, then I converges if and only if J converges.

Exercise 3.7.5. Suppose f ≥ 0, prove that the improper integral

∫ +∞

a
f(x)dx converges if

and only if

∫ b

a
f(x)dx, for all b ∈ [a,+∞), is bounded. What about the integral

∫ b

a
f(x)dx

that is improper at a+.

Exercise 3.7.6. Suppose

∫ +∞

a
f2dx and

∫ +∞

a
g2dx converge. Prove that

∫ +∞

a
fgdx and∫ +∞

a
(f + g)2dx converge.

Exercise 3.7.7. Determine convergence.

1.

∫ +∞

2

dx

xp(log x)q
.

2.

∫ 2

1

dx

xp(log x)q
.

3.

∫ 1

0

dx

xp| log x|q
.

4.

∫ 1

−∞

dx

|x|p| log x|q
.

5.

∫ +∞

2

dx

xp + (log x)q
.

6.

∫ +∞

0

xpdx

1 + xq
.

7.

∫ 1

0

xpdx√
1− xq

, q > 0.

8.

∫ 1

0

dx

xp(1− xq)r
, q >

0.

9.

∫ 1

0
xpaxdx, a > 0.

10.

∫ +∞

1
xpaxdx, a > 0.

11.

∫ +∞

1
xp log(1+xq)dx.

12.

∫ 1

0
xp log(1 + xq)dx.



250 CHAPTER 3. INTEGRATION

Exercise 3.7.8. Determine convergence.

1.

∫ +∞

2

xdx√
x5 − 2x2 + 1

.

2.

∫ 1

0

xdx√
x5 − 2x2 + 1

.

3.

∫ +∞

2

x sinxdx√
x5 − 2x2 + 1

.

4.

∫ 1

0

x sinxdx√
x5 − 2x2 + 1

.

5.

∫ +∞

2

x arctanxdx√
x5 − 2x2 + 1

.

6.

∫ 1

0

x arctanxdx√
x5 − 2x2 + 1

.

Exercise 3.7.9. Determine convergence.

1.

∫ +∞

1

x+ 1

x3 − 2x+ 3
dx.

2.

∫ 10

0

dx√
|x2 − 4x+ 3|

.

3.

∫ +∞

1

log x√
xp + 1

dx.

4.

∫ 1

0
(1− x)p| log x|qdx.

5.

∫ 2

1

dx

(3x− 2− x2)p
.

6.

∫ +∞

0

log(1 + x2)dx

1 + xq
.

7.

∫ 1

0

dx√
x+

√
x+
√
x

.

8.

∫ +∞

1

dx√
x+

√
x+
√
x

.

9.

∫ +∞

0

dx√
1 +

√
1 +
√
x

.

Exercise 3.7.10. Determine convergence.

1.

∫ π
2

0

dx

cosp x
.

2.

∫ π
2

0

dx

xp sinq x
.

3.

∫ π
2

0

dx

sinp x cosq x
.

4.

∫ π
3

0
tanp xdx.

5.

∫ π
3

0
tanp x logq xdx.

6.

∫ π
4

0

dx

| sinx− cosx|p
.

7.

∫ π
2

π
4

dx

(1− sinx)p
.

8.

∫ π
2

0
(− log sinx)pdx.

9.

∫ π
2

0
xp log sinxdx.

10.

∫ π
2

0
| log tanx|pdx.

11.

∫ +∞

0
eax cos bxdx.

12.

∫ +∞

0
e−
√
x cos bx2dx.

13.

∫ +∞

1

x+ cosx

x2 − sinx
dx.

14.

∫ +∞

1

log(x+ cosx)

x2 − sinx
dx.

15.

∫ +∞

1

log x+ cosx

x2 − sinx
dx.

Exercise 3.7.11. Find a constant a, such that

∫ +∞

0

(
1√

x2 + 1
+

a

x+ 1

)
dx converges.

Moreover, evaluate the integral for this a.

3.7.3 Conditional Convergence

Although the comparison test is very effective, some improper integrals needs to be
modified before the comparison test can be applied.
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Example 3.7.14. By the comparison test, we know

∫ +∞

1

sinx

xp
dx converges for p > 1.

However, the argument fails for the case p = 1. We will show that

∫ +∞

1

sinx

x
dx

still converges. We will also show that, after taking the absolute value, the integral∫ +∞

1

∣∣∣∣sinxx
∣∣∣∣ dx actually diverges. This means that the comparison test cannot be

directly applied to

∫ +∞

1

sinx

x
dx.

Using integration by parts, we have∫ b

1

sinx

x
dx = −

∫ b

1

1

x
d cosx = −cos b

b
+ cos 1−

∫ b

1

cosx

x2
dx.

By the comparison test, the improper integral

∫ +∞

1

cosx

x2
dx converges. Therefore

the right side converges as b→ +∞, and we conclude that

∫ +∞

1

sinx

x
dx converges.

On the other hand, we have∫ nπ

1

∣∣∣∣sinxx
∣∣∣∣ dx ≥ ∫ nπ

π

∣∣∣∣sinxx
∣∣∣∣ dx =

n∑
k=2

∫ kπ

(k−1)π

∣∣∣∣sinxx
∣∣∣∣ dx ≥ n∑

k=2

1

kπ

∫ kπ

(k−1)π

| sinx|dx

≥
n∑
k=2

1

kπ
≥ 1

π

(
1

2
+

1

3
+ · · ·+ 1

n

)
.

By Example 1.3.8, the right side diverges to +∞. Therefore

∫ +∞

1

∣∣∣∣sinxx
∣∣∣∣ dx diverges.

Example 3.7.15. By a change of variable, we have∫ +∞

0

sinx2dx =

∫ +∞

0

sin yd(
√
y) =

∫ +∞

0

sin y

2
√
y
dy.

The integral on the right is proper at 0+ and improper at +∞. It converges by an

argument similar to Example 3.7.14. Therefore the integral

∫ +∞

0

sinx2dx converges.

We first used the change of variable, then used the integration by parts, and

finally used the comparison test to conclude the convergence of

∫ +∞

0

sinx2dx.

The reader can further use the idea of Example 3.7.14 to show that

∫ +∞

0

| sinx2|dx
diverges.
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Example 3.7.14 shows that it is possible for an improper integral

∫ b

a

f(x)dx to

converge but the corresponding absolute improper integral

∫ b

a

|f(x)|dx to diverge.

In this case, the integral converges but not absolutely, and we say

∫ b

a

f(x)dx con-

ditionally converges.
The idea in Example 3.7.14 can be elaborated to get the following useful tests.

Theorem 3.7.2 (Dirichlet Test). Suppose

∫ b

a

f(x)dx is bounded for all b ∈ [a,+∞).

Suppose g(x) is monotonic and limx→+∞ g(x) = 0. Then

∫ +∞

a

f(x)g(x)dx con-

verges.

Theorem 3.7.3 (Abel Test). Suppose

∫ +∞

a

f(x)dx converges. Suppose g(x) is mono-

tonic and bounded on [a,+∞). Then

∫ +∞

a

f(x)g(x)dx converges.

The tests basically replaces sinx and
1

x
in the example by f(x) and g(x). In case

f(x) is continuous and g(x) is continuously differentiable, we can justify the tests

by repeating the argument in the example. Let F (x) =

∫ x

a

f(t)dt. Then F (a) = 0,

and ∫ b

a

f(x)g(x)dx =

∫ b

a

g(x)dF (x) = g(b)F (b)−
∫ b

a

F (x)g′(x)dx.

Under the assumption of the Dirichlet test, we have limb→+∞ g(b)F (b) = 0, and
|F (x)| < M for some constant M and all x ≥ a. Assume the monotonic function
g(x) is increasing. Then g′(x) ≥ 0, and

|F (x)g′(x)| ≤Mg′(x).

Since ∫ +∞

a

g′(x)dx = lim
b→+∞

∫ b

a

g′(x)dx = lim
b→+∞

(g(b)− g(a)) = −g(a)

converges, by the comparison test, the improper integral∫ +∞

a

F (x)g′(x)dx = lim
b→+∞

∫ b

a

F (x)g′(x)dx

converges. Therefore

∫ +∞

a

f(x)g(x)dx = lim
b→+∞

∫ b

a

f(x)g(x)dx also converges. The

proof for decreasing g(x) is similar.
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Under the assumption of the Abel test, we know both F (b) and g(b) converge
as b → +∞. Therefore F (x) is bounded, and we may apply the comparison test
as before. Moreover, the convergence of limb→+∞ g(b) implies the convergence of∫ +∞

a

g′(x)dx. We conclude again that

∫ +∞

a

f(x)g(x)dx converges.

Exercise 3.7.12. Determine convergence. Is the convergence absolute or conditional?

1.

∫ +∞

0

sinxq

xp
dx.

2.

∫ +∞

0

cosxq

xp
dx.

3.

∫ 1

0

1

x
sin

1

x
dx.

4.

∫ 1

0

1

xp
sin

1

x
dx.

5.

∫ +∞

0

cos ax

1 + xp
dx.

6.

∫ +∞

0

xp sin ax

1 + xq
dx.

7.

∫ +∞

0

sin2 x

x
dx.

8.

∫ +∞

0

sin3 x

x
dx.

9.

∫ +∞

1

sinx arctanx

xp
dx.

Exercise 3.7.13. Construct a function f(x) such that |f(x)| = 1 and

∫ +∞

0
f(x)dx con-

verges.

Finally, we show some examples of using the integration by parts and change of
variable to compute improper integrals. We note that the convergence needs to be
verified before applying the properties of integration.

Example 3.7.16. In Example 3.7.11, we know the convergence of

∫ +∞

0

e−x
2

dx. By the

similar idea, especially limx→+∞
xpe−x

2

e−x
= 0, we know that

∫ +∞

0

xpe−x
2

dx converges

for any p ≥ 0.
Let

In =

∫ +∞

0

xne−x
2

dx.

Then we may apply the integration by parts to get

In = −1

2

∫ +∞

0

xn−1de−x
2

= − 1

2
xn−1e−x

2

∣∣∣∣x=+∞

x=0

+
n− 1

2

∫ +∞

0

xn−2e−x
2

dx =
n− 1

2
In−2.

It is known (by using integration of two variable function, for example) that

I0 =

∫ +∞

0

e−x
2

dx =

√
π

2
.

We can also apply the change of variable to get

I1 =

∫ +∞

0

xe−x
2

dx =
1

2

∫ +∞

0

e−xdx =
1

2
.
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Then we can use the recursive relation to compute In for all natural number n.

Example 3.7.17. The integral

∫ π
2

0

log sinxdx is improper at 0. By L’Hospital’s rule,

we have

lim
x→0+

log sinx

log x
= lim

x→0+

cosx

sinx
1

x

= lim
x→0+

x cosx

sinx
= 1.

By the convergence of

∫ 1

0

| log x|dx = −
∫ 1

0

log xdx in Example 3.7.2 and the com-

parison test, we see that

∫ π
2

0

log sinxdx converges.

The value of the improper integral can be computed as follows∫ π
2

0

log sinxdx =

∫ π
4

0

log sinxdx+

∫ π
2

π
4

log sinxdx

=

∫ π
4

0

log sinxdx−
∫ 0

π
4

log cosxdx

=

∫ π
4

0

(log sinx+ log cos x)dx =

∫ π
4

0

log

(
1

2
sin 2x

)
dx

=

∫ π
4

0

log sin 2xdx− π

4
log 2 =

1

2

∫ π
2

0

log sinxdx− π

4
log 2.

Note that all the deductions are legitimate because all the improper integrals in-
volved converge. Therefore we conclude that∫ π

2

0

log sinxdx = −π
2

log 2.

Exercise 3.7.14. Compute improper integral.

1.

∫ 1

0
(log x)ndx.

2.

∫ +∞

0
xne−xdx.

3.

∫ +∞

0

dx

(1 + x2)n
.

4.

∫ 1

0

xndx√
1− x2

.

5.

∫ π
2

0
log cosxdx.

Exercise 3.7.15. The Gamma function is

Γ(x) =

∫ +∞

0
tx−1e−tdt.

1. Show that the function is defined for x > 0.
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2. Show the other formulae for the Gamma function

Γ(x) = 2

∫ ∞
0

t2x−1e−t
2
dt = ax

∫ ∞
0

tx−1e−atdt.

3. Show that Γ(x+ 1) = xΓ(x) and Γ(n) = (n− 1)!.

3.8 Application to Geometry

3.8.1 Length of Curve

Curves in a Euclidean space are often presented by parametrization. For example,
the unit circle centered at the origin of R2 may be parametrized by the angle

x = cos θ, y = sin θ, 0 ≤ θ ≤ 2π.

The helix in R3

x = r cos θ, y = r sin θ, z =
h

2π
θ, 0 ≤ θ ≤ 2π,

moves along the circle of radius r from the viewpoint of the (x, y)-coordinates, and
moves up in the z-direction in constant speed, such that each round moves up by
height h.

In general, a parametrized curve in R2 is given by

x = x(t), y = y(t), a ≤ t ≤ b.

The initial point of the curve is (x(a), y(a)), and the end point is (x(b), y(b)). To
compute the length of the curve between the two points, we consider the length s(t)
from the initial point (x(a), y(a)) to the point (x(t), y(t)). We find the change s′(t)
and then integrate the change to get s(t). The length of the whole curve is s(b).

Similar to the argument for the area of the region G[a,b](f), we need to be careful
about the sign. In the subsequent discussion, we pretend everything is positive
(which at least gives you the right derivative), and further argument about the
negative case is omitted. Moreover, we restrict the argument to the case x(t) and y(t)
are nice. In fact, we will assume the two functions are continuously differentiable.
In general, we may break the curve into finitely many continuously differentiable
pieces and add the lengths of the pieces together.

As the parameter t is changed by ∆t, the change ∆s = s(t + ∆t) − s(t) of the
length is the length of the curve segment from (x(t), y(t)) to (x(t+ ∆t), y(t+ ∆t)).
The curve segment is approximated by the straight line connecting the two points.
Therefore the length of the curve is approximated by the length of the straight line

∆s ≈
√

(x(t+ ∆t)− x(t))2 + (y(t+ ∆t)− y(t))2 =
√

(∆x)2 + (∆y)2.
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t = a
t = b

(x(t), y(t))

(x(t+ ∆t), y(t+ ∆t))

Figure 3.8.1: Length of curve.

Dividing the change ∆t of parameter, we get

∆s

∆t
≈

√(
∆x

∆t

)2

+

(
∆y

∆t

)2

.

The approximation gets more refined as ∆t → 0. By taking the limit as ∆t → 0,
the approximation becomes an equality

s′(t) = lim
∆t→0

∆s

∆t
= lim

∆t→0

√(
∆x

∆t

)2

+

(
∆y

∆t

)2

=
√
x′(t)2 + y′(t)2.

Therefore the length function s(t) is the antiderivative of
√
x′(t)2 + y′(t)2, or

ds =
√
x′(t)2 + y′(t)2dt,

and we have

length of curve = s(b) =

∫ b

a

√
x′(t)2 + y′(t)2dt.

Example 3.8.1. The length of the unit circle is∫ 2π

0

√
(− sin θ)2 + (cos θ)2dθ =

∫ 2π

0

dθ = 2π.

More generally, an ellipse
x2

a2
+
y2

b2
= 1 can be parametrized as

x = a cos θ, y = b sin θ, 0 ≤ θ ≤ 2π.

The length of the ellipse is the so called elliptic integral∫ 2π

0

√
(−a sin θ)2 + (b cos θ)2dθ = a

∫ 2π

0

√
1 +K cos2 θdθ, K =

b2

a2
− 1.

The integral cannot be computed as an elementary expression if a 6= b.
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Example 3.8.2. The graph of a function f(x) on [a, b] is a curve

x = t, y = f(t), t ∈ [a, b].

The length of the graph is ∫ b

a

√
1 + f ′(x)2dx,

where the variable t is substituted to the more familiar x.
For example, the parabola y = x2 is cut by the diagonal y = x. With the help

of Example 3.5.31, the finite segment corresponding to x ∈ [0, 1] has length∫ 1

0

√
1 + (2x)2dx =

1

2

∫ 2

0

√
1 + x2dx

=
1

4

(
x
√

1 + x2 + log(
√

1 + x2 + x)
)2

0
=

1

2

√
5 +

1

4
log(
√

5 + 2).

x2

1

Figure 3.8.2: Parabola x2 cut by the diagonal.

Example 3.8.3. The astroid x
2
3 + y

2
3 = 1 can be parametrized as

x = cos3 t, y = sin3 t, t ∈ [0, 2π].

Note that the range [0, 2π] for t corresponds to moving around the astroid exactly
once. Therefore the perimeter is∫ 2π

0

√
(−3 cos2 t sin t)2 + (3a sin2 t cos t)2dt =

∫ 2π

0

3| sin t cos t|dt = 6.

Example 3.8.4. The argument about the length of curves also applies to curves in
R3 and leads to

length of curve =

∫ b

a

√
x′(t)2 + y′(t)2 + z′(t)2dt.
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1

Figure 3.8.3: Astroid.

For example, the length of one round of the helix is

∫ 2π

0

√
(−r sin θ)2 + (r cos θ)2 +

(
h

2π

)2

dθ =

∫ 2π

0

√
r2 +

(
h

2π

)2

dθ

= 2π

√
r2 +

(
h

2π

)2

=
√

(2πr)2 + h2.

The result has a simple geometrical interpretation: By cutting along a vertical line,
the cylinder can be “flattened” into a plane. Then the helix becomes the hypotenuse
of a right triangle with horizontal length 2πr and vertical length h.

Example 3.8.5. When a circle rolls along a straight line, the track of one point on
the circle is the cycloid. Let r be the radius of the circle, and assume the point is
at the bottom at the beginning. After rotating angle t, the center of the circle is at
(rt, r), and the point is at (rt, r) + r(− cos(t− π

2
), sin(t− π

2
)). Therefore the cycloid

is parameterized by
x = rt− r sin t, y = r − r cos t.

As the circle makes one complete rotation, we get one period of the cycloid,
corresponding to t ∈ [0, 2π]. The length of this one period is∫ 2π

0

√
(r − r cos t)2 + (r sin t)2dt = r

∫ 2π

0

√
2(1− cos t)dt = r

∫ 2π

0

2

∣∣∣∣sin t

2

∣∣∣∣ dt = 8r.

Exercise 3.8.1. Compute length.

1. y2 = 2x, x ∈ [0, a].

2. x2 = 2py, x ∈ [0, a].

3. y = ex, x ∈ [0, a].

4. y = log x, x ∈ [1, a].
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t

Figure 3.8.4: Cycloid.

5. y = log(4− x2), x ∈ [−1, 1].

6. y = log cosx, x ∈
[
0,
π

4

]
.

7. y = log secx, x ∈
[
0,
π

4

]
.

8. y =
ex + e−x

2
, x ∈ [−a, a].

9. y2 = x3, x ∈ [0, a].

10. y4 = x3, x ∈ [0, a].

11. y = log
ex + 1

ex − 1
, x ∈ [1, 2].

12. y =

∫ x

0

√
t3 − 1dt, x ∈ [1, 4].

Exercise 3.8.2. Compute length.

1.
√
x+
√
y = 1, x, y ≥ 0.

2. x = t, y = log t, t ∈ [1, 2].

3. x = et − t, y = et + t, t ∈ [0, 1].

4. x = et cos t, y = et sin t, t ∈ [0, π].

5. x = cos2 t, y = cos t sin t, t ∈ [0, π].

6. x = 3 cos t− cos 3t, y = 3 sin t− sin 3t, t ∈ [0, π].

7. x = cos t+ log tan
t

2
, y = sin t, t ∈

[π
4
,
π

2

]
.

8. x = cos t+ t sin t, y = sin t− t cos t, z = t2, t ∈ [0, 2π].

9. x = a2et, y = b2e−t, z =
√

2abt, t ∈ [0, 1].

Exercise 3.8.3. Compute the length of Cornu’s spiral

x =

∫ t

0
cos

πu2

2
du, y =

∫ t

0
sin

πu2

2
du.

Exercise 3.8.4. Think of the rolling circle that produces the cycloid as a disk. What is the
track of a point on the disk that is not necessarily on the circle (i.e., the boundary of the
disk)? Find the formula for computing the length of this track.

Exercise 3.8.5. Suppose a line is wrapped around a circle. When the line is unwrapped
from the circle, the track of one point on the line is the involute of the circle. Let r be the
radius of the circle and let t be the unwrapped angle.



260 CHAPTER 3. INTEGRATION

1. Find the parameterized formula for the involute.

2. Find the length of the involute as the line is unwrapped by half of the circle.

t

Figure 3.8.5: Involute of circle.

3.8.2 Area of Region

Being defined as area, the integration is naturally adapted to the computation of
area. We start with the area of region bounded by two functions.

Example 3.8.6. The curve y = x2 and the straight line y = x enclose a region over
0 ≤ x ≤ 1. The area of the region is the area below x subtracting the area below
x2, which is ∫ 1

0

xdx−
∫ 1

0

x2dx =

∫ 1

0

(x− x2)dx =
1

6
.

1

xx2

Figure 3.8.6: Region between x and x2.
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Example 3.8.7. To compute the area of the region bounded by y = x2−2x and y = x.
We denote the (positive) areas of the four indicated regions by A1, A2, A3, A4. Then∫ 2

0

xdx = A1,

∫ 2

0

(x2−2x)dx = −A2,

∫ 3

2

xdx = A3+A4,

∫ 3

2

(x2−2x)dx = A4.

The area we are interested in is

A1 + A2 + A3 = A1 − (−A2) + (A3 + A4)− A4

=

∫ 2

0

xdx−
∫ 2

0

(x2 − 2x)dx+

∫ 3

2

xdx−
∫ 3

2

(x2 − 2x)dx

=

∫ 3

0

xdx−
∫ 3

0

(x2 − 2x)dx =

∫ 3

0

[x− (x2 − 2x)]dx =
9

2
.

2 3

x

x2 − 2x

A1

A2

A3

A4

Figure 3.8.7: Region between x and x2 − 2x.

The examples suggest that, if f(x) ≥ g(x) on [a, b], then the area of the region
between f and g over [a, b] is∫ b

a

f(x)dx−
∫ b

a

g(x)dx =

∫ b

a

(f(x)− g(x))dx.

In general, we can divide [a, b] into some intervals, such that on each interval, one of
the following happens: f(x) ≥ 0 ≥ g(x), f(x) ≥ g(x) ≥ 0, 0 ≥ f(x) ≥ g(x). Then
an argument similar to Example 3.8.7 shows that the total area is indeed given by
the formula above.

