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Chapter 1

Limit

1.1 Limit of Sequence
A sequence is an infinite list
L1,L2y v ey Ly -

The n-th term of the sequence is x,,, and n is the index of the term. In this course,
we will always assume that all the terms are real numbers. Here are some examples

Tp=mn: 1,2, 3 ...,n, ...;
Y =21 2,22, ..., 2, ...
1 1 1
Zn=—: 1, = ..., =
n 2 n
up, = (=1)": 1, =1, 1, ..., (=) ...;
v, =sinn: sinl, sin2, sin3, ..., sinn, ... .

Note that the index does not have to start from 1. For example, the sequence
v, actually starts from n = 0 (or any even integer). Moreover, a sequence does not
have to be given by a formula. For example, the decimal expansions of 7 give a
sequence
wy: 3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, ... .

If n is the number of digits after the decimal point, then the sequence w,, starts at
n =0.

Now we look at the trend of the examples above as n gets bigger. We find that
x, gets bigger and can become as big as we want. On the other hand, y, remains
constant, z, gets smaller and can become as small as we want. This means that
yn approaches 2 and z, approaches 0. Moreover, u, and v, jump around and do
not approach anything. Finally, w, is equal to m up to the n-th decimal place, and
therefore approaches .
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n

Figure 1.1.1: Sequences.

Definition 1.1.1 (Intuitive). If x,, approaches a finite number [ when n gets bigger
and bigger, then we say that the sequence x,, converges to the limit [ and write

lim z, = L.

n—oo
A sequence diverges if it does not approach a specific finite number when n gets
bigger.

The sequences vy, z,,w, converge respectively to 2, 0 and 7. The sequences
T,y Up, U, diverge. Since the limit describes the behavior when n gets very big, we
have the following property.

Proposition 1.1.2. [fy, is obtained from x,, by adding, deleting, or changing finitely
many terms, then lim, . x, = lim, o Yn.

The equality in the proposition means that x, converges if and only if ¥, con-
verges. Moreover, the two limits have equal value when both converge.

1
is obtained from —= by deleting the first

1
Ve 7/

= 0 and Proposition 1.1.2, we get lim, ... — =

NG

Example 1.1.1. The sequence

two terms. By lim,

1
lim, o, —— = 0.
- vn+2
In general, we have lim,,_, ;1 = lim,,_, x, for any integer k.

1
NG

1
The example assumes lim,, .., — = 0, which is supposed to be intuitively obvi-
n

ous. Although mathematics is inspired by intuition, a critical feature of mathematics
is rigorous logic. This means that we need to be clear what basic facts are assumed
in any argument. For the moment, we will always assume that we already know
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1
lim, o ¢ = ¢ and lim,,_,, — = 0 for p > 0. After the two limits are rigorously
n

established in Examples 1.2.2 and 1.2.3, the conclusions based on the two limits
become solid.

1.1.1 Arithmetic Rule

Intuitively, if z is close to 3 and y is close to 5, then the arithmetic combinations
x+y and xy are close to 3+5 = 8 and 3-5 = 15. The intuition leads to the following
property of limit.

Proposition 1.1.3 (Arithmetic Rule). Suppose lim,, o z, = | and lim,, o yn, = k.
Then
Tn {

lim (z, +y,) =1l+k, limcx,=cl, lim z,y,=4kIl, lim — = —
n—00 n—o0 n—00 n—0o0 Y,

where ¢ is a constant and k # 0 in the last equality.

The proposition says lim,, . (Z, + yn) = lim, o T, + lim,, o y,. However, the
equality is of different nature from the equality in Proposition 1.1.2, because the
convergence of the limits on two sides are not equivalent: If the two limits on the
right converge, then the limit on the left also converges and the two sides are equal.
However, for x, = (=1)" and y,, = (—1)""!, the limit lim, oo (Z, + ¥,) = 0 on the
left converges, but both limits on the right diverge.

Exercise 1.1.1. Explain that lim,_,.c x, = [ if and only if lim,,_,o (2, — ) = 0.

Exercise 1.1.2. Suppose x, and y, converge. Explain that lim,_, . zny, = 0 implies either
limy, 00 , = 0 or lim, o0 ¥y, = 0. Moreover, explain that the conclusion fails if x,, and
Yn are not assumed to converge.