Example 3.8.8. The functions sinx and cos x intersect at many places and enclose

many regions. One such region is over the interval

[
π

4
,
5π

4

]
, on which we have

sinx ≥ cosx. The area of the region is∫ 5π
4

π
4

(sinx− cosx)dx = 2
√

2.



262 CHAPTER 3. INTEGRATION

g

f

0 ≥ f ≥ g f ≥ 0 ≥ g f ≥ g ≥ 0

Figure 3.8.8: The area is

∫ b

a

(f(x)− g(x))dx.

0 π
4

π
2

π
5π
4

sinx

cosx

Figure 3.8.9: Region between sinx and cos x.

Example 3.8.9. The region between the parabola y2 − x = 1 and the straight line
x+ y = 1 is between the functions

f(x) =

{√
x+ 1, if − 1 ≤ x ≤ 0,

1− x, if 0 ≤ x ≤ 3,
g(x) = −

√
x+ 1.

The area is∫ 3

−1

f(x)dx−
∫ 3

−1

g(x)dx =

∫ 0

−1

√
x+ 1dx+

∫ 3

0

(1− x)dx−
∫ 3

−1

(−
√
x+ 1)dx =

9

2
.

Note that the region is obtained by rotating the region in Example 3.8.7. Natu-
rally the results are the same. The previous example actually suggests another way
of computing the area, by exchanging the roles of x and y.

Example 3.8.10. Consider f(x) = x5 + 2x2− 2x− 3 and g(x) = x5−x3 +x2− 3. We
have

f(x)− g(x) = x3 + x2 − 2x = x(x− 1)(x+ 2).

Therefore the two functions intersect at x = −2, 0, 1 and enclose two regions. The
first region is over [−2, 0], on which f(x) ≥ g(x). The second region is over [0, 1],
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y2 − x = 1x+ y = 1

3

−2

1

−1

Figure 3.8.10: Region between a parabola and a straight line.

on which f(x) ≤ g(x). The areas of the regions are

Area over [−2, 0] =

∫ 0

−2

(f(x)− g(x))dx =
8

3
,

Area over [0, 1] =

∫ 1

0

(f(x)− g(x))dx =
5

12
.

Note that we may change the functions to f(x) = x5 + 2x2 − 2x − 3 + ex
2

and
g(x) = x5− x3 + x2− 3 + ex

2
and get the same result. Although it is hard (actually

impossible) to compute the exact values of

∫ b

a

f(x)dx and

∫ b

a

g(x)dx. Yet we can

still compute the area.

Exercise 3.8.6. Compute area of the region with the given bounds.

1. y =
√
x, y-axis, y = 1.

2. y = ex, y = x, on [0, 1].

3. y = log x, y = x, y = 0, y = 1.

4. y = x2, y = 2x− x2.

5. y = sinx, y = cosx, on [0, π4 ].

6. y = ex, y = x2 − 1, on [−1, 1].

7. y = log x, y2 = x+ 2, y = −1, y = 1.

8. x = y2 − 4y, x = 2y − y2.

9. y = 2x− x2, x+ y = 0.

10. y = x, y = x+ sin2 x, on [0, π].

Exercise 3.8.7. Explain that, if 0 ≥ f ≥ g on [a, b], then the area of the region between the

graphs of f and g over [a, b] is

∫ b

a
(f(x)− g(x))dx.

Exercise 3.8.8. Explain that, the area of the region between the graphs of f and g over

[a, b] is

∫ b

a
|f(x) − g(x)|dx, even when we may have f > g some place and f < g some

other place.



264 CHAPTER 3. INTEGRATION

In practise, a region is often enclosed by a closed boundary curve (or several
closed curves if the region has holes). It is often more convenient to describe curves
by their parameterisations. For example, the unit disk is enclosed by the unit circle,
which can be conveniently parameterised as x = cos t, y = sin t, t ∈ [0, 2π].

A parameterisation of a curve can be considered as a movement along the curve,
and therefore imposes a direction on the curve. We will always make the standard
assumption that, as we move along a parameterised boundary curve, the region is
always on the left of curve. Figure 3.8.2 illustrates the meaning of the assumption.
For a region without holes, this means that the curve has counterclockwise direction.
The unit circle parameterisation above is such an example. If the region has holes,
then the “inside boundary components” should have clockwise direction.

C C1

C2

Figure 3.8.11: The region is always on the left of the boundary curve.

Consider a simple region in Figure 3.8.2, such that the boundary curve can be
divided into the graphs of two functions y = y1(x) and y = y2(x) for x ∈ [α, β].
Suppose the boundary curve has parameterisation φ(t) = (x(t), y(t)), t ∈ [a, b], such
that y1 and y2 correspond respectively to t ∈ [a, c] and t ∈ [c, b]. The direction of
the parameterisation satisfies our assumption.

y1

y2

t = c

t = a
t = b

α β

X

C

Figure 3.8.12: Calculate the area by integrating along the boundary curve.

The area of the region is

∫ β

α

(y1(x)−y2(x))dx. We may use the parameterisation

of the boundary curve as the change of variable to get the following formula for the
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area ∫ β

α

(y1(x)− y2(x))dx =

∫ β

α

y1(x)dx−
∫ β

α

y2(x)dx

=

∫ a

c

y(t)dx(t)−
∫ b

c

y(t)dx(t)

= −
∫ b

a

y(t)dx(t) = −
∫
C

ydx.

We note that the negative sign comes from our assumption of the direction. The

upper part y1 is supposed to positively contribute

∫ β

α

y1(x)dx to the area of X.

However, the direction of y1 is leftward, opposite to the x-direction (the direction of
dx). This introduces a negative sign. Similarly, the lower part y2 should negatively
contribute to the area, and yet has the rightward direction, the same as the x-
direction. This also introduces a negative sign.

We may further use the integration by parts to get another formula for the area

−
∫ b

a

y(t)dx(t) = −y(b)x(b) + y(a)x(a) +

∫ b

a

x(t)dy(t) =

∫
C

xdy.

Here we have x(a) = x(b) and y(a) = y(b) because the boundary curve is closed.
The positive sign on the right can be explained as follows. The area is supposed to
be the contribution from the right boundary part subtracting the contribution from
the left boundary part. From the picture, we see that the direction of the right part
is upward, the same as the y-direction (the direction of dy), and the direction of the
left part is downward, opposite to the y-direction.

Example 3.8.11. The boundary circle of the unit disk is parameterised by x(t) = cos t,
y = sin t, t ∈ [0, 2π]. Since the parameterisation satisfies our assumption, we may
use it to calculate the area of the unit disk

−
∫ 2π

0

y(t)dx(t) =

∫ 2π

0

sin2 tdt = π.

Example 3.8.12. Consider the region enclosed by the Archimedean spiral x = t cos t,
y = t sin t, t ∈ [0, π], and the x-axis. The boundary of the region consists of the
spiral and the interval [−π, 0] on the x-axis. After checking that the direction of the
boundary satisfies the assumption, we get the area

−
∫ π

0

(t sin t)(t cos t)′dt−
∫ 0

−π
0dx = −

∫ π

0

(t sin t cos t− t2 sin2 t)dt =
1

6
π3.
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t = 0t = π

Figure 3.8.13: Archimedean spiral.

Exercise 3.8.9. Explain that the area of the region on the left of Figure 3.8.2 may be

calculated by −
∫
C
ydx. You may need to break the boundary into four parts y1, y2, y3, y4.

Moreover, show that the area may also be calculated by

∫
C
xdy.

Exercise 3.8.10. Explain that the area of the region on the right of Figure 3.8.2 may be

calculated by −
∫
C1

ydx−
∫
C2

ydx and

∫
C1

xdy +

∫
C2

xdy.

Exercise 3.8.11. Explain that, if the direction of the boundary curve C is opposite to our

assumption, then the area is

∫
C
ydx.

Exercise 3.8.12. Compute the areas of the regions enclosed by the curves.

1. Ellipse
x2

a2
+
y2

b2
= 1.

2. Astroid x
2
3 + y

2
3 = 1.

3.
√
|x|+

√
|y| = 1.

4. Hyperbola x2 − y2 = 1 and x = a (a > 1).

5. Sprial x = et cos t, y = et sin t, t ∈ [0, π], and the x-axis.

6. One period of the cycloid in Example 3.8.5 and the x-axis.

3.8.3 Surface of Revolution

If we revolve a curve on the plane with respect to a straight line, we get a surface.
For example, the sphere is obtained by revolving a circle around any straight line
passing through the center of the circle, and the torus is obtained by revolving a
circle around any straight line not intersecting the circle.

Let (x(t), y(t)), t ∈ [a, b], be a parametrized curve in the upper half of the (x, y)-
plane (this means y(t) ≥ 0). To find the area of the surface obtained by revolving
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the curve around the x-axis, we let A(t) be the area of the surface obtained by
revolving the [a, t] segment of the curve around the x-axis. Again the subsequent
argument ignores the sign.

As the parameter is changed by ∆t, the change ∆A = A(t+∆t)−A(t) of the area
is the area of surface obtained by revolving the curve segment from (x(t), y(t)) to
(x(t+ ∆t), y(t+ ∆t)) = (x, y) + (∆x,∆y). Since the curve segment is approximated
by the straight line connecting the two points, the area ∆A is approximated by the
area of the revolution of the straight line.

t = a

t = b

x x + ∆x

y
+

∆
y

y

2
π
y

2
π

(y
+

∆
y
)

√ ∆
x
2 +

∆
y
2

Figure 3.8.14: Area of surface of revolution.

The revolution of the straight line can be expanded to lie on the plane. It is part
of the annulus of thickness

√
∆x2 + ∆y2. Moreover, the inner arc has length 2πy(t)

and the outer arc has length 2πy(t+ ∆t). Therefore the area of the partial annulus
gives the approximation

∆A ≈ 1

2
(2πy(t) + 2πy(t+ ∆t))

√
∆x2 + ∆y2 = π(y(t) + y(t+ ∆t))

√
∆x2 + ∆y2.

Dividing the change ∆t of the parameter, we get

∆A

∆t
≈ π(y(t) + y(t+ ∆t))

√(
∆x

∆t

)2

+

(
∆y

∆t

)2

.

The approximation gets more refined as ∆t → 0. By taking the limit as ∆t → 0,
the approximation becomes an equality

A′(t) = lim
∆t→0

∆A

∆t
= lim

∆t→0
π(y(t) + y(t+ ∆t))

√(
∆x

∆t

)2

+

(
∆y

∆t

)2

= 2πy(t)
√
x′(t)2 + y′(t)2.
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This leads to

area of surface of revolution = A(b) = 2π

∫ b

a

y(t)
√
x′(t)2 + y′(t)2dt.

We note that ds =
√
x′(t)2 + y′(t)2dt is used for computing the length of curve, and

we can write

area of surface of revolution = 2π

∫ b

a

y(t)ds.

Here y is really the distance from the curve to the axis of revolution.

Example 3.8.13. The 2-dimensional sphere of radius r is obtained by revolving the
half circle

x = r cos θ, y = r sin θ, θ ∈ [0, π]

around the x-axis. Since the length of circular arc is given by ds = rdθ, the area of
the sphere is

2π

∫ π

0

(r sin θ)rdθ = 4πr2.

Example 3.8.14. The torus is obtained by revolving a circle on the upper half plane
around the x-axis. Let the radius of the circle be a and let the center of the circle
be (0, b). Then a < b and the circle may be parametrized as

x = a cos θ, y = a sin θ + b, θ ∈ [0, 2π].

The length is given by ds = adθ, so that the area of the torus is

2π

∫ 2π

0

(a sin θ + b)adθ = 4π2ab.

b

a
(a cos θ, a sin θ + b)

θ

Figure 3.8.15: Torus.
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Example 3.8.15. Take the segment y = x2, x ∈ [0, 1] of the parabola in Example
3.8.2. If we revolve the parabola around the x-axis, then ds =

√
1 + 4x2dx, the

distance from the curve to the axis of rotation (i.e., the x-axis) is x2. Therefore the
area of the surface of revolution is

2π

∫ 1

0

x2
√

1 + 4x2dx

With the help of Example 3.5.15 and the computation in Example 3.8.2, we have∫ 1

0

x2
√

1 + 4x2dx =
1

8

∫ 2

0

x2
√

1 + x2dx =
1

8

∫ 2

0

(
(1 + x2)

3
2 − (1 + x2)

1
2

)
dx

=
1

8

(
1

2 · 3
2

+ 1
x(1 + x2)

3
2

∣∣∣∣2
0

+

(
2 · 3

2

2 · 3
2

+ 1
− 1

)∫ 2

0

(1 + x2)
1
2dx

)

=
1

8

(
2

5
5

3
2 − 2

5

(√
5 +

1

2
log(2 +

√
5)

))
=

1√
5
− 1

40
log(2 +

√
5).

So the area is
2π√

5
− π

20
log(2 +

√
5).

x

x2

x

x

x

x−x2
√

2

Figure 3.8.16: Revolving a parabola segment around different axes.

If we revolve around the y-axis, then we get a paraboloid. We still have ds =√
1 + 4x2dx, but the distance from the curve to the axis of rotation (i.e., the y-axis)

is now x. Therefore the area of the paraboloid is

2π

∫ 1

0

x
√

1 + 4x2dx = 2π
2

3 · 8
(1 + 4x2)

3
2

∣∣∣∣1
0

=
π

6
(5
√

5− 1).

Finally, if we revolve around the diagonal y = x, then the distance from the

curve to the axis of rotation is
x− x2

√
2

, and the area is

2π

∫ 1

0

x− x2

√
2

√
1 + 4x2dxdx =

1√
2

(
π

6
(5
√

5− 1)− 2π√
5

+
π

20
log(2 +

√
5)

)
=
√

2π

(
13

60

√
5− 1

12
− 1

40
log(2 +

√
5)

)
.
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Example 3.8.15 shows how to adapt the formula for the area of the surface
of revolution to the more general case of any parametrized curve (x(t), y(t)) with
respect to a straight line αx + βy + γ = 0. Assume the curve is on the “positive
side” of the straight line

αx(t) + βy(t) + γ ≥ 0, for all t ∈ [a, b].

Then the distance y(t) should be replaced by
αx(t) + βy(t) + γ√

α2 + β2
. We still have

ds =
√
x′(t)2 + y′(t)2dt. Therefore we get the general formula

area of surface of revolution = 2π

∫ b

a

(αx(t) + βy(t) + γ)
√
x′(t)2 + y′(t)2√

α2 + β2
dt.

Exercise 3.8.13. Find the formula for the area of the surface of revolution of the graph of
a function y = f(x) around the x-axis. What about revolving around the y-axis? What
about revolving around the line x = a?

Exercise 3.8.14. Find the area of the surface of revolution.

1. y = x3, x ∈ [0, 2], around x-axis.

2. x2 = 2py, x ∈ [0, 1], around y-axis.

3. y = ex, x ∈ [0, 1], around x-axis.

4. y = ex, x ∈ [0, 1], around y-axis.

5. y = ex, x ∈ [0, 1], around y = 1.

6. y = tanx, x ∈ [0, π4 ], around x-axis.

7. y2 =
ex + e−x

2
, x ∈ [−a, a], around

x-axis.

8. y2 = x3, x ∈ [0, 1], around x-axis.

9. Ellipse
x2

a2
+
y2

b2
= 1, around x-axis.

10. Astroid x
2
3 + y

2
3 = 1, around x-axis.

Exercise 3.8.15. Find the area of the surface obtained by revolving one period of the cycloid
in Example 3.8.5 around the x-axis.

Exercise 3.8.16. Find the area of the surface obtained by revolving the involute of the circle
in Example 3.8.5 around the x-axis.

3.8.4 Solid of Revolution

If we revolve a region in the plane with respect to a straight line, we get a solid. For
example, the ball is obtained by revolving a disk around any straight line passing
through the center of the disk, and the solid torus is obtained by revolving a disk
around any straight line not intersecting the disk.

Consider the region G[a,b](f) for a function f(x) ≥ 0 over the interval [a, b]. To
find the volume of the solid obtained by revolving the region around the x-axis, we
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let V (x) be the volume of the part of solid obtained by revolving G[a,x](f) around
the x-axis. Then the change ∆V = V (x + ∆x) − V (x) is the volume of the solid
obtained by revolving G[x,x+∆x](f).

f(a)

f(b)
m

M

∆x

Figure 3.8.17: Volume of solid of revolution.

Let m = min[x,x+∆x] f and M = max[x,x+∆x] f . Then G[x,x+∆x](f) is sandwiched
between the rectangles [x, x + ∆x] × [0,m] and [x, x + ∆x] × [0,M ]. Therefore
the revolution of G[x,x+∆x](f) is sandwiched between the revolutions of the two
rectangles. The revolutions of rectangles are cylinders and have volumes πm2∆x
and πM2∆x. Therefore we get

πm2∆x ≤ ∆V ≤ πM2∆x.

This implies

πm2 ≤ ∆V

∆x
≤ πM2.

If f is continuous, then lim∆x→0m = lim∆x→0M = f(x). By the sandwich rule, we
get

V ′(x) = lim
∆x→0

∆V

∆x
= πf(x)2.

This leads to

volume of solid of revolution = V (b) = π

∫ b

a

f(x)2dx.

Example 3.8.16. The 3-dimensional ball of radius r is obtained by revolving the half
disk around the x-axis. The half disk is the region between

√
r2 − x2 and the x-axis

over [−r, r]. Therefore the volume of the ball is

π

∫ 1

−1

(
√
r2 − x2)2dx =

4

3
πr3.
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Example 3.8.17. The solid torus is obtained by revolving a disk in the upper half
plane around the x-axis. Let the radius of the disk be a and let the center of the disk
be (0, b). Then a < b and the disk is the region between y1(x) = b +

√
a2 − x2 and

y2(x) = b−
√
a2 − x2 over the interval [−a, a]. The torus is the solid obtained by re-

volving G[−a,a](y1) subtracting the solid obtained by revolving G[−a,a](y2). Therefore
the volume of the torus is the volume of the first solid subtracting the second

π

∫ a

−a
y1(x)2dx− π

∫ a

−a
y2(x)2dx = π

∫ a

−a
(y1(x)2 − y2(x)2)dx

= π

∫ a

−a
((b+

√
a2 − x2)2 − (b−

√
a2 − x2)2)dx

= π

∫ a

−a
4b
√
a2 − x2dx

= 4πb

∫ π
2

−π
2

a2 cos2 tdt = 2π2a2b.

annulus section

g

f

Figure 3.8.18: Solid of revolution of the region between two functions.

Example 3.8.17 shows that, if f ≥ g ≥ 0 on [a, b], then the volume of the solid of
revolution obtained by revolving the region between f and g over [a, b] around the
x-axis is

π

∫ b

a

(f(x)2 − g(x)2)dx.

Now we extend the discussion before Example 3.8.11 about calculating the area
of a plan region by the integrating along the boundary curve. Suppose the region X
in Figure 3.8.2 lies in the upper half plane. Then similar to the earlier discussion,
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the volume of the solid obtained by rotating X around the x-axis is

π

∫ β

α

(y1(x)2 − y2(x)2)dx = π

∫ β

α

y1(x)2dx− π
∫ β

α

y2(x)2dx

= π

∫ a

c

y(t)2dx(t)− π
∫ b

c

y(t)2dx(t)

= −π
∫ b

a

y(t)2dx(t) = −π
∫
C

y2dx.

So all the earlier discussion about the area can be applied to the volume of the solid
of revolution.

Example 3.8.18. The volume of the 3-dimensional ball of radius r is obtained by
revolving the half disk around the x-axis. The boundary of the half disk consists
of the half circle x = cos t, y = cos t, t ∈ [0, π], and the interval [−1, 1] on the x-
axis. Moreover, the parameterisation of the boundary curve satisfies our assumption.
Therefore the volume of the ball is

π

∫ π

0

(r sin t)2d(r cos t) + π

∫ 1

−1

02dx = πr3

∫ π

0

(1− cos2 t)d(cos t) =
4

3
πr3.

Example 3.8.19. We use the parameterisation x = a cos t, y = b + a sin t, t ∈ [0, 2π]
of the circle to calculate the volume of the torus in Example 3.8.17

−π
∫ 2π

0

(b+ a sin t)2d(a cos t) = πa

∫ 2π

0

(b2 sin t+ 2ab sin2 t+ a2 sin2 t)dt

= 2π2a2b.

Example 3.8.20. Consider the region enclosed by the Archimedean spiral and the
x-axis in Example 3.8.20. The volume of the solid obtained by revolving the region
around the x-axis is

−
∫ π

0

(t sin t)2d(t cos t) = −
∫ π

0

(t2 sin2 t cos t− t3 sin3 t)dt =
2

3
π3 − 4π.

Exercise 3.8.17. Find volume of the solid obtained by revolving the region in Exercise
3.8.12 around the x-axis.

Exercise 3.8.18. Use integration by parts to explain that the volume of the solid of revolu-

tion can also be calculated by 2π

∫
C
xydy. Then use this formula to calculate the volumes

of the ball, the torus, and the solids obtained by revolving the regions in Exercise 3.8.12
around the x-axis.

The formula will be the “shell method” in Example 3.8.27.
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Exercise 3.8.19. Explain that, if the direction of the boundary curve C is opposite to our

assumption, then the volume of the solid of revolution around the x-axis is π

∫
C
y2dx.

Exercise 3.8.20. For the solid obtained by revolving a region in the lower half plane around

the x-axis, how should the formula −π
∫
C
y2dx for the volume be modified?

Next we consider the general case of revolving a region X around a straight line
L : αx + βy + γ = 0. We assume X is on the “positive side” of L in the sense that
the parameterisation (x(t), y(t)) of the boundary curve C of X satisfies

αx(t) + βy(t) + γ ≥ 0, for all t ∈ [a, b].

Moreover, we still assume that the direction of C satisfies our assumption. Then in

the formula −π
∫
C

y2dx, y should be understood as the distance
αx(t) + βy(t) + γ√

α2 + β2

from C to L, and dx should be understood as the progression

βdx− αdy√
α2 + β2

=
βx′(t)− αy′(t)√

α2 + β2
dt

along the direction
(β,−α)√
α2 + β2

of L. Therefore the volume of the solid of revolution

is

−π
∫ b

a

(αx(t) + βy(t) + γ)2(βx′(t)− αy′(t))
(
√
α2 + β2)3

dt

We note that the negative sign is due to the mismatch (See Figure 3.8.4) of the
direction of the boundary curve and the direction of the progression along L. In
general, we may determine the sign by comparing the direction of the parameter
and the direction of progression.

L : αx+ βy + γ = 0
(α, β)

progression along L

X

Figure 3.8.19: Revolving a region X around a line.
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For the special case that X is above the horizontal line y = b ((α, β) = (0, 1)),

the volume of the solid of revolution around the line is −π
∫
C

(y − b)2dx. If X is on

the right of the y-axis (i.e., the line x = 0, with (α, β) = (1, 0)), then the volume of
the solid of revolution around the y-axis is

−π
∫ b

a

x(t)2(−y′(t))dt = π

∫
C

x2dy.

The negative sign in front of y′ comes from the fact that the progression for the line
x = 0 goes downwards, the opposite of the y-direction. If X is on the right of the
vertical line x = a, then the volume of the solid of revolution around the vertical

line is π

∫
C

(x− a)2dy.

Example 3.8.21. Take the segment y = x2, x ∈ [0, 1], of the parabola in Example
3.8.2. If we revolve the region X between the parabola and the x-axis around the
x-axis, then the volume of the solid is

π

∫ x=1

x=0

y2dx = π

∫ 1

0

(x2)2dx =
1

5
π.

If we revolve X around the y-axis, then the volume of the solid is

π

∫ x=1

x=0

x2dy = π

∫ y=1

y=0

ydy =
1

2
π.

Let Y be the region between the parabola and the vertical line x = 1. If we
revolve Y around the vertical line x = 1, then the volume of the solid is

π

∫ x=1

x=0

(1− x)2dy = π

∫ 1

0

(1− x)2d(x2) =
7

6
π.

If we revolve Y around the y-axis instead, then the volume of the solid is

π

∫ x=1

x=0

(12 − x2)dy = π

∫ y=1

y=0

(1− y)dy =
1

2
π.

Let Z be the region between the parabola y = x2 and the diagonal y = x. If we
revolve Z around the x-axis, then the volume of the solid is

π

∫ x=1

x=0

(x2 − (x2)2)dx =
2

15
π.

If we revolve Z around the line x = −1, then the volume of the solid is

π

∫ x=1

x=0

((x+ 1)2d(x2)− (x+ 1)2dx) = π

∫ 1

0

(x+ 1)2(2x− 1)dx

= π

∫ 2

1

z2(2z − 3)dz =
1

2
π.
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If we revolve Z around the diagonal y = x, then to make sure the region is on
the positive side of the diagonal, we should write the diagonal as x − y = 0, with

(α, β) = (1,−1). The distance between the parabola and the diagonal is
x− x2

√
2

.

The progression of the parabola in the direction
(β,−α)√
α2 + β2

=
(−1,−1)√

2
of the line

is
−dx− dy√

2
=
−dx− d(x2)√

2
=
−(1 + 2x)√

2
dx.

Therefore the volume of the solid is

−π
∫ x=1

x=0

(
x− x2

√
2

)2 −(1 + 2x)√
2

dx =
1

30
√

2
π.

If we revolve Z around the line y = x−1, we should write the line as −x+y+1 = 0
for Z to be on the positive side, with (α, β) = (−1, 1). The distance from the

diagonal and the parabola to the line are
1√
2

and
1√
2
− x− x2

√
2

. The progressions

of the diagonal and the parabola in the direction
(β,−α)√
α2 + β2

=
(1, 1)√

2
of the line are

dx+ dx√
2

=
√

2dx and
dx+ d(x2)√

2
=

1 + 2x√
2

dx.

Therefore the volume of the solid is

π

∫ x=1

x=0

((
1√
2

)2√
2dx−

(
1√
2
− x− x2

√
2

)2
1 + 2x√

2
dx

)
=

3

10
√

2
π.

Exercise 3.8.21. Let A ≤ f(x) ≤ B for x ∈ [a, b]. Find the formula for the volume of the
solid of revolution of the region between the graph of function f and y = A around the
line y = C, where C 6∈ (A,B).

Exercise 3.8.22. Find the formula for the volume of the solid obtained by revolving a region
X for which the parameterised boundary has the right direction.

1. X is on the left of the y-axis, around the y axis.

2. X is on the left of x = a, around x = a.

3. X is below y = b, around y = b.

4. X is on the negative side of x+ y = 0, around x+ y = 0.

5. X is on the negative side of x+ y = 1, around x+ y = 1.
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Exercise 3.8.23. Find the volume of the solid obtained by revolving the region between the
curve and the axis of revolution.

1. y = x3, x ∈ [0, 2], around x-axis.

2. x2 = 2py, x ∈ [0, 1], around y-axis.

3. y = ex, x ∈ [0, 1], around x-axis.

4. y = ex, x ∈ [0, 1], around y-axis.

5. y = ex, x ∈ [0, 1], around x = 1.

6. y = tanx, x ∈
[
0,
π

4

]
, around x-axis.

7. y2 =
ex + e−x

2
, x ∈ [−a, a], around x-axis.

8. y2 = x3, x ∈ [0, 1], around x-axis.

9. Ellipse
x2

a2
+
y2

b2
≤ 1, around x-axis.

10. Astroid x
2
3 + y

2
3 ≤ 1, around x-axis.

Exercise 3.8.24. Find the volume of the solid of revolution.

1. Region bounded by y = x and y = x2, around x-axis.

2. Region bounded by y = x and y = x2, around x = 2.

3. Region bounded by y = x and y = x2, around x = y.

4. Region bounded by y = x and y = x2, around x+ y = 0.

5. Region bounded by y2 = x+ 1 and x+ y = 1, around x+ y = 1.

6. Region bounded by y2 = x+ 1 and x+ y = 1, around x = 3.

7. Region bounded by y2 = x+ 1 and x+ y = 1, around y = 1.

8. Region bounded by y = log x, y = 0, y = 1, and y-axis, around y-axis.

9. Region bounded by y = cosx and y = sinx, around y = 1.

10. Triangle with vertices (0, 0), (1, 2), (2, 1), around x-axis.

11. Ellipse
x2

a2
+
y2

b2
≤ 1, around y = b.

12. Ellipse
x2

a2
+
y2

b2
≤ 1, around bx+ ay = 2ab.

13. Region bounded by y =
1

1 + |x|
and the x-axis, around x-axis.

14. Region bounded by y = e−|x| and the x-axis, around x-axis.



278 CHAPTER 3. INTEGRATION

3.8.5 Cavalieri’s Principle

The formulae for the area of surface of revolution and the volume of solid of revolu-
tion follow from a more general principle.

In general, an n-dimensional solid X has n-dimensional size. For n = 1, X is a
curve and the size is the length. For n = 2, X is a region in R2 or more generally a
surface, and the size is the area. For n = 3, X is typically a region in R3 but can
also be a “3-dimensional surface” such as the 3-dimensional sphere in R4, and the
size is the volume.

To find the size of an n-dimensional solid X, we may decompose X into sections
Xt of one lower dimension (i.e., Xt has dimension n − 1). For 2-dimensional X,
this means that X is decomposed into a one parameter family of curves. For 3-
dimensional X, this means that X is decomposed into a one parameter family of
surfaces. The decomposition is equidistant if the distance between two nearby pieces
does not depend on the location where the distance is measured. In this case, we
have the distance function s(t), such that the distance between the sections Xt and
Xt+∆t is ∆s = s(t + ∆t) − s(t). If X spans from distance s = a to distance s = b,
then

size of X =

∫ t=b

t=a

size(Xt)ds =

∫ b

a

size(Xt)s
′(t)dt.

A consequence of the formula is the following principle of Cavalieri: If two solids
X and Y have equidistant decompositions Xt and Yt, such that Xt and Yt have the
same size, and the distance between Xt and Xt′ is the same as the distance between
Yt and Yt′ , then X and Y have the same size.

Example 3.8.22. Let X be a region inside the plane. We decompose X by intersecting
with vertical lines Xx = X ∩ x× R. The decomposition is equidistant, with the x-

coordinate as the distance. Thus the area of X is

∫ b

a

length(Xx)dx. In the special

case X is the region between f(x) and g(x), where f(x) ≥ g(x), the section Xx is
the interval [g(x), f(x)] and has length f(x) − g(x). Then we recover the formula∫ b

a

(f(x)− g(x))dx in Section 3.8.2.

Example 3.8.23. Let X be a region inside R3. We decompose X by intersecting
with vertical planes Xx = X ∩ x × R2. The decomposition is equidistant, with

the x-coordinate as the distance. Thus the volume of X is

∫ b

a

area(Xx)dx. In the

special case X is obtained by rotating the region between f(x) and g(x), where
f(x) ≥ g(x) ≥ 0, around the x-axis, the section Xx is the annulus with outer radius
f(x) and inner radius g(x). The section has area π(f(x)2 − g(x)2), and we get the



3.8. APPLICATION TO GEOMETRY 279

xa b

XxXxXx

Figure 3.8.20: Area of a region in R2.

formula π

∫ b

a

(f(x)2 − g(x)2)dx for the solid of revolution.

Xx

a bx

Figure 3.8.21: Volume of a solid in R3.

Example 3.8.24. Let R be a region in the plane. Let P be a point not in the plane.
Connecting P to all points in R by straight lines produces the pyramid X with base
R and apex P .

We may put R on the (x, y)-plane in R3 and assume that P = (0, 0, h) lies in the
positive z-axis, where h is the distance from P to the plane. Let A be the area of R.
We decompose the pyramid by the horizontal planes, so that z is the distance. The
section Xz is similar to R, so that the area of Xz is proportional to the square of its

distance h− z to P . We find the area of Xz to be

(
h− z
h

)2

A, and the volume of

the pyramid is ∫ h

0

(
h− z
h

)2

Adx =
1

3
hA.

Example 3.8.25. Let X be the intersection of two round solid cylinders of radius 1 in
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0

h

z

P

R

Xz

area A

area

(
h− z
h

)2

A

Figure 3.8.22: Pyramid.

orthogonal position. We put the two cylinders in R3, by assuming the two cylinders
to be x2 +y2 ≤ 1 and x2 +z2 ≤ 1. Then we decompose the solid by intersecting with
the planes perpendicular to the x-axis. The section Xx is a square of side length
2
√

1− x2 and therefore has area 4(1− x2). The volume of the intersection solid X
is ∫ 1

−1

4(1− x2)dx =
16

3
.

x √ 1
−
x
2

1 −1
−1 x

Figure 3.8.23: Orthogonal intersection of two cylinders.

Exercise 3.8.25. Explain the formula in Section 3.8.3 for the area of surface of revolution
by using suitable equidistant decomposition.

Exercise 3.8.26. Explain that if a solid is stretched by a factor A in the x-direction, by B
in the y-direction, and by C in the z-direction, then the volume of the solid is multiplied
by the factor ABC.

Exercise 3.8.27. Find the volume of solid.
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1. Ellipsoid
x2

a2
+
y2

b2
+
z2

c2
≤ 1.

2. Solid bounded by
x2

a2
+
y2

b2
− z2

c2
= 1 and z = ±c.

3. Intersection of the sphere x2 + y2 + z2 ≤ 1 and the cylinder x2 + y2 ≤ x.

4. Solid bounded by x+ y + z2 = 1 and inside the first quadrant.

Exercise 3.8.28. Find the volume of solid.

1. A solid with a disk as the base, and the parallel sections perpendicular with the
base are equilateral triangles.

2. A solid with a disk as the base, and the parallel sections perpendicular with the
base are squares.

3. Cylinder cut by two planes, one is perpendicular to the cylinder and the other form
angle α with the cylinder. The two planes do not intersect inside the cylinder.

4. Cylinder cut by two planes forming respective angles α and β with the cylinder.
The two planes do not intersect inside the cylinder.

5. A wedge cut out of a cylinder, by two planes forming respective angles α and β with
the cylinder, such that the intersection of two planes is a diameter of the cylinder.

So far we used parallel lines and planes to construct the decomposition. We may
also use equidistant curves and surfaces to construct the decomposition.

Example 3.8.26. We may decompose a region X in the plane by concentric circles.
The decomposition is equidistant, with the radius r of the circles as the distance. The
section Xr consists of the points in X of distance r from the origin and is typically
an arc from angle φ(r) to angle ψ(r). The length of the arc Xr is (ψ(r)− φ(r))r, so

that the area of X is

∫ b

a

(ψ(r)− φ(r))rdr.

O

φ(r)

ψ(r)

a

r
b

Xr

Figure 3.8.24: Equidistant decomposition by concentric circles.
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For example, for the disk centered at (1, 0) and of radius 1, we have φ =

− arccos
r

2
and ψ = arccos

r

2
, r ∈ [0, 2]. The area of the disk of radius 1 is (taking

t = arccos
r

2
, r = 2 cos t)∫ 2

0

2r arccos
r

2
dr =

∫ 0

π
2

2t(2 cos t)d(2 cos t) = 8

∫ π
2

0

t cos t sin tdt

= 4

∫ π
2

0

t sin 2tdt =

∫ π

0

u sinudu = π.

Example 3.8.27. Let X be a region in the right plane (i.e., the right side of y-axis).
Let Y be the solid obtained by revolving X around the y-axis. We may use the
cylinders centered at the y-axis to decompose Y . The decomposition is equidistant,
with x as the distance. Let Xx be the intersection of X with the vertical line
x × R. Then the section Yx is the cylinder obtained by revolving Xx around the
y-axis. The area of the section is 2πx(length of Xx). Therefore the volume of the

solid of revolution is 2π

∫ b

a

x(length of Xx)dx. In particular, if X is the region

between functions f(x) and g(x), where f(x) ≥ g(x) on [a, b], then the volume is

2π

∫ b

a

x(f(x)− g(x))dx.

x

y

X

Yx Xx

Figure 3.8.25: Equidistant decomposition by concentric cylinders.

For example, consider the solid torus in Example 3.8.17. The disk is the region
between x =

√
a2 − (y − b)2 and x = −

√
a2 − (y − b)2, for y ∈ [b− a, b + a]. If we

use the formula above (note that x and y are exchanged), we get the volume of the
solid torus

2π

∫ b+a

b−a
y(2
√
a2 − (y − b)2)dy = 4π

∫ a

−a
(t+ b)

√
a2 − t2)dt

= 8π

∫ a

0

b
√
a2 − t2dt = 4π2a2b.
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Exercise 3.8.29. Compute the volumes of the solids of revolution in Example 3.8.21 by
using the formula in Example 3.8.27.

Exercise 3.8.30. Compute the volumes of the solids of revolution in Exercise 3.8.23 by
using the formula in Example 3.8.27.

Exercise 3.8.31. Compute the volumes of the solids of revolution in Exercise 3.8.24 by
using the formula in Example 3.8.27.

Exercise 3.8.32. After Example 3.8.21, we presented the formula for computing the volume
of a solid obtained by revolving a region in R2 bounded by a parameterized curve. Can
you derive the similar formula by using the idea from Example 3.8.27?

Exercise 3.8.33. In Section 3.8.4 and Example 3.8.27, we have two ways of computing the
volume of a solid of revolution. For the following simple case, explain that the two ways
give the same result: Let f(x) be and invertible non-negative function on [0, a], such that
f(a) = 0 and both f(x) and f−1(y) are continuously differentiable. The solid is obtained
by revolving the region between the graph of f and the two axis.

Example 3.8.28. Finally, we compute the size of high dimensional objects. Let αn
be the volume of the n-dimensional sphere Sn of radius 1. Then

α0 = 2, α1 = 2π, α2 = 4π.

Moreover, the n-dimensional sphere of radius r has volume αnr
n.

To compute αn, we decompose Sn by intersecting with “horizontal hyperplanes”.
The hyperplanes are indexed by the angle t. The section at angle t is the (n − 1)-
dimensional sphere Sn−1 of radius cos t, and form an equidistant decomposition. In
fact, the angle t can be used to measure the distance between the sections. Since

the section at t has volume αn−1 cosn−1 t and the range of t is
[
−π

2
,
π

2

]
, we conclude

that

αn =

∫ π
2

−π
2

αn−1 cosn−1 tdt = 2αn−1In−1,

where In−1 =

∫ π
2

0

cosn−1 tdt =

∫ π
2

0

sinn−1 tdt has been computed in Example 3.5.14

I2k =
(2k)!

22k+1(k!)2
π, I2k+1 =

22k(k!)2

(2k + 1)!
.

Thus

αn = 2αn−1In−1 = 4αn−2In−1In−2 = 4αn−2
π

2(n− 1)
=

2π

n− 1
αn−2.
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By the values of α1 and α2, we conclude that

αn =


(2π)

n
2

2 · 4 · · · (n− 2)
, if n is even,

2(2π)
n−1

2

1 · 3 · · · (n− 2)
, if n is odd.

1

cos t

Sn−1 of radius cos t

t

Figure 3.8.26: Decomposing n-dimensional sphere of radius 1.

Exercise 3.8.34. Let βn be the volume of the ball Bn of radius 1.

1. Similar to Example 3.8.28, use the intersection with horizontal hyperplanes to derive
the relation between βn and βn−1. Then use the special values β1 and β2, and
Example 3.5.14 to compute βn.

2. Use the decomposition of Bn by concentric (n − 1)-dimensional spheres to derive
the relation between βn and αn−1. Then use Example 3.8.28 to find βn.

The two methods should give the same result.

Exercise 3.8.35. Suppose R is a region in Rn−1 with volume. Suppose P is a point in Rn
of distance h from Rn−1. By connecting P to all points of R by straight lines, we get a
pyramid X with base R and apex P . Find the relation between the volumes of X and R.

3.9 Polar Coordinate

The polar coordinate locates a point on the plane by its distance r to the origin
and the angle θ indicating the direction from the viewpoint of origin. It is roughly
related to the cartesian coordinates (x, y) by

x = r cos θ, y = r sin θ; r =
√
x2 + y2, θ = arctan

y

x
.

We say “roughly” because the relation between (x, y) and (r, θ) is not a one-to-one
correspondence. For example, the last formula literally restricts θ, as the value of
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inverse tangent function, to be within
(
−π

2
,
π

2

)
. In fact, the angle for a point in the

plane is unique only up to adding an integer multiple of 2π, and is more precisely
determined by

(cos θ, sin θ) =
(x, y)√
x2 + y2

.

Another way to say this is that θ is unique if we restrict to [0, 2π) (or [−π, π), etc.).
For the convenience of presenting polar equations, we also allow r to be negative,

by specifying that (−r, θ) and (r, θ + π) represent the same point. In other words,
(−r, θ) and (r, θ) are symmetric with respect to the origin. The cost of such extension
is more ambiguity in the polar coordinates of a point because all the following
represent the same point

(r, θ), (−r, θ ± π), (r, θ ± 2π), (−r, θ ± 3π), . . . .

3.9.1 Curves in Polar Coordinate

Example 3.9.1. The equation r = c is the circle of radius |c| centered at the origin.
The equation θ = c is a straight line passing through the origin.

θ = cr = c

d
r

α
θ

Figure 3.9.1: r = c, θ = c, and polar equation for general straight line.

The equation for a general straight line is

r =
d

cos(α− θ)
.

Moreover, r = a cos θ is the circle of diameter a passing through the origin.

O

r = cos θ

aθ r

θ

0 π
2

3π
2 2π

Figure 3.9.2: Circle r = a cos θ.

Exercise 3.9.1. Find the cartesian equation.
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1. r = 2.

2. r = −2.

3. r = sin θ.

4. r sin θ = 1.

5. r = tan θ sec θ.

6. r = cos θ + sin θ.

Exercise 3.9.2. Find the polar equation.

1. x = 1.

2. y = −1.

3. x+ y = 1.

4. x = y2.

5. x2 + y2 = x.

6. xy = 1.

Exercise 3.9.3. What is the polar equation of the curve obtained by flipping r = f(θ) with
respect to the origin? Then use your conclusion to find the curve r = − cos θ.

Exercise 3.9.4. What is the relation between the curves r = f(θ) and r = −f(θ + π)?

Exercise 3.9.5. What is the polar equation of the curve obtained by rotating r = f(θ) by
angle α? Then use your conclusion to answer the following.

1. What is the curve r = sin θ?

2. Find the polar equation for a general circle passing through the origin.

Exercise 3.9.6. Find the polar equation of a general circle.

Example 3.9.2. The Archimedean spiral is r = θ. Note that r < 0 when θ < 0, so
that a flipping with respect to the origin is needed when we draw the part of the
spiral corresponding to θ < 0. The symmetry with respect to the y-axis is due to
the fact that if (r, θ) satisfies r = θ, then (−r,−θ) also satisfies r = θ.

The Fermat’s spiral is r2 = θ. The symmetry with respect to the origin is due
to the fact that if (r, θ) satisfies r2 = θ, then (−r, θ) also satisfies r2 = θ.

(r, θ)

(r,−θ)

(−r,−θ)

(−r, θ)

Figure 3.9.3: Spirals r = θ and r2 = θ.

Example 3.9.3. The curve r = 1 + cos θ is a cardioid. Its clockwise rotation by 90◦ is
another cardioid r = 1 + sin θ. More generally, the curve r = a+ cos θ is a limaçon.
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The curve intersects itself when |a| < 1 and does not intersect itself when |a| > 1.
The symmetry with respect to the x-axis is due to the fact that if (r, θ) satisfies
r = a+ cos θ, then (r,−θ) also satisfies the equation.

θ = 0

π
2

3π
2

π

r = 1 + cos θ r = 1 + sin θ

0.4

1

1.5

Figure 3.9.4: Cardioids and limaçons r = a+ cos θ, a = 0.4, 1, 1.5.

The cardioid originates from the following geometrical construction. Consider a
circle C of diameter 1 rolling outside of a circle A of equal diameter 1. This is the
same as the circle rolling inside a big circle B of diameter 3. The track traced by a
point on C is the cardioid. Note that the origin O of the polar coordinate should
be a point on A, not the center of A.

θ
θθ

θ

θ

O 1 2

A C

B
co

s θ

1

Figure 3.9.5: Origin of the cardioid.

If we imagine the rolling circle C as part of a rolling disk D, and we fix a point
in D of distance d from the center of C. Then the track tranced by the point is the
limaçon r = 1 + 2d cos θ, with the origin of the polar coordinate being a point of
distance d form the center of A.

Example 3.9.4. The curve r = cos 2θ is the four-leaved rose, and r = cos 3θ is the
three-leaved rose. The circle r = cos θ can be considered as the one-leaved rose.
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In general, the curve r = cosnθ can be described as follows. For θ in the arc

I =
[
− π

2n
,
π

2n

]
, the value of r goes from 0 to 1 and then back to 0, so that the

corresponding curve is one leaf occupying
π

n
angle of the whole circle. This is the

leaf in
[
−π

4
,
π

4

]
for n = 2 and in

[
−π

6
,
π

6

]
for n = 3. For θ in the second arc I +

π

n
,

we need to rotate this first leaf by angle
π

n
and then flipping with respect to the

origin (because r becomes negative), which gives a leaf occupying I +
π

n
+ π. This

is the leaf in

[
5π

4
,
7π

4

]
for n = 2 and in

[
7π

6
,
9π

6

]
for n = 3. For θ in the third arc

I +
2π

n
, we get the leaf obtained by rotating the first leaf by angle

2π

n
(no flipping

needed now because r becomes non-negative again), which gives a leaf occupying

I +
2π

n
. This is the leaf in

[
3π

4
,
5π

4

]
for n = 2 and in

[
3π

6
,
5π

6

]
for n = 3. Keep

going, we see two distinct patterns depending on the parity of n.