Example 1.1.2. We have

1 1
— lim,, oo | 2+ —
2% +n 2+n Hiin— ( +n>
lim 5 = lim =
n 2 Hiln—roo B n + ﬁ
. ) 1
lim,, oo 2 + lim,, o0 —
_ n
. . . 1 1
lim,, oo 1 — lim,, oo — + lim,, oo — « lim,, oo —
n

240
S 1-040-0
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The arithmetic rule is used in the second and third equalities. The limits lim,,_,, ¢ =

. 1
c and lim,,_,o —
n

Exercise 1.1.3. Find the limits.
n+ 2

22 —3n+2
32 —4n+1°

Exercise 1.1.4. Find the limits.

=
B
+
()

-3

5 %

+
n—3 "

2 /n — 3n + 2
3vn—4n+1

3.

Exercise 1.1.5. Find the limits.

n—+a
+b

1.

3

+a
n+b’

%

n-+a
"n24+bn+c

Exercise 1.1.6. Show that

= ( are used in the fourth equality.

n3 +4n? — 2

m3—n+3°

(4 1)(n+2)

2n2 —1
m2—1

S (n+1)(n+2)

' In+4yn—2

2¥Yn—n+3 "

(A D(A+2)

2n—1
2n —1

S (Wn+1)(Vn+2)

Vn+a

" n4byn+c
(WAtaWa+Y)

cn+d
cn+d

S VAraatD)

I apnP + ap_1mP~1 + -+ ain + ag (2{
im _
n=00 bynd + by_1nd=L 4 - +bin + by o
q
Exercise 1.1.7. Find the limits.
1 1010n 55(2n + 1)2 _ 1010
" 0?10 on2-5

Exercise 1.1.8. Find the limits.

(n?+1)(n + 2)

(n+1)(n?2+2)
(2—n)3

2n3 +3n — 1
(n® +3)°

s

. (Vn+1)(n+2)

C(n+D(Vn+2)

R D

" 2Yn+3n-1

g (Vn+3)°

-2

. an® +b

" (ey/n+d)s°

o (ayi+by

' (cf—i—d)?)'

9 (ay/n +b)?

’ (cf—i—d)?"
if 0 <p<y,

if 0 < p=gqand b, #0.

5°(2y/n +1)°
10n — 5

— 10
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on o n A n+a n+c - nd4+a nd3+c
n+1 n-—1 "n+b n+d "n2+b nZ+d
5 n? n? . n+a n’+c 9 n+a n?+c
"n+1 n-1 " n+b n+d "nd34+b nd+d
5 n_n g nta o nitc 9 vnt+a n+e
Y+l -1 S yn+b n+d S Ym+b Yn+d
Exercise 1.1.9. Find the limits.
n2+a1n+ao_n2—|—cln+co 3 n-+a 2 n-+c 2
n+b n+d ' “\n+b n+d)
n?+an+ay n®+can+c 4 <n2+a>2_<n2+c>2
"n2+bin+by nE+din+do “\n+b n+d)
Exercise 1.1.10. Find the limits, p,q > 0.
n? +a n’+a nP+ec
1. . 3. — .
nd +b ni+b ni+d
9 anP +bnl+c 4 n?P + a1nP + as
Tand+bnP +c " n20 4+ bnd 4+ by

1.1.2 Sandwich Rule

The following property reflects the intuition that if x and z are close to 3, then
anything between x and z should also be close to 3.

Proposition 1.1.4 (Sandwich Rule). Suppose x,, <y, < z, for sufficiently big n. If
lim, ooz, = lim,, .o 2, = [, then lim, oy, = (.

Note that something holds for sufficiently big n is the same as something fails
for only finitely many n.