1

2

3

4

θ = 0θ = π

θ = 3π
2

θ = π
2

1

2

3

θ = 0

θ = π
3

θ = 2π
3

Figure 3.9.6: Four-leaved rose r = cos 2θ and three-leaved rose r = cos 3θ.

More generally, we may consider r = cos pθ. Again we get first leaf occupying

I =

[
− π

2p
,
π

2p

]
, the second leaf occupying I+

π

p
+π, the third leaf occupying I+

2π

p
,

etc. The pattern could be very complicated, depending on whether p is rational or
irrational, and in case p is rational, the parity of the numerator and denominator of
p.

Finally, r = sin pθ is obtained by rotating r = cos 2θ by
π

2p
. We also get many

leaved roses by other rotations.

Exercise 3.9.7. Describe the curve.
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Figure 3.9.7: Many leaved roses r = sin 2θ and r = sin 3
2
θ.

1. r = −θ.

2. r = θ + π.

3. r = 2θ.

4. r2 = −θ.

5. r2 = 4θ.

6. r2 = θ + π.

7. er = θ.

8. rθ = 1.

9. r = 2 + cos θ.

10. r = 2 + 3 cos θ.

11. r = 2− cos θ.

12. r = cos θ + sin θ.

13. r = 1 + cos θ + sin θ.

14. r = cos 4θ.

15. r = 2 sin 5θ.

16. r = −3 sin 6θ.

17. r = sin 2θ − cos 2θ.

18. r = sin 2θ + 2 cos 2θ.

19. r = cos
4

3
θ.

20. r = sin
5

3
θ.

21. r = cos
1

3
θ.

22. r = cos
2

3
θ.

23. r = cos
2

3
θ + sin

2

3
θ.

24. r2 = sin 2θ.

25. r2 = − cos 4θ.

26. r = 1 + 2 cos
1

2
θ.

27. r = 2 + cos
1

2
θ.

3.9.2 Geometry in Polar Coordinate

The curve r = f(θ) for θ ∈ [α, β] is the parameterized curve

x = f(θ) cos θ, y = f(θ) sin θ, θ ∈ [α, β]

in the cartesian coordinate. The length of the curve is∫ β

α

√
(f(θ) cos θ)′2 + (f(θ) sin θ)′2dθ =

∫ β

α

√
f 2 + f ′2dθ.

For the area in terms of polar coordinate, assume f ≥ 0 and consider the region
X[α,β](f) bounded by r = f(θ), θ ∈ [α, β], and the rays θ = α and θ = β. Using the
idea of Section 3.1.1, let A(θ) be the area of the region X[α,θ](f). Then the change
A(θ + h) − A(θ) is the area of X[θ,θ+h](f). Since X[θ,θ+h](f) is sandwiched between
fans of angle between θ, θ + h and radii m = min[θ,θ+h] f , M = max[θ,θ+h] f , we get

1

2
m2h ≤ A(θ + h)− A(θ) ≤ 1

2
M2h.
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Here the left and right sides are the known areas of the fans. The inequality is the
same as

1

2
m2 ≤ A(θ + h)− A(θ)

h
≤ 1

2
M2.

O

α

β

θ

θ + h

M
m

Figure 3.9.8: Estimate the change of area.

If f is continuous, then limh→0m = limh→0M = f(θ). By the sandwich rule, we
get

A′(θ) =
1

2
f(θ)2.

Therefore the area of X[α,β](f) is

A(β) =
1

2

∫ β

α

f(θ)2dθ.

Example 3.9.5. The cardioid r = 1 + sin θ has length∫ 2π

0

√
(1 + sin θ)2 + (1 + sin θ)′2dθ =

∫ 2π

0

√
2(1 + sin θ)dθ

=

∫ − 3
4
π

1
4
π

√
2(1 + cos 2t)d

(π
2
− 2t

)
= 4

∫ 1
4
π

− 3
4
π

| cos t|dt = 4

∫ π

0

cos tdt = 8.

The region enclosed by the cardioid has area

1

2

∫ 2π

0

(1 + sin θ)2dθ =
1

2

∫ 2π

0

(1 + 2 sin θ + sin2 θ)dθ =
3

2
π.

Example 3.9.6. Let p >
1

2
. Then one leaf of the rose r = cos pθ is from the angle
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− π

2p
to the angle

π

2p
. The length of the leaf is

∫ π
2p

− π
2p

√
(cos pθ)2 + (cos pθ)′2dθ =

∫ π
2p

− π
2p

√
cos2 pθ + p2 sin2 pθdθ

=

∫ π
2

−π
2

√
p−2 cos2 t+ sin2 tdt

=
1

2

∫ 2π

0

√
1 + (p−2 − 1) cos2 tdt.

This is the elliptic integral in Example 3.8.1. Moreover, the area of the leaf is

1

2

∫ π
2p

− π
2p

(cos pθ)2dθ =
π

4p
.

Example 3.9.7. The cardioid r = 1 + cos θ and the circle r = 3 cos θ intersect at

θ = ±π
3

. The area of the region outside the cardioid and inside the circle is

1

2

∫ π
3

−π
3

((3 cos θ)2 − (1 + cos θ)2)dθ = π.

π
3

−π
3

Figure 3.9.9: Ourside cardioid r = 1 + cos θ and inside circle r = 3 cos θ.

Example 3.9.8. We try to find the volume of the solid of revolution obtained by
revolving the region between the two leaves of the limaçon r = a+ cos θ, 0 < a < 1,
around the x-axis. In the cartesian coordinate, the curve is parameterized by

x = (a+ cos θ) cos θ, y = (a+ cos θ) sin θ, θ ∈ [0, π].

Let θ = α at the origin O. Then the volume we are looking for is the volume of
the solid of revolution from θ = 0 to θ = α, subtracting the volume of the solid of
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revolution from θ = α to θ = π. As θ goes from 0 to α, we are moving opposite to

the direction of the x-axis. Therefore the first volume is −π
∫ θ=α

θ=0

y2dx. As θ goes

from α to π, we are moving in the direction of the x-axis. Therefore the second

volume is π

∫ θ=π

θ=α

y2dx. We conclude that the volume we are looking for is

−π
∫ θ=α

θ=0

y2dx− π
∫ θ=π

θ=α

y2dx = −π
∫ θ=π

θ=0

y2dx

= −π
∫ π

0

(a+ cos θ)2 sin2 θd[(a+ cos θ) cos θ]

= −π
∫ π

0

(a+ cos θ)2(1− cos2 θ)(a+ 2 cos θ)d(cos θ)

= −π
∫ −1

1

(a+ t)2(1− t2)(a+ 2t)dt =
4

3
πa(a2 + 1).

O
θ = 0θ = π

θ = α

Figure 3.9.10: Revolving the region between two leaves of a limaçon.

Exercise 3.9.8. What is the length of lemiçon? What is the area of the region enclosed by
lemiçon? Note that for |c| > 1, we have two parts of the lemiçon and two regions.

Exercise 3.9.9. Find length of the part of the cardioid r = 1 + cos θ in the first quadrant.
Moreover, find the area of the region enclosed by this part and the two axes.

Exercise 3.9.10. Find the area of the region enclosed by strophoid r = 2 cos θ − sec θ.

Exercise 3.9.11. Find length.

1. r = θ, θ ∈ [0, π]. 2. r = θ2, θ ∈ [0, π]. 3. r = eθ, θ ∈ [0, 2π].

Exercise 3.9.12. Find area.

1. Bounded by r = θ, θ ∈ [0, π] and the x-axis.
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2. Outside r = 1 and inside r = 2 cos θ.

3. Inside r = 1 and outside r = 2 cos θ.

4. Inside both r = 1 and r = 1 + cos θ.

5. Outside r = 3 sin θ and inside r = 2− sin θ.

6. Inside both r = cos 2θ and r = sin 2θ.

7. Inside both r = 1 + c cos θ and r = 1 + c sin θ, |c| < 1.

8. Inside both r = 1 + c cos θ and r = 1− c cos θ, |c| < 1.

9. Inside both r2 = cos 2θ and r2 = sin 2θ.

10. Outside r = 1 and inside r = 2 cos 3θ.

11. Between the two loops of r = 1 + 2 cos 3θ.

3.10 Application to Physics

3.10.1 Work and Pressure

Integration is also widely used to compute physical quantities. If under a constant
force F , an object moves by a distance d in the direction of the force, then the work
done by the force is Fd. In general, however, the force may vary. For simplicity,
assume the object moves along the x-axis, from x = a to x = b, and a horizontal
force F (x) is applied when the object is at location x. Then the work done by
the force when the objects moves a little bit from x to x + ∆x is approximately
∆W ≈ F (x)∆x.

Similar to the earlier argument, let W (x) be the work done by the force when
the object moves from a to x. Since the work is additive, we have ∆W = W (x +

∆x)−W (x). The approximation
∆W

∆x
≈ F (x) becomes more accurate as ∆x→ 0,

and we get an equality after taking the limit

W ′(x) = lim
∆x→0

W (x+ ∆x)−W (x)

∆x
= lim

∆x→0

∆W

∆x
= F (x).

This implies that the work done for the whole trip from a to b is

W (b) =

∫ b

a

F (x)dx.

Example 3.10.1. Suppose one end of spring is fixed and the other end is attached
to an object. In the natural position, when the spring is neither stretched nor
compressed, no force is exercised on the object. When the position of the object
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deviate from the natural position by x, however, Hooke’s law says that the spring
exercises a force F (x) = −kx on the object. Here k is the spring constant, and the
negative sign indicates that the direction of the force is opposite to the direction of
the deviation.

If the object starts at distance a from its natural position, then the work done
by the spring in pulling the object to its natural position is∫ a

0

kxdx =
k

2
a2.

Here we use the positive sign because the direction of movement is the same as the
direction of the force.

The argument about the work done by a force is quite typical. In general, if a
quantity is additive, then the quantity can be decomposed into small pieces. The
estimation of each small piece tells us the change of the quantity. The whole quantity
is then the integration of the change.

In the subsequent examples, we will only analyze a small piece of an additive
quantity. We will omit the limit part of the argument and directly write down the
corresponding integration.

Example 3.10.2. We want to find the work it takes to pump a bucket of liquid out
of the top of the bucket.

∆x

r

R

h

H

x

Figure 3.10.1: Bucket of liquid.

Suppose the bucket has base diameter r, top diameter R, and height H. Suppose
the liquid has density ρ and depth h. We decompose liquid into horizontal sections.
At distance x from the top, the section is a disk of radius r(x) satisfying

r(x)− r
R− r

=
H − x
H

.

The liquid of thickness ∆x and at distance x from the top has (approximate) weight
gρπr(x)2∆x (g is the gravitational constant). The work it takes to lift this piece
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of liquid to the top of bucket is ∆W ≈ (gρπr(x)2∆x)x = πgρxr(x)2∆x. Since the
liquid spans from x = H − h to x = H, the total work needed is

W = πgρ

∫ H

H−h
xr(x)2dx =

πgρ

H2

∫ H

H−h
x [(R− r)(H − x) + rH]2dx

= πgρH2R2

(
a2b+

1

2
a(2a− 3b)b2 +

1

3
(1− a)(1− 3a)b3 − 1

4
(1− a)2b4

)
,

where a =
r

R
and b =

h

H
.

Example 3.10.3. We want to find the force exercised by water on a dam.
Let ρ be the density of water. At the depth x, the pressure of water is ρx per unit

area. Now suppose the dam is a vertical trapezoid with base length l, top length L,
and height H. We decompose dam into horizontal sections. At distance x from the
top, the section is a strip of height ∆x and length l(x) satisfying

l(x)− l
L− l

=
H − x
H

.

The force exercised on the strip is ∆F ≈ (ρx)l(x)∆x. Since the water spans from
x = 0 to x = H, the total force

F = ρ

∫ H

0

xl(x)dx = ρ

∫ H

0

x

(
L− L− l

H
x

)
dx =

1

6
ρH2(L+ 2l).

l

L

l(x)
∆xH

x

Figure 3.10.2: Hydraulic dam.

Exercise 3.10.1. A spring has natural length a. If the force F is needed to stretch the
spring to length b, how muck work is needed to stretch the spring from the natural length
to the length b?

Exercise 3.10.2. A ball of radius R is full of liquid of density ρ. Due to the gravity, the
liquid leaks out of a hole at the bottom of the ball. How much work is done by the gravity
in draining all the liquid?
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Exercise 3.10.3. A circular disk of radius r is fully submerged in liquid of density ρ, such
that the center of the disk is at depth h. What is the force exercised by the liquid on one
side of the plate? Note that the plate may be inclined at some angle.

Exercise 3.10.4. A ball of radius r is fully submerged in liquid of density ρ, such that the
center of the disk is at depth h. What is the force exercised by the liquid on the ball?

Exercise 3.10.5. A cable of mass m and length l has a mass M tied to the lower end. How
much word is done in using the cable to lift the mass M to the top end of the cable?

Exercise 3.10.6. Newton’s law of gravitation says that two bodies with masses m and M

attract each other with a force F =
gmM

d2
, where d is the distance between the bodies.

Suppose the radius of the earth is R and the mass is M . How much work is needed to
launch a satellite of mass m vertically to a circular orbit of height H? What is the minimal
initial velocity needed for the satellite to escape the earth’s gravity?

3.10.2 Center of Mass

Consider n masses m1,m2, . . . ,mn distributed at the locations x1, x2, . . . , xn along
a straight line. The center of mass is

x̄ =
m1x2 +m2x2 + · · ·+mnxn

m1 +m2 + · · ·+mn

.

The center has the physical meaning that the total moment of the system with
respect to x̄ is zero, or the system is balanced with respect to x̄.

Now suppose we have masses distributed throughout an interval [a, b], with the
density ρ(x) at location x. We partition the interval into small pieces

P : a = x0 < x1 < x2 < · · · < xn = b.

Then the system is decomposed into n pieces. The i-th piece can be approximately
considered as a mass mi = ρ(x∗i )(xi − xi−1) located at x∗i , for some x∗i ∈ [xi−1, xi].
The whole system is approximated by the system of n pieces, and has approximate
center of mass

x̄P =

∑n
i=1 ρ(x∗i )(xi − xi−1)x∗i∑n
i=1 ρ(x∗i )(xi − xi−1)

.

The denominator is the Riemann sum of the function xρ(x) and the numerator is the
Riemann sum of the function ρ(x) (see the beginning of Section 3.3.1). Therefore
as the partition gets more and more refined, the limit becomes the center of mass

x̄ =

∫ b

a

xρ(x)dx∫ b

a

ρ(x)dx

.
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The center of mass can be extended to higher dimensions, simply by considering
each coordinate separately. For example, the system of n masses m1,m2, . . . ,mn at
(x1, y1), (x2, y2), . . . , (xn, yn) in the plane has the center of mass (x̄, ȳ) given by

x̄ =

∑
mixi∑
mi

, ȳ =

∑
miyi∑
mi

.

Now consider masses distributed along a curve (x(t), y(t)), t ∈ [a, b], with the density
ρ(t) at location t. Take a partition P of [a, b]. The curve is approximated by
straight line segments connecting (x(ti−1), y(ti−1)) to (x(ti), y(ti)). The i-th straight
line segment has length ∆si =

√
(x(ti)− x(ti−1))2 + (y(ti)− y(ti−1))2 and can be

approximately considered as a mass mi = ρ(t∗i )∆si located at (x(t∗i ), y(t∗i )), for some
t∗i ∈ [ti−1, ti]. The whole system is approximated by the system of n pieces, and has
approximate center of mass

x̄P =

∑n
i=1(ρ(t∗i )∆si)x(t∗i )∑n

i=1 ρ(t∗i )∆si
, ȳP =

∑n
i=1(ρ(t∗i )∆si)y(t∗i )∑n

i=1 ρ(t∗i )∆si
.

As the partition gets more and more refined, the limit becomes the center of mass

x̄ =

∫ b

a

x(t)ρ(t)ds∫ b

a

ρ(t)ds

, ȳ =

∫ b

a

y(t)ρ(t)ds∫ b

a

ρ(t)ds

, ds =
√
x′(t)2 + y′(t)2dt.

Example 3.10.4. For constant density ρ(x) = ρ distributed on the interval, the center
of mass is the middle point

x̄ =

∫ b

a

xρdx∫ b

a

ρdx

=
ρ

1

2
(b2 − a2)

ρ(b− a)
=
a+ b

2
.

If the density is ρ(x) = λ+ µx, which is linearly increasing, then the center of mass
is

x̄ =

∫ b

a

x(λ+ µx)dx∫ b

a

(λ+ µx)dx

=
3λ(a+ b) + 2µ(a2 + ab+ b2)

3(2λ+ µ(a+ b))
.

Example 3.10.5. Consider the semi-circular curve of radius r and constant density ρ.
We have

x = r cos θ, y = r sin θ, ds = rdθ, 0 ≤ θ ≤ π,
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and the center of mass is

x̄ =

∫ π

0

(r cos θ)ρrdθ∫ π

0

ρrdθ

= 0, ȳ =

∫ π

0

(r sin θ)ρrdθ∫ π

0

ρrdθ

=
2r

π
.

Exercise 3.10.7. Find the center of mass of the parabola y = x2, x ∈ [0, 2], of constant
density.

Exercise 3.10.8. Find the center of mass of a triangle of constant density and with vertices
at (−1, 0), (0,

√
15) and (7, 0).

Exercise 3.10.9. Let m[a,b] and x̄[a,b] be the mass and the center of mass of a distribution
of masses on [a, b] with the density ρ(x). Let [a, b] = [a, c] ∪ [c, b] and similarly introduce
m[a,c], m[c,b], x̄[a,c], x̄[c,b]. Show that the center of mass has the distribution property

m[a,b] = m[a,c] +m[c,b], x̄[a,b] =
m[a,c]x̄[a,c] +m[c,b]x̄[c,b]

m[a,c] +m[c,b]
.

Does the property extend to curves in R2?
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Series

4.1 Series of Numbers

A series is an infinite sum

∞∑
n=1

an = a1 + a2 + a3 + · · · .

The following are some examples.

∞∑
n=0

rn = 1 + r + r2 + r3 + · · ·+ rn + · · · ,

∞∑
n=1

n = 1 + 2 + 3 + · · ·+ n+ · · · ,

∞∑
n=1

1

n(n+ 1)
=

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n(n+ 1)
+ · · · ,

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+ · · ·+ 1

np
+ · · · ,

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− · · ·+ (−1)n+1

n
+ · · · ,

∞∑
n=0

1

n!
= 1 +

1

1!
+

1

2!
+ · · ·+ 1

n!
+ · · · .

Like sequences, series do not have to start at n = 1. For example, it is more
convenient for the geometric series

∑∞
n=0 r

n to start at n = 0.

299



300 CHAPTER 4. SERIES

4.1.1 Sum of Series

Definition 4.1.1. The partial sum of a series
∑∞

n=1 an is

sn =
n∑
i=1

ai = a1 + a2 + · · ·+ an.

If the partial sum converges, then the series converges and has sum (or value)

∞∑
n=1

an = lim
n→∞

sn.

If the partial sum diverges, then the series diverges.

If finitely many terms in a series are modified, added or dropped, then the new
partial sum s′n and the original partial sum sn are related by s′n = sn+n0 + C for
some constants n0 and C. This implies that the convergence of series is not affected,
although the sum may be affected.

The arithmetic properties of the sequence limit implies∑
(an + bn) =

∑
an +

∑
bn,

∑
can = c

∑
an.

However, there is no formula for
∑
anbn or

∑ an
bn

.

Example 4.1.1. Let sn = 1 + r + r2 + · · ·+ rn be the partial sum of geometric series∑∞
n=0 r

n. Then

(1− r)sn = (1 + r + r2 + · · ·+ rn)− (r + r2 + r3 + · · ·+ rn+1) = 1− rn+1.

Therefore sn =
1− rn+1

1− r
and

∞∑
n=0

rn =


1

1− r
, if |r| < 1,

diverges, if |r| ≥ 1.

Example 4.1.2. The computation in Example 1.3.1 gives the partial sum of
∑ 1

n(n+ 1)
.

1

1 · 2
+

1

2 · 3
+· · ·+ 1

n(n+ 1)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+· · ·+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1
.

Therefore
∞∑
n=1

1

n(n+ 1)
= lim

n→∞

(
1− 1

n+ 1

)
= 1.
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Example 4.1.3. Example 2.7.5 shows that the partial sum of
∑ 1

n!
satisfies |sn−e| =

|Rn(1)| ≤ e

(n+ 1)!
, which implies

∑∞
n=0

1

n!
= e. Exercise 1.3.18 gives an alternative

argument. Of course the argument, which uses the Lagrange form of the remainder

(Theorem 2.7.1), can be extended to the series
∑ xn

n!
. The partial sum satisfies

|sn − ex| = |Rn(x)| = ec

(n+ 1)!
|x|n+1 ≤ e|x|

(n+ 1)!
|x|n+1, |c| < |x|.

Since for fixed x, the right side converges to 0 as n → ∞, we conclude that∑∞
n=0

xn

n!
= ex.

Exercise 4.1.1. Suppose the partial sum sn =
n

2n+ 1
. Find the series

∑
an and its sum.

Exercise 4.1.2. Decimal expressions for rational numbers have repeating patterns. For
example, we have

1.234 = 1.2343434 · · · = 1.2 +
34

1000
+

34

100000
+

34

10000000
+ · · ·

= 1.2 +
34

1000

∞∑
n=0

1

100n
= 1.2 +

34

1000

1

1− 1

100

=
611

495
.

1. Find rational expressions for 1.23, 1.230, 1.023.

2. Final the decimal based series representing the rational numbers
5

12
,

43

35
.

Exercise 4.1.3. What is the total area of infinitely many disks?

θ

a

Exercise 4.1.4. The Sierpinski carpet is obtained from the unit square by successively
deleting “one third squares”. Find the area of the carpet.



302 CHAPTER 4. SERIES

Exercise 4.1.5. Two lines L and L′ form an angle θ at P . A boy starts on L at distance a
from P and walk to L′ along shortest path. After reaching L′, he walks back to L along
shortest path. Then he walks to L′ again along shortest path, and keeps walking back and
forth. What is the total length of his trip?

Exercise 4.1.6. Find the area between curves y = xn and y = xn+1 and use this to conclude

that
∑∞

n=1

1

n(n+ 1)
= 1.