Example 1.1.3. By 2n — 3 > n for sufficiently big n (in fact, n > 3 is enough), we

have
1 1

< — < —.
V2n—3 n
1

1
—— = 0 and the sandwich rule, we get lim,, ., —— =
NLD

vV2n —3
On the other hand, for sufficiently big n, we have n +1 < 2n and n — 1 > E,

2
0o VnFl _ Von  2V2

n—1 n Vn
2

Then by lim,,_,o, 0 = lim,, s

0.

and therefore
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24/2 1
%n_ = 2¢/21im,, ., % = 0 (arithmetic rule used) and the sandwich
vn+1 _ 0

n—1

By lim,,

rule, we get lim,, oo

Example 1.1.4. By —1 <sinn < 1, we have

1 sinn 1 1 1 1
n n n Vn+17 Vn+sinn = /n—1
. 1 ) 1 ) . sinn
By lim,, oo — =0, —lim,, ... — = 0 and the sandwich rule, we get lim,, . =0.
n n
1 1
Moreover, by lim, o —— = lim, o = 0 (see argument in Example
y Sl e e—— ( & p
1
1.1.1) and the sandwich rule, we get lim,,_,o. ——— = 0.
) & - vn +sinn
Exercise 1.1.11. Prove that lim,_, |z,| = 0 implies lim,, o 2, = 0.
Exercise 1.1.12. Find the limits, a > 0.
L , VZInt3 5 L , Van+b
NCE S TAn—1 Van+b " oen+d

Exercise 1.1.13. Find the limits.

1 Lo g oo 14 Vnsinn + cosn
n n + siny/n : n_1 :
_1)n
| Yt 15, M sinvR

3 siny/n n + cos2n

oon 2+ (—1)"3

10, 2 _

4, S5 VnZ —2cosn 16, Y Fsinn
n—2 C m—cosn
Vn =2 sinn + (—1)" cosn V/n —cosn

- 1 noS

L — n+(—

n+ (—1)» 17 (=1)™"(n+1)
6. _cosn 1, Isinm+ cosn| Rt~
. m. . n .
cosn 3\/ﬁ+2 (—1)"(71—1—10)2— 1010

7 —— 13, ———. 18.

nt (—1)n2 on + (—1)"3 10(—1)"n2 — 5

Exercise 1.1.14. Find the limits.
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_Vnta g, ()" 7 cosynta
" n+(—1)"b CnA4 (=1 " n+bsinn’
, 1 5, (ZD"(an+0) g osvnta
S Vn?t+an+b P+ d Vit bsinn
@ (—=1)"(an +b)? + ¢ an + bsinn

3.

InZ+an+b ' (-D)mn2+d " en+dsinn’

Exercise 1.1.15. Find the limits, p > 0.

1.

sin+/n sin(n + 1) asinn + b M cos(sinn)
o — —_—— =

n G P+ " nP —bsinn’

Example 1.1.5. For a > 0, the sequence /n + a — \/n satisfies

o< e yn o WA= yi(Vita+ i) a a

Jnta+tn T Vntatvn o Vn

By lim,, o0 \if = 0 and the sandwich rule, we get lim;,,,o(v/n+a — y/n) = 0. Similar
n

argument also shows the limit for a < 0.

/ 2
Example 1.1.6. The sequence nt satisfies
n

2 2 1
nta_nta_ 4ol
n n n

1 / 2
By limy,— 00 (1 + 2) =1+42-0 =1 and the sandwich rule, we get lim,,_, n =1.
n n
Exercise 1.1.16. Show that lim,_,o(v/n +a —y/n) =0 for a < 0.

/ 2
Exercise 1.1.17. Use the idea of Example 1.1.5 to estimate nte 1 and then find
n

. n+ 2
lim,,— o0 —

Exercise 1.1.18. Show that lim;,_,co niCbL = 1. You may need separate argument for
n
a>banda<b.
Exercise 1.1.19. Find the limits.
1. V/n+a—+n+b. 9 vn+a

CVnFce+vn+d
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5 vVnta+vn+b 10 [ n+a
S VnFe+vn+d "V n24+bn+c

4. \/ni—i—a— ”n—i_b. 11. vVn2+an+b—vVn2+cn+d.
Vn+evn+d
Vn+a+b 12. Vn+avn+b—+/n+cvn+d.
Vet Bt
6. vn(vn+a—+/n+b). VnZ4+n+1
7. Vn+e(vn+ta—n+b). 1. nta
8. vnt+a++vn+b—2yn+ec Vin? +bn +c

2
9. ) 5——. 15 7 tantbd
n®+n+1 n?+cn+d

Exercise 1.1.20. Find the limits.

1. V/n+asinn —+/n+ bcosn. 5. /n+ (—=1)"(v/n+a—+vn+b).
Tas

2. ,/w. 6. Vn2 4 an + sinn — v/n2 + bn + cos n.
n+bcosn
n+ (—1)"a . \/n2+an+sinn
n+ (=) "V nZ+bn+cosn’

4 Vvn+a+sinn 8 vn?4an+b

CVntce+ (=) " on4(=1)re

Exercise 1.1.21. Find the limits.

1. Yn+a—/n+b. 3. Vn2(¥n+a— n+b).
n+a
2. ¢/ .
n+b
Exercise 1.1.22. Find the limits.
o\ D o\ 54 3 p
L (" 2 . o (7 2 ‘ N n—9 | 4 <n+a>.
n+1 n+1 n+1 n+b
Exercise 1.1.23. Find the limits.
Vi +asinn \? n?+an+0b\? n+a p
1. | —m— ) . 2. | ——mmm— ) . 3.l ———— .
V1 + bceos2n n? 4+ (=1)"c n2+bn+c
Exercise 1.1.24. Suppose lim,, .o, , = 1. Use the arithmetic rule and the sandwich rule

to prove that, if =, < 1, then lim,, o #h = 1. Of course we expect the condition z, < 1
to be unnecessary. See Example 1.1.21.

W

(/i a— /T b).
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1.1.3 Some Basic Limits

1
Using lim,, .o, — = 0 and the sandwich rule, we may establish some basic limits.
n

Example 1.1.7. We show that

lim /a =1, for a > 0.

n—oo

First assume @ > 1. Then z, = {/a — 1 > 0, and

a:(1+xn)":1+nxn+n—x2+---+xz>nxn.

This implies
a
0<zx, <—.
n

By the sandwich rule and lim,, ., 4 _ 0, we get lim, ,, x, = 0. Then by the
n

arithmetic rule, this further implies

lim {/a = lim (z, +1) = lim =, + 1 = 1.
n—oo

n—oo n—oo
1
For the case 0 < a <1, let b = — > 1. Then by the arithmetic rule,
a

1 1 1
lim /a=lm == ——— = - =1.

Example 1.1.8. Example 1.1.7 can be extended to

lim ¢/n = 1.

n—o0

Let x, = {/n — 1. Then we have z,, > 0 for sufficiently large n (in fact, n > 2 is
enough), and

-1 -1
This implies
2
0<z, < V2 .
n—1
. V2 .
By lim,, T 0 (see Example 1.1.1 or 1.1.3) and the sandwich rule, we get

lim,,_,o x, = 0. This further implies

lim ¥n= lim 2, +1 = 1.

n—0o0 n—0o0
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Example 1.1.9. The following “n-th root type” limits can be compared with the
limits in Examples 1.1.7 and 1.1.8

1< n+1< V2on=2n,
1 < nwt < Un,

n n

1< (n? = )5 < ()77 = (/)"

By Examples 1.1.7, 1.1.8 and the arithmetic rule, the sequences on the right converge
to 1. Then by the sandwich rule, we get

lim ¢/n+1= lim n# = lim (n* — n)ﬁ = 1.

n—00 n—oo n—o0

Example 1.1.10. We have

3= /3n < Y2 ¥ 30 < /30 + 30 = 33/2.

By Example 1.1.7, we have lim, ., 3%/2 = 3. Then by the sandwich rule, we get
lim,, 00 V27 + 3" = 3.

For another example, we have
3'>3"—2t=3""142.3"1—2.2"7 1 > 3n L
Taking the n-th root, we get
1

3> /3 —2">3
V3

By lim,, . 3 = 3 and the sandwich rule, we get lim,,_,,, v/3" — 2" = 3.

1
V3
Exercise 1.1.25. Prove that if a < x,, < b for some constants a,b > 0 and sufficiently big
n, then lim,,_,o &2, = 1.

Exercise 1.1.26. Find the limits, a > 0.

1. . 5. (an 4+ D). 9. (an+ b)wia.
2. ni. 6. (an?+b)n. 10. (an + b)wranie.
3. nr. 7. (Vn+1)n. 11. (an? + b)wrd.

1

c cn+d
4. (n+1)n. 8. (n—2)nts, 12. (an? + b)w?+en+f .