Exercise 4.1.7. Compute the partial sum and the sum of series.

1.
∑∞

n=1 nr
n.

2.
∑ 2n + (−1)n3n−1

5n+1
.

3.
∑∞

n=0

1

(a+ nd)(a+ (n+ 1)d)
.

4.
∑∞

n=2

1

n(n+ 1)(n+ 2)
.

5.
∑∞

n=2 log

(
1− 1

n2

)
.

6.
∑∞

n=1

n

(n+ 1)!
.

Exercise 4.1.8. Suppose xn > 0. Compute
∑∞

n=1

xn
(1 + x1)(1 + x2) · · · (1 + xn)

.

Exercise 4.1.9. The Fibonacci sequence 1, 1, 2, 3, 5, . . . is defined recursively by a0 = a1 = 1,
an = an−1 + an−2. Prove the following

1

an−1an+1
=

1

an−1an
− 1

anan+1
,

∞∑
n=2

1

an−1an+1
= 1,

∞∑
n=2

an
an−1an+1

= 2.

Exercise 4.1.10. Use the Lagrange form of the remainder to show that the Taylor series

for
1

1− x
converges for |x| < 1.

Exercise 4.1.11. Use the Lagrange form of the remainder to show that the Taylor series
for cosx and sinx converge for any x

∞∑
n=0

(−1)n
x2n

(2n)!
= cosx,

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= sinx.

4.1.2 Convergence of Series

Theorem 4.1.2. If
∑
an converges, then limn→∞ an = 0.

This is a consequence of

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = s− s = 0.
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By the theorem, the series
∑

1,
∑
n,
∑

(−1)n,
∑ n

n+ 1
diverge. By Example

1.1.20, the series
∑

sinna converges if and only if a is an integer multiple of π.
If an ≥ 0 for sufficiently large n, then the partial sum sequence is increasing for

large n, and Theorem 1.3.2 becomes the following.

Theorem 4.1.3. If an ≥ 0, then
∑
an converges if and only if the partial sums are

bounded.

Example 4.1.4. The terms in the series
∑

=
1

np
are positive. Therefore the con-

vergence is equivalent to the boundedness of the partial sum. For p ≥ 2, we have
1

np
<

1

(n− 1)n
and the following bound from Examples 1.3.1 and 4.1.2

1

1p
+

1

2p
+ · · ·+ 1

np
≤ 1 +

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

(n− 1)n
= 2− 1

n
< 2.

By Theorem 4.1.3, therefore, the series converges for p ≥ 2.
For p = 1, we used Cauchy criterion in Example 1.3.8 to show that the harmonic

series
∑ 1

n
diverges.

Example 4.1.5. The even partial sum of the series
∑ (−1)n+1

n
is the partial sum of

the series ∑(
1

2n− 1
− 1

2n

)
=

(
1− 1

2

)
+

(
1

3
− 1

4

)
+ · · · .

The terms of the series above are positive, and the partial sum has upper bound

1− 1

2
+

1

3
−· · ·+ 1

2n− 1
− 1

2n
= 1−

(
1

2
− 1

3

)
−· · ·−

(
1

2n− 2
− 1

2n− 1

)
− 1

2n
< 1.

By Theorem 4.1.3,
∑(

1

2n− 1
− 1

2n

)
converges. This means that the even partial

sum s2n of
∑ (−1)n+1

n
converges. By s2n+1 = s2n +

1

2n+ 1
, the odd partial sum

s2n+1 converges to the same limit. Therefore
∑ (−1)n+1

n
converges.

Exercise 4.1.12. Show the divergence of
∑ 1

n
√
a

and
∑ n

2n− 1
.

Exercise 4.1.13. Determine convergence.
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1. 1 +
1

2
− 1

3
+

1

4
+

1

5
− 1

6
+ · · · .

2. 1 +
1

2
− 2

3
+

1

4
+

1

5
− 2

6
+ · · · .

3. 1 +
1

22
+

1

33
+

1

44
+ · · · .

4. 1 +
1√
1 · 2

+
1√
3 · 4

+
1√
5 · 6

+ · · · .

Exercise 4.1.14. Use Theorem 4.1.3 to argue about the convergence of
∑
rn for 0 ≤ r < 1

and
∑ 1

n!
.

Exercise 4.1.15. What is wrong with the following calculation?

0 = 0 + 0 + 0 + · · ·
= (1− 1) + (1− 1) + (1− 1) + · · ·
= 1− 1 + 1− 1 + 1− 1 + · · ·
= 1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + · · ·
= 1 + 0 + 0 + 0 + · · · = 1.

We used the Cauchy criterion (Theorem 1.3.3) for the divergence of harmonic

series
∑ 1

n
. In general, applying the Cauchy criterion to the partial sum shows that∑

an converges if and only if for any ε ≥ 0, there is N , such that (since |sm − sn| is
symmetric in m and n, we may always assume n > m)

n > m > N =⇒ |sm − sn| = |am+1 + am+2 + · · ·+ an| < ε.

We may further modify the criterion by taking m+ 1 to be m.

Theorem 4.1.4 (Cauchy Criterion). A series
∑
an converges if and only if for any

ε > 0, there is N , such that

n ≥ m > N =⇒ |am + am+1 + · · ·+ an| < ε.

Theorem 4.1.2 is a special case of the Cauchy criterion by taking m = n.

4.2 Comparison Test

Series
∑
an are very much like improper integrals

∫ +∞

a

f(x)dx. The two can be

compared in two aspects. First the convergence of the two can be compared, through

the integral test. Second all the convergence theorems for

∫ +∞

a

f(x)dx, such as the

comparison test, Dirichlet test and Abel test, have parallels for the convergence of
series.
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4.2.1 Integral Test

Theorem 4.2.1 (Integral Test). Suppose f(x) is a decreasing function on [1,+∞)
satisfying limx→+∞ f(x) = 0. Then

f(1) + f(2) + · · ·+ f(n) =

∫ n

1

f(x)dx+ γ + εn,

for a constant 0 ≤ γ ≤ f(1) and a decreasing sequence εn converging to 0. In partic-

ular, the series
∑
f(n) converges if and only if the improper integral

∫ +∞

a

f(x)dx

converges.

Let

xn = f(1) + f(2) + · · ·+ f(n)−
∫ n

1

f(x)dx.

By f decreasing, we get

xn − xn−1 = f(n)−
∫ n

n−1

f(x)dx ≤ 0,

xn − f(n) = f(1) + · · ·+ f(n− 1)−
∫ n

1

f(x)dx ≥ 0

=
n−1∑
k=1

(
f(k)−

∫ k+1

k

f(x)dx

)
≥ 0.

The first inequality implies xn is decreasing, and the second inequality implies xn ≥
f(n) ≥ 0. Therefore limxn = γ converges, and the theorem follows. We have
0 ≤ γ ≤ x1 = f(1).

Example 4.2.1. For p > 0, the function
1

xp
is decreasing and converges to 0 as

x→ +∞. By Theorem 4.2.1, therefore, the series
∑ 1

np
converges if and only if the

improper integral

∫ +∞

1

dx

xp
converges. By Example 3.7.3, this happens if and only

if p > 1.

Although the harmonic series
∑ 1

n
diverges, Theorem 4.2.1 estimates the partial

sum

1 +
1

2
+

1

3
+ · · ·+ 1

n
= log n+ γ + εn,

where εn decreases and converges to 0, and

γ = 0.577215664901532860606512090082 · · ·

is the Euler-Mascheroni constant.
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Example 4.2.2. For p > 0 and x > e, the integral test can be applied to the function
1

x(log x)p
. We conclude that

∑ 1

n(log n)p
converges if and only if the improper

integral

∫ +∞

a

dx

x(log x)p
converges. By Example 3.7.9, this means p > 1.

Example 4.2.3. We will show that
∑∞

n=1

1

n2
=

π2

6
in Example 4.5.13. In fact, for

even k,
∑∞

n=1

1

nk
can be calculated as a rational multiple of πk. However, very little

is known about the sum for odd k. Still, we may use the idea of Theorem 4.2.1 to
estimate the remainder∫ +∞

n+1

f(x)dx =
∞∑

k=n+1

∫ k+1

k

f(x)dx ≤
∞∑

k=n+1

f(k) ≤
∞∑
k=n

∫ k+1

k

f(x)dx =

∫ +∞

n

f(x)dx.

For example, the 10-th partial sum of
∑∞

n=1

1

n3
is

s10 =
1

13
+

1

23
+ · · ·+ 1

103
= 1.197532 · · · .

By ∫ ∞
10

dx

x3
=

1

2(10)2
= 0.005,

∫ ∞
11

dx

x3
=

1

2(11)2
= 0.004132 · · · ,

we get

1.201664 · · · = 1.197532 · · ·+ 0.004132 · · ·

≤
∞∑
n=1

1

n3
≤ 1.197532 · · ·+ 0.005 = 1.202532 · · · .

If we want to get the approximate value of
∑∞

n=1

1

n3
up to the 6-th digit, then

we my try to find n satisfying∫ n+1

n

dx

x3
=

2n+ 1

2n2(n+ 1)2
<

1

n3
< 0.000001.

So we may take n = 100 and get

100∑
n=1

1

n3
+

∫ ∞
101

dx

x3
≤

∞∑
n=1

1

n3
≤

100∑
n=1

1

n3
+

∫ ∞
100

dx

x3
.

Exercise 4.2.1. Determine the convergence of
∑ 1

n(log n)(log(log n))p
.
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Exercise 4.2.2. Find suitable function f(n), such that the sequence 1+
1√
2

+· · ·+ 1√
n
−f(n)

converges to a limit γ. Then express the sum of the series
∑∞

n=0(−1)n
1√
n

in terms of γ.

Exercise 4.2.3. Estimate
∑∞

n=1

1

n
3
2

to within 0.01.

4.2.2 Comparison Test

Theorem 4.2.2 (Comparison Test). Suppose |an| ≤ bn for sufficiently large n. If∑
bn converges, then

∑
an also converges.

The test is completely parallel to the similar test (Theorem 3.7.1) for the con-
vergence of improper integrals, and can be proved similarly by using the Cauchy
criterion (Theorem 4.1.4).

For the special case bn = |an|, the test says that if
∑
|an| converges, then

∑
an

converges. In other words, absolute convergence implies convergence. We note that
the conclusion of the comparison test is always absolute convergence.

Example 4.2.4. Consider the series
∑ log n

np
. If p ≤ 1, then

log n

np
≥ 1

n
. By the

comparison test, the divergence of
∑ 1

n
implies the divergence of

∑ log n

np
.

If p > 1, then choose q satisfying p > q > 1. We have

log n

np
=

log n

np−q
1

nq
<

1

nq
for large n.

Here the inequality is due to the fact that p − q > 0 implies lim
log n

np−q
= 0. By

Example 4.2.1,
∑ 1

nq
converges. Then by the comparison test, we conclude that∑ log n

np
converges.

The key idea of the example above is to compare an =
log n

np
with bn =

1

nq
by

using the limit of their quotient. By

lim
an
bn

= lim
log n

np−q
= 0,

we get
an
bn

< 1 for sufficiently large n. Since both an and bn are positive, we may

apply the comparison test to conclude that the convergence of
∑
bn implies the

convergence of
∑
an.
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In general, if an, bn > 0 and lim
an
bn

= l converges, then by the comparison test,

the convergence of
∑
bn implies the convergence of

∑
an. Moreover, if l 6= 0, then

we also have lim
bn
an

=
1

l
, and we conclude that

∑
an converges if and only if

∑
bn

converges.

Example 4.2.5. For
∑ n+ sinn

n3 + n+ 2
, we make the following comparison

lim
n→∞

n+ sinn

n3 + n+ 2
1

n2

= 1.

By the convergence of
∑ 1

n2
, we get the convergence of

∑ n+ sinn

n3 + n+ 2
.

Similarly, by the comparison

lim
n→∞

2n + n2

√
5n−1 − n43n(

2√
5

)n =
√

5,

and the convergence of
∑(

2√
5

)n
, the series

∑ 2n + n2

√
5n−1 − n43n

converges.

Example 4.2.6. By Example 2.5.14, we know

(
1 +

1

x

)x
− e = − e

2x
+ o

(
1

x

)
. This

implies that for sufficiently large n,

(
1 +

1

n

)n
− e is negative and comparable to

1

n
. Since the harmonic series

∑ 1

n
diverges, we conclude that

∑[(
1 +

1

n

)n
− e
]

diverges.

Example 4.2.7. By Example 3.7.14, we know that

∫ +∞

1

| sinx|
xp

dx converges if and

only if p > 1. By a change of variable, we also know that, for a 6= 0,

∫ +∞

1

| sin ax|
xp

dx

converges if and only if p > 1. However, we cannot use the integral test (Theorem

4.2.1) to get the similar conclusion for
∑ | sinna|

np
. The problem is that

| sin ax|
xp

is

not a decreasing function.

By
| sinna|
np

≤ 1

np
and the comparison test, we know

∑ | sinna|
np

converges for

p > 1. The series also converges if a is a multiple of π, because all the terms are 0.
It remains to consider the case p ≤ 1 and a is not a multiple of π.
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First assume 0 < a ≤ π

2
. For any natural number k, the interval

[
kπ +

π

4
, kπ +

3π

4

]
has length

π

2
and therefore must contain nka for some natural number nk. Then

| sinnka| ≥
1√
2

, and for p ≤ 1,

∞∑
n=1

| sinna|
np

≥
∞∑
n=1

| sinna|
n

≥
∞∑
k=1

| sinnka|
nk

≥ 1√
2

∞∑
k=1

1

nk
.

By nk ≤ kπ +
3π

4
, we get

1

nk
≥ 4

4k + 3

a

π
>

a

4k
. Then by

∑ 1

k
= +∞, we get∑ 1

nk
= +∞ and

∑ | sinna|
np

= +∞.

In general, if a is not an integer multiple of π, then there is b, such that 0 < b ≤ π

2
and either a+b or a−b is an integer multiple of π. Then we have | sinna| = | sinnb|,

and we still conclude that
∑ | sinna|

np
diverges for p ≤ 1.

Exercise 4.2.4. Show that if an > 0 and
∑
an converges, then

∑
a2
n converges. Moreover,

show that the converse is not true.

Exercise 4.2.5. Show that if
∑
a2
n, then

∑ an
n

converges.

Exercise 4.2.6. Show that if
∑
a2
n and

∑
b2n converge, then

∑
anbn and

∑
(an + bn)2

converge.

Exercise 4.2.7. Determine the convergence.

1.
∑ √4n5 + 5n4

3n2 − 2n3
. 2.

∑ 3n2 − 2n3

√
4n5 + 5n4

. 3.
∑ 3n2 + (−1)n2n3

4n5 + 5n4
.

Exercise 4.2.8. Determine the convergence, p, q, r, s > 0.

1.
∑ 1

np + (log n)q
.

2.
∑ 1

np(log n)q
.

3.
∑ nr + (log n)s

np + (log n)q
.

4.
∑ nr(log n)s

np + (log n)q
.

5.
∑ nr + (log n)s

np(log n)q
.

6.
∑ 1

np(log n)q(log(log n))r
.

Exercise 4.2.9. Determine the convergence, b, d, p, q > 0.

1.
∑ 1

(a+ nb)p
. 2.

∑ (c+ nd)q

(a+ nb)p
. 3.

∑ 1

(a+ nb)p(c+ nd)q
.
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4.
∑ (log(c+ nd))q

(a+ nb)p
. 5.

∑ 1

(a+ nb)p(log(c+ nd))q
. 6.

∑ (log(c+ nd))q

(a+ nb)p
.

Exercise 4.2.10. Determine the convergence, p, q > 0.

1.
∑

((np + a)r − (np + b)r). 2.
∑[(

np + a

np + b

)q
− 1

]
.

Exercise 4.2.11. Determine the convergence.

1.
∑ 1

n
√
n

.

2.
∑ 1

n1+ 1
n

.

3.
∑ 1

n
1+ 1

logn

.

4.
∑ 1

(log n)n
.

5.
∑ n2

(log n)n
.

6.
∑ 1

n
√

log n
.

7.
∑ (log n)n

nn
.

8.
∑ nlogn

(log n)n
.

Exercise 4.2.12. Determine the convergence, p, q > 0.

1.
∑

sin
1

n
.

2.
∑ 1

np
sin

1

nq
.

3.
∑ n2 − n sinn

n3 + cosn
.

4.
∑ n2 − n sinn

n3 + cosn
sin

1

n
.

5.
∑(

cos
1

np
− 1

)
.

6.
∑

cos
1

np
sin

1

nq
.

Exercise 4.2.13. Determine the convergence.

1.
∑ 1

5n − 1
. 2.

∑ 3n+1

5n−1 − n22n
. 3.

∑ 5n−1 − n22n

3n+1
.

Exercise 4.2.14. Determine the convergence, a, b > 0.

1.
∑√

an + bn.

2.
∑ 1√

an + bn
.

3.
∑ 1

an + bn
.

4.
∑

(an + bn)p.

5.
∑ n2

nan + bn
.

6.
∑ 1

n
√
an + bn

.

Exercise 4.2.15. Determine the convergence.

1.
∑
xn

2
.

2.
∑
nxn

2
.

3.
∑
x
√
n.

4.
∑
nx
√
n.

5.
∑
n2xn

2
.

6.
∑
npxn

q
.

Exercise 4.2.16. Determine the convergence.

1.
∑
an

p
.

2.
∑

(a
1
n − 1).

3.
∑(

e
1
n − 1− 1

n

)
.

4.
∑(

n
1
np − 1

)
.

5.
∑(

1 +
a log n

n

)n
.

6.
∑(

an+ b

cn+ d

)n
.

7.
∑
n3

(
a+ (−1)n

b+ (−1)n

)n
.
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8.
∑(

1√
n
−
√

log
n+ 1

n

)
.

9.
∑(

1− 1

n

)n2

.

10.
∑(

1 +
1

n

)2n−n2

.

11.
∑ n2(

a+
1

n

)n .

12.
∑ n2n

(n+ a)n+b(n+ b)n+a
.

13.
∑(

2 n
√
a− n
√
b− n
√
c
)

.

14.
∑(

cos
a

n

)n2

.

15.
∑(
− log cos

1

n

)p
.

16.
∑

log
(
np sin

a

nq

)
.

17.
∑ | cosna|

np
.

Exercise 4.2.17. Determine the convergence.

1.
∑∫ n+1

n
e−
√
x sinxdx.

2.
∑∫ n+1

n

sinx

xp
dx.

3.
∑∫ 1

n

1
n+1

log x

xp
dx.

4.
∑∫ 1

n

0

xp

1 + x2
dx.

5.
∑∫ 1

n

0
| sinx|pdx.

6.
∑∫ 1

0
sinxndx.

Exercise 4.2.18. Suppose an is a bounded sequence. Show that
∑ 1

n
(an−an+1) converges.

Exercise 4.2.19. The decimal representations of positive real numbers are actually the sum
of series. For example,

π = 3.1415926 · · · = 3+0.1+0.04+0.001+0.0005+0.00009+0.000002+0.0000006+ · · · .

Explain why the expression always converges.

4.2.3 Special Comparison Test

We compare a series
∑
an with the geometric series

∑
rn, which we know converges

if and only if |r| < 1. If |an| ≤ rn for some r < 1, then the comparison test implies
that

∑
an converges. We note that the condition |an| ≤ rn for some r < 1 is the

same as n
√
|an| ≤ r < 1.

Theorem 4.2.3 (Root Test). Suppose |an| ≤ rn for some r < 1 and sufficiently large
n. Then

∑
an converges.

Example 4.2.8. To determine the convergence of
∑

(n5 + 2n + 3)xn, we note that
limn→∞

n
√
|(n5 + 2n+ 3)xn| = |x|. If |x| < 1, then we can pick r satisfying |x| < r <

1. By limn→∞
n
√
|(n5 + 2n+ 3)xn| < r and the order rule, we get n

√
|(n5 + 2n+ 3)xn| <

r for sufficiently large n. Then by the root test, we conclude that
∑

(n5 + 2n+ 3)xn

converges for |x| < 1.

If |x| ≥ 1, then the term (n5 + 2n+ 3)xn of the series does not converge to 0. By
Theorem 4.1.2, the series diverges for |x| ≥ 1.
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The example suggests that, in practice, it is often more convenient to use the
limit version of the root test. Suppose limn→∞

n
√
|an| < 1. Then fix r satisfying

limn→∞
n
√
|an| < r < 1. By the order rule, we have n

√
|an| < r for sufficiently

large n. Then the root test shows that
∑
an converges. On the other hand, if

limn→∞
n
√
|an| > 1, then we have n

√
|an| > 1 for sufficiently large n. This implies

|an| > 1, and
∑
an diverges by Theorem 4.1.2.

Exercise 4.2.20. Determine the convergence, a, b > 0.

1.
∑ (log n)n

n2
.

2.
∑ np

(log n)n
.

3.
∑ 1

an + bn
.

4.
∑

(an + bn)p.

5.
∑
npxn.

6.
∑
npxn

q
.

7.
∑(

an+ b

cn+ d

)n
.

8.
∑(

1 +
a

n

)n2

.

9.
∑(

1 +
a

n

)−n2

.

10.
∑(

1 +
a

n

)2n−n2

.

11.
∑ np(

a+
b

n

)n .

12.
∑
n3

(
a+ (−1)n

b+ (−1)n

)n
.

Next we turn to another way of comparing series. Theorem 2.3.3 compares two
functions by comparing their derivatives (i.e., the changes of functions). Similarly,
we may compare two sequences an and bn by either comparing the differences an+1−
an and bn+1− bn, or the ratios

an+1

an
and

bn+1

bn
. The comparison of ratio is especially

suitable for the comparison of series.

Suppose an, bn > 0, and
an+1

an
≤ bn+1

bn
for n ≥ N . Then for c =

aN
bN

, the two

sequences an and cbn are equal at n = N , and
an+1

an
≤ cbn+1

cbn
implies that the second

sequence has bigger change than the first one, at least for n ≥ N . This should imply
an ≤ cbn for n ≥ N . The following is the rigorous argument

an = aN
aN+1

aN

aN+2

aN+1

· · · an
an−1

≤ cbN
bN+1

bN

bN+2

bN+1

· · · bn
bn−1

= cbn.

By the comparison test, if
∑
bn converges, then

∑
an converges.

Theorem 4.2.4 (Ratio Test). Suppose

∣∣∣∣an+1

an

∣∣∣∣ ≤ bn+1

bn
for sufficiently large n. If∑

bn converges, then
∑
an converges.