Exercise 1.1.27. Find the limits, a > 0.
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1. ¥/n+sinn. 3. Yn+(—1)"sinn. 5. (n_cosn)msﬁ.

2. Van + bsinn. 4. {/an + (=1)"bsinn. 6. (an + bsinn) -

Exercise 1.1.28. Find the limits, p,q > 0.
1. ¢nP +sinn. 2. /nP 4+ nd. 3. "RYnP + nd. 4. "YnP + nd.
Exercise 1.1.29. Find the limits.
1. {/5n —4n, 4. /Bn—3.4n —2n, 7. (5" —4™)nF1,
2. {/5n —3-4m. 5. /421 5n, 8. (5" — 4n)u-.

3. /B —3-4n + 2, 6. {/42n—1 4 (—1)n5m, 9. (5" —4™) 241,

Exercise 1.1.30. Find the limits, a > b > 0.
1. am+ b, 4. Yarp? i, 7. (a" + b)),
2. am — b 5. "Wan +bn. 8. (a — b2,
3. Yan + (—1)nbn. 6. "am —b". 9. (a" — (=1)"pm) 1.
Exercise 1.1.31. For a,b,c > 0, find lim,, o Va™ + b" + c".
Exercise 1.1.32. For a > 1, prove lim,,_,o, {/a = 1 by using
a=1=(¥a—1) (Vo) "+ (V@) 2+ -+ Ya+1).

Example 1.1.11. We show that

lim a" =0, for |a|] < 1.
n—oo

1
First assume 0 < a < 1 and write a = m Then b > 0 and
1 1 1
0<a” = = < —.
n -1
(1+5) 1+nb+n(n2 Dpa g ooqpn b

1
By lim;, = 0 and the sandwich rule, we get lim,,_,, a” = 0.

If -1 <a<0,then 0 < |a| < 1 and lim,,—,~ |a"| = lim,_ |a|™ = 0. By Exercise
1.1.11, we get lim,,_, o, a™ = 0.

Example 1.1.12. Example 1.1.11 can be extended to

lim na™ =0, for |a| < 1.
n—oo



18 CHAPTER 1. LIMIT

This follows from

0<na™ = n = " < n = 2
n -1 -1 —1)p2’
(1+9) 1+nb+n(n2 V2 4 gm n(n2 Sy (n 1P
N 2 .
the limit lim,,_,.c ——————— = 0 and the sandwich rule.
n—1)b?

Exercise 1.1.58 gives further extension of the limit.

Example 1.1.13. We show that

a?’L

lim — =0, for any a
n—oo n!

for the special case a = 4. For n > 4, we have

L L A D O SRR S SF S S S S
nl 1-2-3-4 5 6 n~1-2:3-4 n 4ln
5 gn
By lim,,—,oo — — = 0 and the sandwich rule, we get lim,, = 0.

4!'n
Exercise 1. 1 59 suggests how to show the limit in general

Exercise 1.1.33. Show that lim,, o, n?a™ = 0 for |a| < 1 in two ways. The first is by using
the ideas from Examples 1.1.11 and 1.1.12. The second is by using lim,_,o, na™ = 0 for
la] < 1.

Exercise 1.1.34. Show that lim,, o, n°*a™ = 0 for |a| < 1. What about lim,, o, n~>%a™?
What about lim,, ., nPa™?

n

Exercise 1.1.35. Show that lim,,_ s a—' =0 for a=5.4 and a = —5.4.
n!

Exercise 1.1.36. Show that lim,_ . 4 0 for a =5.4 and a = —5.4.

Vn!

Exercise 1.1.37. Show that lim,_ s W = 0 for any a.
n)!
Exercise 1.1.38. Find the limits.
1. n+ 1. 3. n990.99™. 5. n+2n' 7. &
2 (n2 4 1)L001 n2" 4 (—3)" g - n6ntl

Exercise 1.1.39. Find the limits. Some convergence depends on a and p. You may try
some special values of a and p first.
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1 n? nPa”
1. nPa™. 4. )
Ry 7. R 10. T
an p np |41
2 5 8. ——. 11, 24
n! Vn! (2n)!
nP nPa™ nPa” n!nPa™
il 9. . 12.
T 6 Val (2n)!
Exercise 1.1.40. Find the limits.
1 n? + 3n + 5" 3 n? 4+ n3" + 5! 5 n? +n!+ (n—1)!
' n! ' ' n! ' "3 —nl+ (n-1)
n2 + 3n + 5" A n23"5 + 5. (n—1)! 6 2"n! +3"(n — 1)!
nl—n2+on” ' (n+1)! ' " 4n(2n — 1)1 = 5l
Exercise 1.1.41. Prove V/n! > \/Z Then use this to prove limg, ;s — - = 0.
n!
, n! 1 (n!)? .
Exercise 1.1.42. Prove — < — and for n > 2. Then use this to prove
n" o n (2n)!  n4+1
! 12 Nk
limy,—s00 v lim,, 00 @ = 0. What about lim,,—ys (n!) where k& > 2 is an integer?
nn (2n)! (kn)!

1.1.4 Order Rule
The following property reflects the intuition that bigger sequence should have bigger
limit.
Proposition 1.1.5 (Order Rule). Suppose lim,, oo z, = | and lim,, o y, = k.

1. If x, <y, for sufficiently big n, then | < k.

2. If l <k, then z, <y, for sufficiently big n.

By taking y,, = [, we get the following special cases of the property for a con-
verging sequence .

1. If z,, <1 for sufficiently big n, then lim,,_,, x,, <.

2. If lim,, .o z, <, then z, <[ for sufficiently big n.

Similar statements with reversed inequalities also hold (see Exercise 1.1.43).

Note the non-strict inequality in the first statement of Proposition 1.1.5 and the

1 1
strict inequality the second statement. For example, we have =, = — <y, = —,
n

but lim, ,. z, £ lim, ., y,. The example also satisfies lim,, ,o , > lim, o Y,
but x,, # y,, even for sufficiently big n.
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Exercise 1.1.43. Explain how to get the following special cases of the order rule.
1. If z,, > [ for sufficiently big n, then lim,, o x,, > [.

2. If lim,, oo x, > [, then x,, > [ for sufficiently big n.

. 2n? +n
Example 1.1.14. By l1mn_>002— = 2 and the order rule, we know 1 <
n*—n+1

2n? o2n?
_entan < 3 for sufficiently big n. This implies 1 < {/ _entan < {/3 for
n*—n+1 n?—n+1

sufficiently big n. By lim,_, ¥/3 = 1 and the sandwich rule, we get

o 2nt+n
hm —:1
n—o00 n2—n—|—1

Example 1.1.15. We showed lim,, ,,, v/3" — 2" = 3 in Example 1.1.10. Here we use
a different method, with the help of the order rule.
2\" 2\"
By v3r —27 = 3¢/1 — (5) , we only need to find lim,,_,, {/1 — <§> . By
2

Example 1.1.11, we have lim,,_, (1 — (5) ) = 1. By the order rule, therefore,

1<1 2n<2
2 3

for sufficiently big n. This implies that

\’;§< 1”/1—(§)n< V2

for sufficiently big n. Then by Example 1.1.7 and the sandwich rule, we get

2 n
lim,, oo {1 — (§> = 1, and we conclude that

we have

n—00 n—00 3

2 n
lim v3" —27 =3 lim {/1— (—) = 3.

Exercise 1.1.44. Prove that if lim,,_,. x, = [ > 0, then lim,_ ., ¥/x, = 1. Moreover, find
a sequence satisfying lim,, . z,, = 0 and lim,, ., ¥/z,, = 1. Can we have z,, converging
to 0 and {/z, converging to 0.327

Exercise 1.1.45. Find the limits.
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1. /5" — pdn, 3. Y50 — ndn.
2. "R/ — A, 4. /5r — (—1)rnar.

Exercise 1.1.46. Find the limits.

n—1
1. n l5n — n4n. 4. (n%42n—1 —5n)n?s1,
n
1 3n—1
v 1
2. ’\/n5n — (—=1)"n4n. . \/”2” AT —

1 32n—1
3. "+\2/5” — n4"sinn. 6. "{/n23n + .
n n2

Exercise 1.1.47. Find the limits, a > b.

1. Vartl 4+ pr. 6. Va -+ bn.

10.