We note that the assumption implies that the terms bn have the same sign for
sufficiently large n. By changing all bn to −bn if necessary, we may assume that
bn > 0 for sufficiently large n.
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Example 4.2.9. The series
∑ (2n)!

(n!)2
xn satisfies

lim
n→∞

∣∣∣∣ anan−1

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣
(2n)!

(n!)2
xn

(2n− 2)!

((n− 1)!)2
xn−1

∣∣∣∣∣∣∣∣ = lim
n→∞

2n(2n− 1)

n2
|x| = 4|x|.

If 4|x| < 1, then we fix r satisfying 4|x| < r < 1. By the order rule, we have∣∣∣∣ anan−1

∣∣∣∣ < r =
rn

rn−1
for large n.

By comparing with the power series
∑
bn =

∑
rn, Theorem 4.2.4 implies that

∑
an

converges. If 4|x| > 1, then we get∣∣∣∣ anan−1

∣∣∣∣ > 1 for large n.

Therefore |an| is increasing and does not converge to 0. By Theorem 4.1.2,
∑
an

diverges.

We conclude that
∑ (2n)!

(n!)2
xn converges for |x| < 1

4
and diverges for |x| > 1

4
. For

x =
1

4
, we cannot compare with the geometric series

∑
rn. Instead, we may try to

compare with
∑ 1

np
. The terms an =

(2n)!

(n!)24n
> 0, and

an
an−1

=
2n(2n− 1)

4n2
= 1− 1

2n
,

1

np
1

(n− 1)p

= 1− p

n
+ o

(
1

n

)
.

So we expect an to be comparable to
1

n
1
2

. Since
∑ 1

n
1
2

diverges, we expect
∑
an

diverges. For a rigorous argument, we wish to show that

an
an−1

≥

1

np
1

(n− 1)p

for some p ≤ 1 and large n.

Of course this holds for p = 1 >
1

2
. Therefore by the ratio test, we conclude that∑ (2n)!

(n!)24n
diverges.

We will show in Example 4.3.4 that, for r = −1

4
, the series

∑
(−1)n

(2n)!

(n!)24n
converges.
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There are several generalisations we can make from the example. First, if we
apply the ratio test to the case

∑
bn =

∑
rn is the geometric series, we find that∣∣∣∣an+1

an

∣∣∣∣ ≤ r < 1 for large n =⇒
∑

an converges.

The limit version of this specialised ratio test is

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1 =⇒
∑

an converges.

On the other hand, the example also shows that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1 =⇒
∑

an diverges.

Second, when the comparison with the geometric series does not work, we may

compare with
∑ 1

np
. Suppose∣∣∣∣an+1

an

∣∣∣∣ ≤ 1− p

n
for some p > 1 and large n. (4.2.1)

We find q satisfying p > q > 1. Then the property above implies

∣∣∣∣an+1

an

∣∣∣∣ ≤ 1− q

n
+ o

(
1

n

)
=

1

nq
1

(n− 1)q

for large n.

By applying the ratio test to bn =
1

np
, we conclude that

∑
an converges. The use

of criterion (4.2.1) for the convergence of series is the Raabe test.
The Raabe test also has the limit version. We note that (4.2.1) is equivalent to

n

(
1−

∣∣∣∣an+1

an

∣∣∣∣) ≥ p > 1 for large n.

This will be satisfied if we can verify

lim
n→∞

n

(
1−

∣∣∣∣an+1

an

∣∣∣∣) > 1.

Exercise 4.2.21. Determine convergence.
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1.
4

2
+

4 · 7
2 · 6

+
4 · 7 · 10

2 · 6 · 10
+ · · · .

2.
2

4
+

2 · 6
4 · 7

+
2 · 6 · 10

4 · 7 · 10
+ · · · .

3.
2

4
+

2 · 5
4 · 7

+
2 · 5 · 8
4 · 7 · 10

+ · · · .

4.
2

4 · 7
+

2 · 5
4 · 7 · 10

+
2 · 5 · 8

4 · 7 · 10 · 13
+ · · · .

Exercise 4.2.22. Determine convergence.

1.
∑ a(a+ 1) · · · (a+ n)

b(b+ 1) · · · (b+ n)
.

2.
∑ a(a+ 1p) · · · (a+ np)

b(b+ 1p) · · · (b+ np)
.

3.
∑ ap(a+ c)p · · · (a+ nc)p

bq(b+ d)q · · · (b+ nd)q
1

nr
.

4.
∑ (a+ c)(a+ 2c)2 · · · (a+ nc)n

(b+ d)(b+ 2d)2 · · · (b+ nd)n
.

5.
∑ (a1 + b11 + c112) · · · (a1 + b1n+ c1n

2)

(a2 + b21 + c212) · · · (a2 + b2n+ c2n2)
.

6.
∑ a(a+ 1) · · · (a+ n)

b(b+ 1) · · · (b+ n)

c(c+ 1) · · · (c+ n)

d(d+ 1) · · · (d+ n)
.

Exercise 4.2.23. Determine convergence. There might be come special values of r for which
you cannot yet make conclusion.

1.
∑ (n!)2

(2n)!
rn.

2.
∑ (3n)!

(n!)3
rn.

3.
∑ n!(2n)!

(3n)!
rn.

4.
∑ nn

n!
rn.

5.
∑ n!

nn
rn.

6.
∑ n!

(n+ 1)n
rn.

7.
∑ nn+1

(n+ 1)!
rn.

8.
∑ (2n)!

n2n
rn.

Exercise 4.2.24. Prove the divergent part of the Raabe test.

1. If
an+1

an
≥ 1− 1

n
for sufficiently large n, then

∑
an diverges.

2. If an > 0 and limn→∞ n

(
1−

∣∣∣∣an+1

an

∣∣∣∣) < 1, then
∑
an diverges.

4.3 Conditional Convergence

Like improper integrals, the comparison test implies that a series can have three
mutually exclusive possibilities:

• Absolute Convergence:
∑
|an| converges ( =⇒

∑
an converges).

• Conditional Convergence:
∑
|an| diverges and

∑
an converges.

• Divergence:
∑
an diverges ( =⇒

∑
|an| diverges).

4.3.1 Test for Conditional Convergence

The series
∑ (−1)n+1

n
in Example 4.1.5 is a typical conditionally convergent series.

Its absolute value series is the harmonic series
∑ 1

n
, which we know diverges. We
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cannot apply the comparison test to the whole series because the conclusion of
comparison test is always absolute convergence. In fact, we applied Theorem 4.1.3
to the even partial sum of the series in Example 4.1.5. The following is an elaboration
of the idea of Example 4.1.5.

Proposition 4.3.1 (Leibniz Test). If an is decreasing for sufficiently large n and
limn→∞ an = 0, then

∑
(−1)nan converges.

The series
∞∑
n=0

(−1)nan = a0 − a1 + a2 − a3 + · · ·

is called an alternating series. If an is decreasing (for all n), then the odd partial
sum

s2n+1 = (a0 − a1) + (a2 − a3) + (a4 − a5) + · · ·+ (a2n − a2n+1)

= a0 − (a1 − a2)− (a3 − a4)− · · · − (a2n−1 − a2n)− a2n+1

is increasing and has upper bound a0. Therefore lim s2n+1 converges. By s2n =
s2n+1−a2n+1 and lim a2n+1 = 0, we have lim s2n = lim s2n+1 and therefore the whole
partial sum sequence converges.

Example 4.3.1. By the Leibniz test, the series

∞∑
n=1

(−1)n+1

np
= 1− 1

2p
+

1

3p
− · · ·

converges for p > 0. By Example 4.2.1, the series absolutely converges for p > 1,
conditionally converges for 0 < p ≤ 1, and diverges for p ≤ 0.

Example 4.3.2. Consider the series
∑
nabn. By limn→∞

n
√
|nabn| = |b| and the root

test,
∑
nabn absolutely converges for |b| < 1 and diverges for |b| > 1.

If b = 1, then the series is
∑
na, which converges if and only if a < −1. If

b = −1, then the series is
∑

(−1)nna, which by Example 4.3.1 converges if and only
if a < 0.

In conclusion, the series
∑
nabn absolutely converges for either |b| < 1, or a < −1

and |b| = 1, conditionally converges for −1 ≤ a < 0 and b = −1, and diverges
otherwise.

Example 4.3.3. Consider the alternating series
∑

(−1)n
n2 + a

n3 + b
. The corresponding

absolute value series is comparable to the harmonic series and therefore diverges.

If we can show that f(x) =
x2 + a

x3 + b
is decreasing, therefore, then the Leibniz test
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implies the conditional convergence. By

f ′(x) =
−x4 − 3ax2 + 2xb

(x3 + b)2
,

the function indeed decreases for sufficiently large x.

Example 4.3.4. In Example 4.2.9, we determined the convergence of
∑ (2n)!

(n!)2
xn for

all x except x = −1

4
. For x = −1

4
, the series is alternating, and |an| is decreasing

by

∣∣∣∣ anan−1

∣∣∣∣ = 1− 1

2n
< 1. If we can show that an converges to 0, then we can apply

the Leibniz test.

We compare with the ratio of |an| with the ratio of
1

np

∣∣∣∣ anan−1

∣∣∣∣ = 1− 1

2n
≤

1

np
1

(n− 1)p

= 1− p

n
+ o

(
1

n

)
.

This happens if we pick p = 0.4 and n is sufficiently large. The comparison of

the ratio implies |an| <
c

n0.4
for a constant a and sufficiently large n. This further

implies that lim |an| = 0. By the Leibniz test, we conclude that
∑

(−1)n
(2n)!

(n!)24n
converges.

Combined with Examples 4.2.9, we conclude that
∑ (2n)!

(n!)2
xn absolutely con-

verges for |x| < 1

4
, conditionally converges for x = −1

4
, and diverges otherwise.

Exercise 4.3.1. Suppose an > 0 and
an
an−1

= 1 − p

n
+ o

(
1

n

)
for some p > 0. Prove that

lim an = 0 and
∑

(−1)nan converges.

Exercise 4.3.2. Determine absolute or conditional convergence.

1.
4

2
− 4 · 7

2 · 6
+

4 · 7 · 10

2 · 6 · 10
− · · · .

2.
2

4
− 2 · 6

4 · 7
+

2 · 6 · 10

4 · 7 · 10
− · · · .

3.
2

4
− 2 · 5

4 · 7
+

2 · 5 · 8
4 · 7 · 10

− · · · .

4.
2

4 · 7
− 2 · 5

4 · 7 · 10
+

2 · 5 · 8
4 · 7 · 10 · 13

− · · · .

Exercise 4.3.3. Determine absolute or conditional convergence.
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1.
∑

(−1)n
a(a+ 1r) · · · (a+ nr)

b(b+ 1r) · · · (b+ nr)
. 2.

∑
(−1)n

(a+ 1)(a+ 2)2 · · · (a+ n)n

(b+ 1)(b+ 2)2 · · · (b+ n)n
.

Exercise 4.3.4. Determine absolute or conditional convergence.

1.
∑ (−1)nn2

n3 + n+ 2
.

2.
∑ n2 + sinn

(−1)nn3 + n+ 2
.

3.
∑ (−1)n

(a+ nb)p
.

4.
∑ rn

np
.

5.
∑ rn

np(log n)q
.

6.
∑

(−1)
n(n−1)

2
1

np
.

7.
∑

(−1)nnqan
p
.

8.
∑ (−1)n

n
p+ q

logn

.

9.
∑ (−1)nnn+p

(an2 + bn+ c)
n
2

+q
.

Exercise 4.3.5. Determine the absolute or conditional convergence for the undecided cases
in Exercise 4.2.23.

Like the convergence of improper integrals, we also have the analogues of the
Dirichlet and Abel tests.

Proposition 4.3.2 (Dirichlet Test). Suppose the partial sum of
∑
an is bounded.

Suppose bn is monotonic and limn→∞ bn = 0. Then
∑
anbn converges.

Proposition 4.3.3 (Abel Test). Suppose
∑
an converges. Suppose bn is monotonic

and bounded. Then
∑
anbn converges.

Example 4.3.5. In Example 4.2.7, we showed that
∑ | sinna|

np
diverges when a is

not an integer multiple of π. Then Example 3.7.14 suggests that the series should
converge conditionally.

By the Dirichlet test, if we can show that the partial sum

sn = sin a+ sin 2a+ · · ·+ sinna

is bounded, then the series converges. By

2sn sin
a

2
=
(

cos
(
a− a

2

)
− cos

(
a+

a

2

))
+
(

cos
(

2a− a

2

)
− cos

(
2a+

a

2

))
+ · · ·+

(
cos
(
na− a

2

)
− cos

(
na+

a

2

))
= cos

a

2
− cos

(
na+

a

2

)
,

we get

|sn| ≤
1∣∣∣sin a

2

∣∣∣ .
The right side is a bound for the partial sums in case a is not a multiple of π.
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Exercise 4.3.6. Derive the Leibniz test and the Abel test from the Dirichlet test.

Exercise 4.3.7. Prove that if
∑ an

np
converges, then

∑ an
nq

converges for any q > p.

Exercise 4.3.8. Determine the absolute and conditional convergence.

1.
∑ cosna

(n+ b)p
.

2.
∑

(−1)n
cosna

n+ b
.

3.
∑ sinna

np(log n)q
.

4.
∑

(−1)n
sin2 na

np
.

5.
∑ sin3 na

np(log n)q
.

6.
∑

(−1)
n(n−1)

2
sinna

np
.

Exercise 4.3.9. Determine absolute or conditional convergence.

1.
∑ 1

n+ (−1)nn2
.

2.
∑ (−1)n

(
√
n+ (−1)n)p

.

3.
∑ (−1)n

(n+ (−1)n)p
.

4.
∑ (−1)

n(n−1)
2

√
n+ (−1)n

.

5.
∑ (−1)n

np + (−1)n
.

Exercise 4.3.10. Determine the convergence.

1.
∑

sin
√
n2 + aπ. 2.

∑
(−1)n

(
1− a log n

n

)n
. 3.

∑(
log

an+ b

cn+ d

)n
.

Exercise 4.3.11. Let [x] be the biggest integer≤ x. Determine the convergence of
∑ (−1)[

√
n]

np

and
∑ (−1)[logn]

np
.

4.3.2 Absolute v.s. Conditional

The distinction between absolute and conditional convergence has implications on
how we can manipulate series. For example, we have a+ b+ c+ d = c+ b+ a+ d.
However, we need to be more careful in rearranging orders in an infinite sum.

Theorem 4.3.4. The sum of an absolutely convergent series does not depend on the
order. On the other hand, given any conditionally convergent series and any number
s, it is possible to rearrange the order so that the sum of the rearranged series is s.

Example 4.3.6. We know from Example 4.3.1 that the series
∞∑
n=1

(−1)n+1

n
converges

conditionally. The partial sum can be estimated from the partial sum of the har-
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monic series in Example 4.2.1

1− 1

2
+

1

3
− 1

4
+ · · ·+ 1

2n− 1
− 1

2n

=

(
1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

2n− 1
+

1

2n

)
− 2

(
1

2
+

1

4
+

1

6
+ · · ·+ 1

2n

)
= (log 2n+ γ + ε2n)− (log n+ γ + εn) = log 2 + (ε2n − εn).

This implies

1− 1

2
+

1

3
− 1

4
+ · · · = log 2.

If the terms are rearranged, so that one positive term is followed by two negative
terms, then the partial sum is

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+ · · ·+ 1

2n− 1
− 1

4n− 2
− 1

4n

=

(
1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

2n− 1
+

1

2n

)
−
(

1

2
+

1

4
+

1

6
+ · · ·+ 1

2n

)
−
(

1

2
+

1

4
+

1

6
+ · · ·+ 1

4n

)
= (log 2n+ γ + ε2n)− 1

2
(log n+ γ + εn)− 1

2
(log 2n+ γ + ε2n)

=
1

2
log 2 +

1

2
(ε2n − εn).

If two positive terms are followed by one negative term, then the partial sum is

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+ · · ·+ 1

4n− 1
+

1

4n− 3
− 1

2n

=

(
1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

4n

)
−
(

1

2
+

1

4
+

1

6
+ · · ·+ 1

4n

)
−
(

1

2
+

1

4
+

1

6
+ · · ·+ 1

2n

)
= (log 4n+ γ + ε4n)− 1

2
(log 2n+ γ + ε2n)− 1

2
(log n+ γ + εn)

=
3

2
log 2 +

1

2
(ε4n − ε2n − εn).

We get

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+ · · · = 1

2
log 2,

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+ · · · = 3

2
log 2.
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Exercise 4.3.12. Rearrange the series 1 − 1

2
+

1

3
− 1

4
+ · · · so that p positive terms are

followed by q negative terms and the pattern repeated. Show that the sum of new series

is log 2 +
1

2
log

p

q
.

Exercise 4.3.13. Show that 1− 1√
2

+
1√
3
− 1√

4
+ · · · converges, but 1− 1√

2
− 1√

4
+

1√
3
−

1√
6
− 1√

8
+

1√
5
− 1√

10
− 1√

12
+ · · · diverges.

Another distinction between absolute and conditional convergence is reflected on
the product of two series.

Theorem 4.3.5. Suppose
∞∑
n=1

an and
∞∑
n=1

bn converge absolutely. Then
∞∑

i,j=1

aibj also

converge absolutely, and
∞∑

i,j=1

aibj =

(
∞∑
n=1

an

)(
∞∑
n=1

bn

)
.

Note that the infinite sum
∞∑

i,j=1

aibj is a “double series” with two indices i and j.

There are many ways of arranging this series into a single series. For example, the
following is the “diagonal arrangement”∑

(ab)k = a1b1 + a1b2 + a2b1 + · · ·

+ a1bn−1 + a2bn−2 + · · ·+ an−1b1 + · · · ,
and the following is the “square arrangement”∑

(ab)k = a1b1 + a1b2 + a2b2 + a2b1 + · · ·

+ a1bn + a2bn + · · ·+ anbn−1 + anbn + anbn−1 + · · ·+ anb1 + · · · .
Under the condition of the theorem, the series is supposed to converge absolutely.
Then by Theorem 4.3.4, all arrangements give the same sum.

Example 4.3.7. We know from Example 4.1.4 that
∑∞

n=0

xn

n!
absolutely converges to

ex. By Theorem 4.3.5, we have

exey =

(
∞∑
n=0

xn

n!

)(
∞∑
n=0

yn

n!

)
=

∞∑
i,j=0

xiyj

i!j!
=
∞∑
n=0

∑
i+j=n

xiyj

i!j!

=
∞∑
n=0

1

n!

n∑
i=0

n!

i!(n− i)!
xiyj =

∞∑
n=0

1

n!
(x+ y)n = ex+y.
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m

n

m

n

(ab)1

(ab)2

(ab)3

(ab)4

(ab)5

(ab)6

(ab)7

(ab)8

(ab)9

(ab)10 (ab)1

(ab)2 (ab)3

(ab)4

(ab)5 (ab)6 (ab)7

(ab)8

(ab)9

(ab)10 (ab)11 (ab)12 (ab)13

(ab)14

(ab)15

(ab)16

Figure 4.3.1: Diagonal and square arrangements.

In the second to the last equality, we used the binomial expansion.

Exercise 4.3.14. If you take the product of a geometric series with itself, what conclusion
can you make?

Exercise 4.3.15. Suppose
∑ (−1)n√

n
= l. Show that the square arrangement of the product

of the series with itself converges to l2. What is the sum of the diagonal arrangement?

4.4 Power Series

A power series at x0 is
∞∑
n=0

an(x− x0)n.

By a simple change of variable, it is sufficient to consider power series at 0

∞∑
n=0

anx
n.

4.4.1 Convergence of Taylor Series

If f(x) has derivatives of arbitrary order at x0, then the high order approximations
of the function gives us the Taylor series

∞∑
n=0

f (n)(x0)

n!
(x−x0)n = f(x0)+f ′(x0)(x−x0)+

f ′′(x0)

2!
(x−x0)2+· · ·+f

(n)(x0)

n!
(x−x0)n+· · · .

The partial sum of the series is the n-th order Taylor expansion Tn(x) of f(x) at x0.
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In Example 4.1.3, we used the Lagrange form of the remainder Rn(x) = f(x)−
Tn(x) (Theorem 2.7.1) to show that the Taylor series of ex converges to ex. Exer-
cise 4.1.11 further showed that the Taylor series of sin x and cosx converge to the
trigonometric functions.

Example 4.4.1. Consider the Taylor series
∑∞

n=0

(−1)n+1

n
xn of log(1 + x). We have

dn

dxn
log(1 + x) =

(−1)n−1(n− 1)!

(1 + x)n
,

and the Lagrange form of the remainder gives

|Rn(x)| = 1

(n+ 1)!

n!

|1 + c|n+1
|x|n+1 =

|x|n+1

(n+ 1)|1 + c|n+1
,

where c lies between 0 and x. If −1

2
≤ x ≤ 1, then |x| ≤ |1 + c|, and we get

|Rn(x)| < 1

n+ 1
. Therefore limn→∞Rn(x) = 0, and the Taylor series converges to

log(1 + x).
The Taylor series is the harmonic series at x = −1 and therefore diverges. For

|x| > 1, the terms of the Taylor series diverges to∞, and therefore the Taylor series

also diverges. The remaining case is −1 < x < −1

2
.

In Exercise 4.4.2, a new form of the remainder is used to show that the Taylor
series actually converges to log(1 + x) for all −1 < x ≤ 1.

Example 4.4.2. The Taylor series of (1 − x)−1 is the geometric series
∑∞

n=0 x
n. Ex-

ample 4.1.1 shows that the Taylor series converges to the function for |x| < 1 and
diverges for |x| ≥ 1.

The Taylor series of (1 + x)p is
∑∞

n=0

p(p− 1) · · · (p− n+ 1)

n!
xn. The Lagrange

form of the remainder gives

|Rn(x)| = |p(p− 1) · · · (p− n)|
(n+ 1)!

|1 + c|p−n−1|x|n

=
|p(p− 1) · · · (p− n)|

(n+ 1)!

|1 + c|p−1|x|n

|1 + c|n
,

where c lies between 0 and x. For −1

2
< x ≤ 1, we have |x| ≤ |1 + c| and |1 + c|p−1

is bounded. Moreover, by Exercise 4.3.1, for p > −1, we have

lim
n→∞

|p(p− 1) · · · (p− n)|
(n+ 1)!

= 0.
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Then we conclude that limn→∞Rn(x) = 0 for −1

2
< x ≤ 1 and p > −1, and the

Taylor series converges to (1 + x)p.
The Taylor series diverges for |x| > 1. Using a new form of the remainder,

Exercise 4.4.2 shows that the Taylor series actually converges to (1 + x)p for |x| < 1
and any p.