21

(5 — ndm) e

nt(=1)"

(57— (—1)"nd") w751

n—1
n—2 23n 3211—1'
\/ + n2+1

n—1

5 32n—1 nZ
1
32n71 w2
<n23n + 2> .
n

N

n+1

(a + by,

2 T\L/an—"_1 + (_1)nbn_ 7. Van + b". 11. ((n + 1)0,” + bn)ﬁ
n=2/ 1 - (—
A N o
4. /da™ — 5b". ' '
1 _n
5. Ydan + 5p2 T, 9. "/ am -+ mbrtt. 13. (a" + (—1)7b") 21
Exercise 1.1.48. Find the limits, a,b,c > 0.
1. ¥/n2a™ + nb" + 2c". 3. Y/(n+sinn)a™ + b + n2cn.
2. ¥/a(b" + 1) + ncn. 4. Y/a™(n+ b"(1 + ncv)).

Exercise 1.1.49. Suppose a polynomial p(n) = a,n® +a,—1nP~ ' +-- - +ain+agp has leading

coefficient a), > 0. Prove that p(n) > 0 for sufficiently big n.

Exercise 1.1.50. Suppose a,b,c > 0, and p, ¢, r are polynomials with positive leading coef-

ficients. Find the limit of {/p(n)a™ + q(n)b™ + r(n)c.

Exercise 1.1.51. Find the limits, a, b, p,q > 0.

1. ¥Van? 4 bsinn. 3. ""anP + bnd.
2. vanP 4+ bnd. 4. "JanP + bnd.

D.

6.

”\2/ anP + bnd.

(an? + bnq)ﬁ.
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Example 1.1.16. The sequence z, = satisfies

T 3n? 3
li “ = lim —— = - =0.75.
nboo Tp—1 nT00 2n(2n —1) 4

T 0.8 for sufficiently big n, say for n > N (in fact,

By the order rule, we have

Tn—1
N = 8 is enough). Then for n > N, we have
0 < v, = Tn Tp—1 o xN+1.§UN < O.SninN — C . 08”, C — O.87NZL’N.
Tp—1 Tn-2 TN

By Example 1.1.11, we have lim,,_,, 0.8" = 0. Since C'is a constant, by the sandwich
rule, we get lim,, o, x, = 0.
Exercises 1.1.52 and 1.1.53 summarise the idea of the example.

T
Exercise 1.1.52. Prove that if " _| < ¢ for a constant ¢ < 1, then z,, converges to 0.
Tn—1
x
Exercise 1.1.53. Prove that if lim,, yo. —— = [ and || < 1, then z,, converges to 0.
Tn—1

Exercise 1.1.54. Find a such that the sequence converges to 0, p,q > 0.

(2n)! @n)! a™’ nia”

L. (n!)Qa ' 4. ol a”. 7. 7;!. 10. (n!)p‘
(n!)2 n n2 n (n')p a™
(n|)3 n a”2 a" n5(n!)p n

SEDI T " RGO

1.1.5 Subsequence

A subsequence is obtained by choosing infinitely many terms from a sequence. We
denote a subsequence by

Ty Tnyy Tngy - ooy Tngy v ey
where the indices satisfy
Ny <ng < - <np<---.

The following are some examples

Lokt X2, T4y Tey Ty -+« L2ky -+ -,
Lok—1+: L1, L3y L5y L7y -3 T2k—15 -+
Lok Xy, Ty, Ty T16y -+ -3 Loky .y

Tt Ty, T2, T, L24y - - Ty o
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If x,, starts at n = 1, then ny > 1, which further implies n, > k for all k.

Proposition 1.1.6. If a sequence converges to I, then any subsequence converges
to l. Conversely, if a sequence is the union of finitely many subsequences that all
converge to the same limit [, then the whole sequence converges to (.