Example 4.4.3. In Example 2.5.18, we showed that the function

f(x) =

{
e−

1
|x| , if x 6= 0,

0, if x = 0,

has all the high derivatives equal to 0. Therefore the Taylor series of the function is∑
0 = 0, although the function is not 0.

A smooth function is analytic if it is always equal to its Taylor series. As pointed
out after Example 2.5.18, the analytic property means that the function can be
measured by polynomials.

Exercise 4.4.1. Use the Lagrange form of the remainder to show that Cauchy form of the
remainder is

Rn(x) =
f (n+1)(c)

n!
(x− c)n(x− x0),

where c lies between x0 and x. Use this to show that the Taylor series of log(1 + x) and
(1 + x)p at x0 = 0 converge to the respective functions for any |x| < 1.

Exercise 4.4.2. The Cauchy form of the remainder is

Rn(x) =
f (n+1)(c)

n!
(x− c)n(x− x0),

where c lies between x0 and x. Use this to show that the Taylor series of log(1 + x) and
(1 + x)p at x0 = 0 converge to the respective functions for any |x| < 1.

4.4.2 Radius of Convergence

We regard a power series
∑
anx

n as a function with variable x. The domain of the
function consists of those x, such that the series converges.

We may use the root test to find the domain. Suppose limn→∞
n
√
|an| converges.

Then
lim
n→∞

n
√
|anxn| = |x| lim

n→∞
n
√
|an|.

Let

R =
1

limn→∞
n
√
|an|

.

By the limit version of the root test (see the discussion after Theorem 4.2.3), the
power series converges for |x| < R and diverges for |x| > R.
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Example 4.4.4. For the geometric series
∑
xn = 1+x+x2+· · · , we have limn→∞

n
√
|1| =

1. Therefore the geometric series converges for |x| < 1 and diverges for |x| > 1.
Moreover, the series also diverges for |x| = 1.

For the Taylor series
∑∞

n=0

(−1)n+1

n
xn of log(1+x), we have limn→∞

n

√∣∣∣∣(−1)n+1

n

∣∣∣∣ =

limn→∞
1
n
√
n

= 1. Therefore the series converges for |x| < 1 and diverges for |x| > 1.

We also know that the series converges at x = 1 and diverges at x = −1.

Example 4.4.5. The series
∑
x2n has an = 1 for even n and an = 0 for odd n.

The sequence n
√
|an| diverges because it has two limits: limeven

n
√
|an| = 1 and

limodd
n
√
|an| = 0.

On the other hand, as a function, we have
∑
x2n = f(x2), where f(x) =

∑
xn

is the geometric series. Since the domain of f is |x| < 1, the domain of f(x2) is
|x2| < 1, which is equivalent to |x| < 1. Therefore

∑
x2n converges for |x| < 1 and

diverges for |x| > 1.

Theorem 4.4.1. For any power series
∑
anx

n, there is R ≥ 0, such that the series
absolutely converges for |x| < R and diverges for |x| > R.

Using the root test, we have proved the theorem in case limn→∞
n
√
|an| converges.

Example 4.4.11 suggests that the theorem is true in general. The theorem is a con-
sequence of the fact that, if

∑
anr

n converges and |x| < |r|, then
∑
anx

n absolutely
converges. Specifically, the convergence of

∑
anr

n implies limn→∞ anr
n = 0. This

further implies that |anrn| < 1 for sufficiently big n. Then for any fixed x satisfying
|x| < |r|, we have

|anxn| = |anrn| ·
∣∣∣x
r

∣∣∣n ≤ ∣∣∣x
r

∣∣∣n .
Since

∣∣∣x
r

∣∣∣ < 1 implies the convergence of
∑∣∣∣x

r

∣∣∣n, by the comparison test, the series∑
anx

n absolutely converges.
The number R is the radius of convergence of power series. If R = 0, then the

power series converges only for x = 0. If R = +∞, then the power series converges
for all x.

The same radius of convergence applies to
∑
an(x − x0)n. The power series

converges on (x0−R, x0 +R), and diverges on (−∞, x0−R) and on (x0 +R,+∞).
We had the formula for radius in case n

√
|an| converges. In general, the sequence

may have many possible limits (for various subsequences). Let the upper limit
lim n
√
|an| be the maximum of all the possible limits. Then the radius is

R =
1

limn→∞
n
√
|an|

.

One can verify the formula for Example 4.4.11.
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Example 4.4.6. For any p, we have limn→∞
n
√
np = 1. Therefore the radius of conver-

gence for the power series
∑
npxn is 1. The example already appeared in Example

4.3.2.

Example 4.4.7. By limn→∞
n
√

2n + 3n = 3, the series
∑

(2n + 3n)xn converges for

|x| < 1

3
and diverges for |x| > 1

3
. The series also diverges for |x| =

1

3
because the

terms do not converge to 0.

We note that the radius of convergence is
1

2
for
∑

2nxn and
1

3
for
∑

3nxn. The

radius for the sum of the two series is the smaller one.

Example 4.4.8. By limn→∞
n
√
nn = +∞, the series

∑
nnxn diverges for all x 6= 0.

By limn→∞
n

√
1

nn
= 0, the series

∑ (−1)n

nn
xn converges for all x.

Example 4.4.9. In Example 4.2.9, we use the ratio test to show that the radius of

convergence of
∑ (2n)!

(n!)2
xn is

1

4
. The idea can be used to show that the radius of

convergence for
∑
anx

n is R = limn→∞

∣∣∣∣ anan+1

∣∣∣∣, provided that the limit converges.

For example, by

lim
n→∞

np

(n+ 1)p
=

(
lim
n→∞

n

n+ 1

)p
= 1,

the radius of convergence for
∑
npxn is 1. Moreover, the radius of convergence for

the Taylor series of ex is

lim
n→∞

1

n!
1

(n+ 1)!

= lim
n→∞

(n+ 1) = +∞.

Example 4.4.10. The Bessel function of order 0 is

J0(x) =
∞∑
n=0

(−1)nx2n

22n(n!)2
.

The radius of convergence is the square root of the radius of convergence of the
series

∞∑
n=0

(−1)nxn

22n(n!)2
.
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By

lim
n→∞

∣∣∣∣∣∣∣∣
(−1)n

22n(n!)2

(−1)n+1

22n+2((n+ 1)!)2

∣∣∣∣∣∣∣∣ = lim
n→∞

4(n+ 1)2 = +∞,

the later series converges for all x. Therefore the Bessel function is defined for all x.

Note that we cannot calculate limn→∞

∣∣∣∣ anan+1

∣∣∣∣ directly for the Bessel function. In

fact, the limit diverges.

Exercise 4.4.3. Suppose an can be divided into two subsequences an′ and an′′ . Suppose

limn′→∞
n′
√
|an′ | = l′ and limn′′→∞

n′′
√
|an′′ | = l′′ converge. Prove that

1

max{l′, l′′}
is the

radius of convergence for
∑
anx

n.

Exercise 4.4.4. Suppose limn→∞

∣∣∣∣ anan+1

∣∣∣∣ = R converges. Prove that R is the radius of

convergence for
∑
anx

n.

Exercise 4.4.5. Determine the radius of convergence.

1.
∑

(−1)n
xn

np
.

2.
∑
np(x− 1)n.

3.
∑
np(2x− 1)n.

4.
∑
np(2x+ 3)n.

5.
∑(

an

n
+
bn

n2

)
xn.

6.
∑ xn

an + bn
.

7.
∑
n
√
nxn.

8.
∑
n!xn.

9.
∑ (−1)n+1

√
n!

xn.

10.
∑ (n!)2

(2n)!
xn.

11.
∑ (3n)!

n!(2n)!
xn.

12.
∑
an

2
xn.

13.
∑
an

2
xn

2
.

14.
∑

2nxn
2−1.

15.
∑

(2 + (−1)n)nxn.

16.
∑ (2 + (−1)n)n

log n
xn.

Exercise 4.4.6. Find the radius of convergence.

1.
∑(

n+ 1

n

)n
xn.

2.
∑(

n+ 1

n

)n2

xn.

3.
∑(

n+ a

n+ b

)n2

xn+2.

4.
∑

(−1)n
(
n+ 1

n

)n2

xn.

5.
∑

(−1)n
(
n+ 1

n

)n2

xn
2
.

6.
∑(

an+ b

cn+ d

)n
xn−2.

Exercise 4.4.7. Find the domain of the Bessel function of order 1

J1(x) =
∞∑
n=0

(−1)nx2n+1

n!(n+ 1)!22n+1
.
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Exercise 4.4.8. Find the domain of the Airy function

A(x) = 1 +
x3

2 · 3
+

x6

2 · 3 · 5 · 6
+

x9

2 · 3 · 5 · 6 · 8 · 9
+ · · · .

Exercise 4.4.9. Suppose the radii of convergence for
∑
anx

n and
∑
bnx

n are R and R′.
What can you say about the radii of convergence for the following power series?∑

(an + bn)xn,
∑

(an − bn)xn,
∑

(−1)nanx
n,

∑
an(2x− 1)n,∑

anx
2n,

∑
anx

n+2,
∑

a2nx
n,

∑
an+2x

n,∑
anx

n2
,
∑

an2xn,
∑

a2nx
2n,

∑
an2xn

2
.

4.4.3 Function Defined by Power Series

Examples 2.5.18 and 4.4.3 suggest that if a function is the sum of a power series,
then the function is particularly nice. In fact, the function should be nicer than
functions with derivatives of any order.

Because power series converge absolutely within the radius of convergence, by
Theorem 4.3.5, we can multiply two power series together within the common radius
of convergence.

Theorem 4.4.2. Suppose f(x) =
∑
anx

n and g(x) =
∑
bnx

n have radii of conver-
gence R and R′. Then for |x| < min{R,R′}, we have

f(x)g(x) =
∑

cnx
n, cn = a0bn + a1bn−1 + · · ·+ anb0.

The product should be the sum of aibjx
i+j. We get the power series

∑
cnx

n by
gathering all the terms with power xn.

The power series can also be differentiated or integrated term by term within
the radius of convergence.

Theorem 4.4.3. Suppose f(x) =
∑∞

n=0 anx
n for |x| < R. Then

f ′(x) =
∞∑
n=1

(anx
n)′ = a1 + 2a2x+ 3a3x

2 + · · ·+ nanx
n−1 + · · · ,

and ∫ x

0

f(t)dt =
∞∑
n=0

∫ x

0

ant
ndt = a0x+

a1

2
x2 +

a2

3
x3 + · · ·+ an

n+ 1
xn+1 + · · ·

for |x| < R.
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Example 4.4.11. Taking the derivative of
1

1− x
=
∑∞

n=0 x
n, we get

1

(1− x)2
= 1 + 2x+ 3x2 + 4x3 + · · ·+ nxn−1 + · · · ,

2

(1− x)3
= 2 · 1 + 3 · 2x+ 4 · 3x2 + 5 · 4x3 + · · ·+ n(n− 1)xn−2 + · · · .

Therefore

12x+ 22x2 + · · ·+ n2xn + · · · =
∞∑
n=1

n2xn = x
∞∑
n=1

nxn−1 + x2

∞∑
n=2

n(n− 1)xn−2

= x
1

(1− x)2
+ x2 2

(1− x)3
=
x(1 + x)

(1− x)3
.

If we integrate instead, then we get

log(1− x) = −
∫ x

0

dx

1− x
= −x− x2

2
− x3

3
− · · · − xn

n!
− · · · , for |x| < 1.

Substituting −x for x, we get the Taylor series of log(1 + x)

log(1 + x) = x− x2

2
+
x3

3
− · · ·+ (−1)n+1x

n

n!
+ · · · , for |x| < 1.

Note that in Example 4.4.1, by estimating the remainder, we were able to prove the

equality rigorously only for −1

2
< x < 1. Here by using term wise integration, we

get the equality for all x within the radius of convergence.

Example 4.4.12. By integrating
1

1 + x2
=
∑∞

n=0(−1)nx2n, we get the Taylor series of

arctanx

arctanx =
∞∑
n=0

(−1)n

2n+ 1
x2n+1 = x− x

3

3
+
x5

5
− x

7

7
+ · · ·+ (−1)n

2n+ 1
x2n+1 + · · · for |x| < 1.

Exercise 4.4.10. Use the product of power series to verify the identity sin 2x = 2 sinx cosx.

Exercise 4.4.11. Find Taylor series and determine the radius of convergence.

1.
1

(x− 1)(x− 2)
, at 0.

2.
√
x, at x = 2.

3. sinx2, at 0.

4. sin2 x, at 0.

5. sinx, at
π

2
.

6. sin 2x, at
π

2
.

7. arcsinx, at 0.

8. arctanx, at 0.

9.

∫ x

0

sin t

t
dt, at 0.
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Exercise 4.4.12. Given the Taylor series
∑∞

n=0 anx
n of f(x), find the Taylor series of

f(x)

1 + x
.

Exercise 4.4.13. Show that the function f(x) =
∑∞

n=0

xn

(n!)2
satisfies xf ′′ + f ′ − f = 0.

Exercise 4.4.14. Show that the Airy function in Exercise 4.4.8 satisfies f ′′ − xf = 0.

Exercise 4.4.15. Show that the Bessel functions in Example 4.4.10 and Exercise 4.4.7 satisfy

xJ ′′0 + J ′0 + xJ0 = 0, x2J ′′1 + xJ ′1 + (x2 − 1)J1 = 0.

A power series may or may not converge at the radius of convergence (i.e., at
±R). If it converges, then the following gives the value of the sum.

Theorem 4.4.4. Suppose
∑∞

n=0 anx
n converges for |x| < R and x = R. Then∑∞

n=0 anR
n = limx→R−

∑∞
n=0 anx

n.

The theorem says that, if f(x) =
∑∞

n=0 anx
n is also defined at R, then f(x) is

left continuous at R. We also have the similar statement at the other end −R.

Example 4.4.13. By Examples 4.4.11 and 4.3.1, we know log(1 + x) =
∑n

n=1

(−1)n+1

n
xn

converges for |x| < 1, and the series converges at x = 1. Since log(1 + x) is continuous at
x = 1, by Theorem 4.4.4, we get

n∑
n=1

(−1)n+1

n
= lim

x→1−

n∑
n=1

(−1)n+1

n
xn = lim

x→1−
log(1 + x) = log(1 + 1) = log 2.

We computed the sum in Example 4.3.6 by another way.

Exercise 4.4.16. Find the sum. Discuss what happens at the radius of convergence.

1.
∑∞

n=1 n
2xn.

2.
∑∞

n=1 n
3xn.

3.
∑∞

n=2

(x− 1)n

n(n− 1)
.

4.
∑∞

n=1

xn

n(n+ 1)(n+ 2)
.

5.
∑∞

n=0

x2n+1

2n+ 1
.

6.
∑∞

n=0

xn

2n+ 1
.

Exercise 4.4.17. Find the sum. Discuss what happens at the radius of convergence.

1.
∑∞

n=1(−1)n
x2n+1

n!
. 2.

∑∞
n=1(−1)n

x2n

(2n+ 1)!
. 3.

∑∞
n=1

xn

2n(2n− 1)!
.

Exercise 4.4.18. Find the Taylor series of the function and the radius of convergence. Then
explain why the sum of the Taylor series is the given function.
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1. arcsinx.

2.

∫ x

0

sin t

t
dt.

3. arctanx.

4.

∫ x

0
e−t

2
dt.

5. log(x+
√

1 + x2).

6.

∫ x

0

log(1− t)
t

dt.

4.5 Fourier Series

If f(x+ p) = f(x) for all x and a constant p, then we say f(x) is a periodic function
of period p. For example, the functions sinx and cosx have period 2π, and tan x
has period π.

A periodic function of period p is also a periodic function of period kp for any

integer k. For example, cosnx and sinnx have the period p =
2π

n
as well as the

period np = 2π.

If f(x) has period p, then f(x+ a) still has period p, and f(ax) is periodic with

period
p

a
.

A combination of periodic functions of the same period p is still periodic of period
p. For example, sinx + cos x, sin 3x cos2 x,

√
2 sin2 x+ cos4 x are periodic of period

2π.

The Taylor series approximates a function near a point by linear combinations
of power functions. Similarly, we wish to approximate a periodic function by linear
combinations of simple periodic functions such as sine and cosine. Specifically, we
wish a periodic function f(x) of period 2π to be approximated as

f(x) ∼ a0 +
∞∑
n=1

(an cosnx+ bn sinnx)

= a0 + a1 cosx+ b1 sinx+ a2 cos 2x+ b2 sin 2x+ · · · .

Note that there is no b0 because a0 = a0 cos 0x+ b0 sin 0x. Moreover, like the Taylor
series, we use ∼ instead of = to indicate that the equality is yet to be established.

The approximation of a periodic function by (linear combinations of) trigono-
metric functions is not measured by the values at single points, but rather the overall
approximation in terms of the integral of the difference function. This means that we
can only expect that the sum of the trigonometric series to be equal to the function
“almost everywhere”.

4.5.1 Fourier Coefficient

Let f(x) be a periodic function of period 2π. Our first problem is to find the
coefficients an and bn in the trigonometric series. By Exercise 3.1.6, the trigonometric



332 CHAPTER 4. SERIES

functions are “orthogonal” in the sense that∫ 2π

0

cosmx sinnxdx = 0;

∫ 2π

0

cosmx cosnxdx =


0, if m 6= n,

π, if m = n 6= 0,

2π, if m = n = 0;∫ 2π

0

sinmx sinnxdx =

{
0, if m 6= n or m = n = 0,

π, if m = n 6= 0.

We expect the sum of the trigonometric series to be equal to f(x) as far as integra-
tions are concerned. We also assume that the integration of infinite series can be
calculated term by term. Then we get

∫ 2π

0

f(x) cosnxdx = a0

∫ 2π

0

cosnxdx+
∞∑
k=1

am

∫ 2π

0

cosmx cosnxdx

+
∞∑
k=1

bm

∫ 2π

0

sinmx cosnxdx =

{
πan, if n 6= 0,

2πa0, if n = 0;∫ 2π

0

f(x) sinnxdx = a0

∫ 2π

0

sinnxdx+
∞∑
m=1

am

∫ 2π

0

cosmx sinnxdx

+
∞∑
m=1

bm

∫ 2π

0

sinmx sinnxdx = πbn.

Definition 4.5.1. The Fourier series of a periodic function f(x) of period 2π is

f(x) ∼ a0 +
∞∑
n=1

(an cosnx+ bn sinnx),

with the Fourier coefficients

a0 =
1

2π

∫ 2π

0

f(x)dx,

an =
1

π

∫ 2π

0

f(x) cosnxdx, n 6= 0,

bn =
1

π

∫ 2π

0

f(x) sinnxdx, n 6= 0.
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Example 4.5.1. Similar to Example 2.5.1, by

sin4 x =
1

4
(1− cos 2x)2 =

1

4

(
1− 2 cos 2x+

1

2
(1− cos 4x)

)
=

3

8
− 1

2
cos 2x+

1

8
cos 4x,

the right side is the Fourier series of sin4 x. The coefficients give∫ 2π

0

sin4 xdx =
3π

4
,

∫ 2π

0

sin4 x cos 2xdx = −π
2
,

∫ 2π

0

sin4 x cos 4xdx =
π

8
.

Example 4.5.2. A periodic function is determined by its value on one interval of
period length. For example, if f(x) is a periodic function of period 2π and satisfies

f(x) =

{
1, if 0 ≤ x < a,

0, if a ≤ x < 2π,

then

f(x) =

{
0, if 2kπ ≤ x < 2kπ + a,

1, if 2kπ + a ≤ x < 2(k + 1)π.

−4π 4π−2π 2πa

The Fourier coefficients are

a0 =
1

2π

∫ a

0

1dx =
a

2π
,

an =
1

π

∫ a

0

cosnxdx =
sinna

nπ
,

bn =
1

π

∫ a

0

sinnxdx =
1− cosna

nπ
.

and the Fourier series is

f(x) ∼ a

2π
+
∞∑
n=1

1

nπ
(sinna cosnx+ (1− cosna) sinnx).

Example 4.5.3. Let f(x) be the even periodic function of period 2π satisfying

f(x) =

{
1, if |x| ≤ a,

0, if a < |x| ≤ π.



334 CHAPTER 4. SERIES

−4π 4π−2π 2π−π πa

We have

a0 =
1

2π

∫ 2π

0

f(x)dx =
1

2π

∫ π

−π
f(x)dx =

1

π

∫ π

0

f(x)dx =
1

π

∫ a

0

1dx =
a

π
,

an =
1

π

∫ 2π

0

f(x) cosnxdx =
2

π

∫ π

0

f(x) cosnxdx =
2

π

∫ a

0

cosnxdx =
2a

nπ
.

The calculation used the fact that

∫ p

0

f(x)dx =

∫ a+p

a

f(x)dx for any periodic func-

tion of period p. We may also calculate bn and find bn = 0. In fact, for even function,
we expect that all the odd terms bn sinnx to vanish.

Exercise 4.5.1. Suppose f(x) is an even periodic function of period 2π. Prove that

a0 =
1

π

∫ π

0
f(x)dx, an =

2

π

∫ π

0
f(x) cosnxdx, bn = 0.

Exercise 4.5.2. Suppose f(x) is an odd periodic function of period 2π. Prove that

a0 = an = 0, bn =
2

π

∫ π

0
f(x) sinnxdx.

Exercise 4.5.3. Extend f(x) on
(

0,
π

2

)
to a periodic function of period 2π, such that its

Fourier series is of the form
∑∞

n=1 an cos(2n− 1)x? How about
∑∞

n=1 bn sin(2n− 1)x?

Exercise 4.5.4. Given the Fourier series of f(x) and g(x), what is the Fourier series of
af(x) + bg(x)? Use the idea and Example 4.5.2 to find the Fourier series of the periodic
function f(x) of period 2π satisfying

f(x) =

{
1, if a ≤ x < b,

0, if 0 ≤ x < a or b ≤ x < 2π.

Exercise 4.5.5. Suppose f(x) is a periodic function of period 2π. What is the relation
between the Fourier series of f(x) and f(x+a)? Use the idea and Example 4.5.3 to derive
Example 4.5.2.

A periodic function f(x) of period p may be converted to a periodic function

f
( p

2π
x
)

of period 2π. Then the Fourier series of f
( p

2π
x
)

gives the Fourier series

of f(x). Alternatively, the basic periodic functions cosnx and sinnx of period 2π
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give the basic periodic functions cos
2nπ

p
x and sin

2nπ

p
x of period p, and we expect

the Fourier series of f(x) to be

f(x) ∼ a0 +
∞∑
n=1

(
an cos

2nπ

p
x+ bn sin

2nπ

p
x

)
.

By an argument similar to the case of period 2π, we get the Fourier coefficients

a0 =
1

p

∫ p

0

f(x)dx,

an =
2

p

∫ p

0

f(x) cos
2nπ

p
xdx, n 6= 0,

bn =
2

p

∫ p

0

f(x) sin
2nπ

p
xdx, n 6= 0.

Exercise 4.5.6. Suppose f(x) is a periodic function of period p.

1. Write down the Fourier series for f
( p

2π
x
)

, together with the formulae for its coef-

ficients.

2. Convert the first part to statements about the original f(x).

Exercise 4.5.7. Use Example 4.5.2 to derive the Fourier series of the periodic function of
period 1 satisfying

f(x) =

{
1, if 0 ≤ x < a,

0, if a ≤ x < 1.

Exercise 4.5.8. Derive the formulae for the Fourier coefficients of periodic even or odd
functions of period p, similar to Exercises 4.5.1 and 4.5.2.

Example 4.5.4. The function x on (0, 1) extends to a periodic function of period 1

f(x) = x− k, k < x < k + 1.

−4 −3 −2 −1 1 2 3 4

Note that we do not care about the value at the integer points because it does
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not affect the Fourier coefficients, which are

a0 =
1

1

∫ 1

0

xdx =
1

2
,

an =
2

1

∫ 1

0

x cos 2nπxdx =
1

nπ

∫ 1

0

xd sin 2nπx = − 1

nπ

∫ 1

0

sin 2nπxdx = 0,

bn =
2

1

∫ 1

0

x sin 2nπxdx = − 1

nπ

∫ 1

0

xd cos 2nπx

= − 1

nπ

(
1−

∫ 1

0

cos 2nπxdx

)
= − 1

nπ
.

We note that the reason for an = 0 for n 6= 0 is that f(x)− 1

2
is an odd function.

The Fourier series is

x ∼ 1

2
− 1

π

∞∑
n=1

1

n
sin 2nπx, x ∈ (0, 1).

We indicate x ∈ (0, 1) because the function equals x only on the interval. The
function is x− 1 instead of x on the interval (1, 2).

Example 4.5.5. The function x on (0, 1) extends to an even periodic function of
period 2

f(x) = |x− 2k|, 2k − 1 < x < 2k + 1.

This is also the extension of the function |x| on (−1, 1) to a periodic function of
period 2.

−4 −3 −2 −1 1 2 3 4

Using Exercises 4.5.1 and 4.5.8, we get bn = 0 and

a0 =
2

2

∫ 1

0

f(x)dx =

∫ 1

0

xdx =
1

2
,

an =
2

1

∫ 1

0

f(x) cosnπxdx = 2

∫ 1

0

x cosnπxdx =

−
4

n2π2
, if n is odd,

0, if n is even.

Replacing n by 2n+ 1, the Fourier series is

|x| ∼ 1

2
− 4

π2

∞∑
n=0

1

(2n+ 1)2
cos(2n+ 1)πx, x ∈ (−1, 1).
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We may also extend the function to an odd periodic function of period 2. This
is also the extension of the function x on (−1, 1) to a periodic function of period 2.
The Fourier coefficients an = 0 for the odd function, and

bn = 2

∫ 1

0

x sinnπxdx =
(−1)n+12

nπ
.

The Fourier series is

x ∼
∞∑
n=1

(−1)n+12

nπ
sinnπx, x ∈ (−1, 1).

−4 −3 −2 −1 1 2 3 4

Example 4.5.6. Let f(x) be the periodic function of period 1 extending the function
x2 on (0, 1). Then

a0 =

∫ 1

0

x2dx =
1

3
,

an = 2

∫ 1

0

x2 cos 2nπxdx =
1

n2π2
,

bn = 2

∫ 1

0

x2 sin 2nπxdx = − 1

nπ
.

The Fourier series is

x2 ∼ 1

3
+
∞∑
n=1

(
1

n2π2
cos 2nπx− 1

nπ
sin 2nπx

)
, x ∈ (0, 1).

−4 −3 −2 −1 1 2 3 4

Exercise 4.5.9. The periodic function is given on one interval of period length. Find the
Fourier series.
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1. sin2 x on (−π, π).

2. sinx on (0, π).

3. | sinx| on (0, 2π).

4. sinx on (0, p).

5. cosx on (0, p).

6. |x| on (−p, p).

7. x on (a, b).

8. x sinx on (−π, π).

9. ex on (0, 1).

Exercise 4.5.10. Use the Fourier coefficient to calculate the integral.

1.

∫ π

0
sin2 x cos 2xdx.

2.

∫ 2π

0
sin6 xdx.

3.

∫ 2π

0
sinx cos 2x sin 3xdx.

4.

∫ 2π

0
sinx cos 2x cos 3xdx.

5.

∫ 2π

0
sin3 x sin 3xdx.

6.

∫ 2π

0
sin3 x cos 3xdx.

Exercise 4.5.11. Write the formula for the Fourier coefficients of the even periodic (of
period 2p) extension of a function f(x) on (0, p). What about the odd extension?

Exercise 4.5.12. Extend the function on (0, p) to even and odd functions of period 2p and
compute the Fourier series.

1. x2 on (0, 1). 2. sinx on (0, π). 3. cosx on (0, p).

Exercise 4.5.13. Given the Fourier series of functions f(x) and g(x) of period p. Find the
Fourier series of the following periodic functions.

1. f(ax).

2. f(x) cos
2πx

p
.

3. f(x) sin
2πx

p
.

4.
1

2h

∫ x+h

x−h
f(t)dt.

5.
1

h

∫ x+h

x
f(t)dt.

6.

∫ p

0
f(t)g(x− t)dt.

Exercise 4.5.14. Use Examples 4.5.4 and 4.5.5 to find the Fourier series.

1. x on (0, p).

2. −x on (−p, 0).

3. |x| on (−p, p).

4. 0 on (−1, 0) and x on (0, 1).

5. ax on (−1, 0) and bx on (0, 1).

6. ax on (−p, 0) and bx on (0, p).

4.5.2 Complex Form of Fourier Series

The sine and cosine functions are related to the exponential function via the use of
complex numbers

eix = cosx+ i sinx, cosx =
eix + e−ix

2
, sinx =

eix − e−ix

2i
, i =

√
−1.
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Correspondingly, the Fourier series may be rewritten

f(x) =
∞∑

n=−∞

cne
inx, c0 = a0, cn =

an − ibn
2

, c−n =
an + ibn

2
,

where complex Fourier coefficients are

cn =
1

2π

∫ 2π

0

f(x)e−inxdx.

In this course, f(x) is a real valued function, and an, bn are real numbers. There-
fore c−ne

i(−n)x is the complex conjugation of cne
inx, and the usual Fourier series is

given by
a0 = c0, an cosnx+ bn sinnx = 2Re(cne

inx).

Example 4.5.7. For the function in Example 4.5.2, the complex Fourier coefficient is

c0 =
1

2π

∫ a

0

dx =
a

2π
,

cn =
1

2π

∫ a

0

e−inxdx =
1

−2inπ
e−inx|a0 =

i

2nπ
(e−ina − 1).

The complex Fourier series is

f(x) ∼ a

2π
+
∑
n6=0

i

2nπ
(e−ina − 1)einx, x ∈ (0, 2π).

By

2Re

(
i

2nπ
(e−ina − 1)einx

)
= Re

(
i

nπ
((cosna− 1)− i sinna)(cosnx+ i sinnx)

)
=

1

nπ
(sinna cosnx− (cosna− 1) sinnx),

we recover the Fourier series in terms of trigonometric functions in Example 4.5.2.

Example 4.5.8. Consider the periodic function of period 2π given by ex on (0, 2π).
The complex Fourier coefficient is (recall that e2ikπ = 1)

cn =
1

2π

∫ 2π

0

exe−inxdx =
1

2π(1− in)
e(1−in)x|2π0 =

e2π − 1

2nπ(1− in)
.

The complex Fourier series is

ex ∼ e2π − 1

2π

∞∑
n=−∞

1

1− in
einx, x ∈ (0, 2π).
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By

Re

(
1

1− in
einx
)

= Re

(
1 + in

1 + n2
(cosnx+ i sinnx)

)
=

cosnx− n sinnx

1 + n2
,

we get the Fourier series in terms of trigonometric functions

ex ∼ e2π − 1

π

(
1

2
+
∞∑
n=1

cosnx− n sinnx

1 + n2

)
, x ∈ (0, 2π).

By changing x to 2πx, we get the Fourier series for the periodic function of period
1 given by e2πx on (0, 1)

e2πx ∼ e2π − 1

π

(
1

2
+
∞∑
n=1

cos 2nπx− n sin 2nπx

1 + n2

)
, x ∈ (0, 1).

Example 4.5.9. Consider the function f(x) =
a sinx

1− 2a cosx+ a2
, with |a| < 1. We

rewrite the function and take the Taylor expansion in terms of einx = zn, z = eix,

a sinx

1− 2a cosx+ a2
=

a
eix − e−ix

2i

1− 2a
eix + e−ix

2
+ a2

=
a

2i

eix − e−ix

(1− aeix)(1− ae−ix)
=

1

2i

(
1

1− aeix
− 1

1− ae−ix

)
=

1

2i

(
∞∑
n=0

(aeix)n −
∞∑
n=0

(ae−ix)n

)
=

1

2i

∑
n6=0

a|n|einx

=
1

2i

∞∑
n=1

an(einx − e−inx) =
∞∑
n=1

an sinnx.

Note that we have geometric series because |aeix| = |ae−ix| = |a| < 1. Moreover,
the Fourier series is actually equal to the function. The example also shows the
connection between the Fourier series and the power series.

Exercise 4.5.15. Find the complex form of the Fourier series of ax on (0, 2π). Then by

taking a = e
1

2π , derive the Fourier series of the function ex on (0, 1).

Exercise 4.5.16. Find the complex form of the Fourier series of e
ix
2 on (0, 2π). Then derive

the Fourier series of cosx and sinx on (0, π) by taking the real and imaginary parts.

Exercise 4.5.17. What is the complex form of the Fourier series for a periodic function of
period p?

Exercise 4.5.18. Find complex form of Fourier series.
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1. sin2 x on (−π, π).

2. eix on (0, p).

3. |x| on (−p, p).

4. x2 on (0, 1).

5. x sinx on (−π, π).

6. x cosx on (−π, π).

Exercise 4.5.19. Find Fourier series, where |a| < 1.

1.
1− a cosx

1− 2a cosx+ a2
. 2.

1− a2

1− 2a cosx+ a2
. 3. log(1− 2a cosx+ a2).

4.5.3 Derivative and Integration of Fourier Series

The derivative of a periodic function is still periodic. We may use f(p) = f(0)
(which is the periodic property) and the integration by parts to compute the Fourier
coefficients An, Bn of f ′(x)

A0 =
1

p

∫ p

0

f ′(x)dx =
1

p
(f(p)− f(0)) = 0,

An =
2

p

∫ p

0

f ′(x) cos
2nπ

p
xdx =

2

p

∫ p

0

cos
2nπ

p
xdf(x)

=
2

p

(
f(p)− f(0) +

∫ p

0

f(x)
2nπ

p
sin

2nπ

p
xdx

)
=

2nπ

p
bn,

Bn =
2

p

∫ p

0

f ′(x) sin
2nπ

p
xdx =

2

p

∫ p

0

sin
2nπ

p
xdf(x)

= −2

p

∫ p

0

f(x)
2nπ

p
cos

2nπ

p
xdx = −2nπ

p
an.

This shows that we may differentiate the Fourier series term by term.

Proposition 4.5.2. Suppose f(x) is a periodic function of period p that is continuous
and piecewise continuously differentiable. If the Fourier coefficients of f(x) are
an, bn, then the Fourier series of f ′(x) is

f ′(x) ∼ 2π

p

∞∑
n=1

n

(
bn cos

2nπ

p
x− an sin

2nπ

p
x

)
.

The integration F (x) =

∫ x

0

f(t)dt of a periodic function of period p is still

periodic if a0 =
1

p

∫ p

0

f(x)dx = 0. Then for n 6= 0, the other Fourier coefficients of
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F (x) are

An =
2

p

∫ p

0

F (x) cos
2nπ

p
xdx =

1

nπ

∫ p

0

F (x)d sin
2nπ

p
x

= − 1

nπ

∫ p

0

f(x) sin
2nπ

p
xdx = − p

2nπ
bn,

Bn =
2

p

∫ p

0

F (x) sin
2nπ

p
xdx = − 1

nπ

∫ p

0

F (x)d cos
2nπ

p
x

= − 1

nπ

(∫ p

0

f(x)dx−
∫ p

0

f(x) cos
2nπ

p
xdx

)
=

p

2nπ
an.

The 0-th coefficient is

A0 =
1

p

∫ p

0

F (x)dx =
1

p

(
xF (x)|x=p

x=0 −
∫ p

0

xf(x)dx

)
= −1

p

∫ p

0

xf(x)dx.

This shows that, in case a0 = 0, we may almost integrate the Fourier series term by
term.

Proposition 4.5.3. Suppose f(x) is a periodic function of period p. If the Fourier co-

efficients of f(x) are an, bn and a0 = 0, then the Fourier series of F (x) =

∫ x

0

f(t)dt

is ∫ x

0

f(t)dt ∼ A0 +
p

2π

∞∑
n=1

1

n

(
−bn cos

2nπ

p
x+ an sin

2nπ

p
x

)
.

Example 4.5.10. In Example 4.5.4, we found the Fourier series

x ∼ 1

2
− 1

π

∞∑
n=1

1

n
sin 2nπx, x ∈ (0, 1).

We wish to integrate to get the Fourier series of x2 on (0, 1). However, to satisfy

the condition of Proposition 4.5.3, we should consider the Fourier series of x − 1

2
,

which has vanishing 0-th coefficient. Then F (x) =

∫ x

0

(
t− 1

2

)
dt =

1

2
x2 − 1

2
x has

Fourier series

1

2
x2 − 1

2
x ∼ − 1

12
+

1

2π2

∞∑
n=1

1

n2
cos 2nπx, x ∈ (0, 1).

Here the 0-th coefficient is

A0 = −
∫ 1

0

x

(
x− 1

2

)
dx = − 1

12
.
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Then the Fourier series of x2 = 2

(
1

2
x2 − 1

2
x

)
+ x on (0, 1) is

x2 ∼ 2

(
− 1

12
+

1

2π2

∞∑
n=1

1

n2
cos 2n

)
+

(
1

2
− 1

π

∞∑
n=1

1

n
sin 2nπx

)

=
1

3
+
∞∑
n=1

(
1

n2π2
cos 2nπx− 1

nπ
sin 2nπx

)
, x ∈ (0, 1).

We obtained this Fourier series in Example 4.5.6 by direct computation.

Exercise 4.5.20. Derive the Fourier series of x3 on (0, 1) from the Fourier series of x2.

Exercise 4.5.21. Derive the Fourier series of |x| on (−1, 1) from the Fourier series of its
derivative.

Exercise 4.5.22. Suppose f(x) is continuously differentiable on [0, p], with perhaps different
f(0+) and f(p−). Then we can extend both f(x) and f ′(x) to periodic functions of period
p. If the Fourier coefficients of the extended f(x) are an, bn, prove that

f ′(x) ∼ f(p−)− f(0+)

p
+

2

p

∞∑
n=1

(
(f(p−)− f(0+) + nπbn) cos

2nπ

p
x+ nπan sin

2nπ

p
x

)
.

4.5.4 Sum of Fourier Series

Like the Taylor series, the Fourier series may not always converge to the function.
The following is one good case when the Fourier series converges.

Theorem 4.5.4. Suppose f(x) is a periodic function. If f(x) has one sided limits
f(x−0 ) and f(x+

0 ) at x0, and there is M , such that

x < x0 and close to x0 =⇒ |f(x)− f(x−0 )| ≤M |x− x0|,

and
x > x0 and close to x0 =⇒ |f(x)− f(x+

0 )| ≤M |x− x0|.

Then the Fourier series of f(x) converges to
f(x+

0 ) + f(x−0 )

2
at x = x0.

The condition means that the value of f(x) lies in two “corners” on the two sides
of x0.

Example 4.5.11. In Example 4.5.4, we find the Fourier series of x on (0, 1). The function
satisfies the condition of Theorem 4.5.4 at x0 = 0. We conclude that

0 + 1

2
=
f(0−) + f(0+)

2
=

1

2
− 1

π

∞∑
n=1

1

n
sin 2nπ0.
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x0

f(x−0 )

f(x+
0 )

Figure 4.5.1: Condition for the convergence of Fourier series.

This is trivially true. We get similar trivial equalities at x0 = 1 and x0 =
1

2
.

If we take x0 =
1

3
, then

1

3
=

1

2
− 1

π

∞∑
k=1

(
1

3k + 1
sin

2(3k + 1)π

3
+

1

3k + 2
sin

2(3k + 2)π

3
+

1

3k + 3
sin

2(3k + 3)π

3

)

=
1

2
− 1

π

∞∑
k=1

(
1

3k + 1

√
3

2
− 1

3k + 2

√
3

2

)
.

This means that

1− 1

2
+

1

4
− 1

5
+

1

7
− 1

8
+

1

10
− 1

11
+

1

13
− 1

14
+ · · · = π

3
√

3
.

Similarly, by evaluating the Fourier series at x0 =
1

4
and x0 =

1

8
, we get

1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+

1

13
− 1

15
+

1

17
− 1

19
+ · · · = π

4
,

1 +
1

3
− 1

5
− 1

7
+

1

9
+

1

11
− 1

13
− 1

15
+

1

17
+

1

19
− · · · = π

2
√

2
.

Example 4.5.12. The periodic function of period 2 given by |x| on (−1, 1) satisfies the
condition of Theorem 4.5.4 everywhere. Evaluating the Fourier series in Example 4.5.4 at
x = 0, we get

0 =
1

2
− 4

π2

∞∑
n=0

1

(2n+ 1)2
.

This means that
∞∑
n=0

1

(2n+ 1)2
= 1 +

1

32
+

1

52
+

1

72
+ · · · = π2

8
.

If the sum also includes the even terms, then we have

∞∑
n=1

1

n2
=
∞∑
n=0

1

(2n+ 1)2
+
∞∑
n=1

1

(2n)2
=
∞∑
n=0

1

(2n+ 1)2
+

1

4

∞∑
n=1

1

n2
.
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0 1

Figure 4.5.2: Partial sums of the Fourier series for x on (0, 1).

Therefore
∞∑
n=1

1

n2
= 1 +

1

22
+

1

32
+

1

42
+ · · · = 4

3

∞∑
n=0

1

(2n+ 1)2
=
π2

6
.

If we evaluate at x =
1

4
, then we get

1

4
=

1

2
− 4√

2π2

(
1

12
+

1

32
− 1

52
− 1

72
+

1

92
+

1

112
− 1

132
− 1

152
+ · · ·

)
.

Combined with the sum above, we get

1

12
+

1

32
+

1

92
+

1

112
+

1

172
+

1

192
+ · · · =

(
1

12
+

1

16
√

2

)
π2,

1

52
+

1

72
+

1

132
+

1

152
+

1

212
+

1

232
+ · · · =

(
1

12
− 1

16
√

2

)
π2.

Exercise 4.5.23. Use the Fourier series of x2 on (0, 1) to compute
∑∞

n=1

1

n2
.

Exercise 4.5.24. Use the Fourier series of x2 on (−1, 1) to get the Fourier series of x3 and

x4 on (−1, 1). Then evaluate the Fourier series of x4 to get
∑∞

n=1

1

n4
.

4.5.5 Parseval’s Identity

In Example 4.5.1, we had the Fourier series

sin4 x =
3

8
− 1

2
cos 2x+

1

8
cos 4x.

Then ∫ 2π

0

sin8 xdx =

∫ 2π

0

(
3

8
− 1

2
cos 2x+

1

8
cos 4x

)2

dx.
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We may expand the square on the right. We get square terms such as
1

22
cos2 2x

and cross terms such as 2
1

2
· 1

8
cos 2x cos 4x. The square term has nonzero integral∫ 2π

0

cos2 2xdx = π.

The cross terms has vanishing integral∫ 2π

0

cos 2x cos 4xdx = 0.

Therefore ∫ 2π

0

sin8 xdx =

(
3

8

)2

2π +

(
1

2

)2

π +

(
1

8

)2

π =
35

64
π.

The idea (which is essentially Pythagorean theorem) leads to the following formula.

Theorem 4.5.5 (Parseval’s Identity). Suppose f(x) is a periodic function of period
p. Then its Fourier coefficients satisfy

2a2
0 +

∞∑
n=1

(a2
n + b2

n) =
2

p

∫ p

0

|f(x)|2dx.

The identity means that the Fourier series, considered as a conversion between
periodic functions and sequences of numbers, preserves the “Euclidean length”. The
complex form of Parseval’s identity is

∞∑
n=−∞

|cn|2 =
1

2π

∫ 2π

0

|f(x)|2dx.

Example 4.5.13. Applying Parseval’s identity to the Fourier series of x on (0, 1), we
get

2 +
∞∑
n=1

1

n2π2
= 2

∫ 1

0

x2dx =
2

3
.

This is the same as
1

12
+

1

22
+

1

32
+

1

42
+ · · · = π2

6
.

Applying the identity to the Fourier series of x2 on (0, 1), we get

2

9
+
∞∑
n=1

1

n4π4
+
∞∑
n=1

1

n2π2
= 2

∫ 1

0

x4dx =
2

5
.

Using
∑∞

n=1

1

n2
=
π2

6
, we get

1

14
+

1

24
+

1

34
+

1

44
+ · · · = π4

90
.
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Example 4.5.14. Applying Parseval’s identity to the complex form of the Fourier
series of ex on (0, 2π) in Example 4.5.8, we get

(e2π − 1)2

4π2

∞∑
n=−∞

1

1 + n2
=

1

2π

∫ 2π

0

e2xdx =
e4π − 1

4π
.

The equality leads to

1 + 2
∞∑
n=1

1

1 + n2
=
e2π + 1

e2π − 1
π,

or
∞∑
n=1

1

1 + n2
=

1

2
+

1

5
+

1

10
+

1

17
+

1

26
+ · · · = π(e2π + 1)

2(e2π − 1)
− 1

2
.

Exercise 4.5.25. Apply Parseval’s identity to the Fourier series in Example 4.5.2 to find∑∞
n=1

sin2 na

n2
and

∑∞
n=1

cos2 na

n2
.

Exercise 4.5.26. Apply Parseval’s identiy to the Fourier series of x3 and x4 on (0, 1) to find∑∞
n=1

1

n6
and

∑∞
n=1

1

n8
.

Exercise 4.5.27. Find
∑∞

n=1

1

1 + n2
by evaluating the Fourier series in Example 4.5.8.