S|

1 1
Example 1.1.17. Since — is a subsequence of —, lim,,_,., — = 0 implies lim,,
n n

n2

0. We also know lim,,_, = 0 implies lim,, ,,. — = 0 but not vice versa.
n

1
vn
n+ (—1)"3
n—(—1)"2

2k—-1)—-3 2k—4 2k +3
( ) = and the even subsequence + .
2k—1)+2 2k+1 2k — 2
verge to 1, either by direct computation, or by regarding them also as subsequences

fn—4 n+3 n+ (—1)"3
o _

and , which converge to 1. Then we conclude lim,, o, ————=— =
n+1 n—2 n—(=1)"2

Example 1.1.18. The sequence is the union of the odd subsequence

Both subsequences con-

Example 1.1.19. The sequence (—1)™ has one subsequence (—1)%* =1 converging to
1 and another subsequence (—1)?*~1 = —1 converging to —1. Since the two limits
are different, by Proposition 1.1.6, the sequence (—1)™ diverges.

Example 1.1.20. The sequence sin na converges to 0 when «a is an integer multiple of
7. Now assume 0 < a < 7. For any natural number k, the interval [km, (k + 1)7]
of length 7 contains the following interval of length a (both intervals have the same
middle point)

T—a

[, bi] = {lm + ? (k + 1)r —

T™T—a

For even k, we have sinz > sin ( ) = cosg > 0 on [ag,b]. For odd k, we

a
have sinz < —cos g < 0 on [ay, by].

Since the arithmetic sequence a, 2a, 3a, ... has increment a, which is the length
of [ay, bg|, we must have niya € [ay, by] for some natural number ny. Then sin ngga is a

. . . . a . .
subsequence of sin na satisfying sin ng > cos 3 > (0, and sinngk1a is a subsequence

a
satisfying sin ngp < — cos —. Therefore the two subsequences cannot converge to the

same limit. As a result, the sequence sin na diverges.

Now for general a that is not an integer multiple of 7, we have a = 2N7 + b for
an integer N and b satisfying 0 < b < m. Then we have sin na = £sinnb. We have
shown that sinnb diverges, so that sinna diverges.

We conclude that sinna converges if and only if a is an integer multiple of 7.
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Exercise 1.1.55. Find the limit.

1

LoVnl+1—nl-1. 3. ((n+1))m. 5. (n!) G

Exercise 1.1.56. Explain convergence or divergence.

1. (=)™ 6. v (, /m+ (=1)" — \/ﬁ) 11. sin%rcos %T

=n"
S 7. (200" 4 3y nsin 00
3. n=0", . 12, ——9
8. (2" + 31 ”)% ncos o + 2
A (-1)"n+3 2
" n—(=1)"2° 9. tan%. n—sin "
3
(—1)"n? o 13. —— -
5. 2 1)rsin T nm
] 10. (—1)"sin 3 n + 2 cos 5

Exercise 1.1.57. Find all a such that the sequence cosna converges.

Example 1.1.21. We prove that lim,,_,, x, = 1 implies lim,_,,, 2P = 1. Exercises
1.1.58 and 1.1.59 extend the result.

The sequence z,, is the union of two subsequences zj, and x} (short for z,,, and
Tp,) satisfying all ;. > 1 and all 27 < 1. By Proposition 1.1.6, the assumption
lim,, 00 &, = 1 implies that limy o ), = limg_,o 2} = 1.

Pick integers M and N satisfying M < p < N. Then zj > 1 implies :E%M <
P < 21N By the arithjrvnetic rule, we have limy_,o0 2" = (limy_o0 24)M = 1M =1
and similarly limg_, 2} = 1. Then by the sandwich rule, we get limy_, ;" = 1.

Similar proof shows that limy_,. z}” = 1. Since the sequence z? is the union of

two subsequences z,” and z}”, by Proposition 1.1.6 again, we get lim,, ., 22 = 1.

Exercise 1.1.58. Suppose lim,_,oc Z, = 1 and v, is bounded. Prove that lim,_,.c 7" = 1.

Exercise 1.1.59. Suppose limy,_,o x, = > 0. By applying Example 1.1.21 to the sequence
x
Tn’ prove that lim,, .o x5 = IP.

1.2 Rigorous Definition of Sequence Limit

1 1
The statement lim,, .., — = 0 means that — gets smaller and smaller as n gets
n n

bigger and bigger. To make the statement rigorous, we need to be more specific
about smaller and bigger.

Is 1000 big? The answer depends on the context. A village of 1000 people is
big, and a city of 1000 people is small (even tiny). Similarly, a rope of diameter less
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than one millimeter is considered thin. But the hair is considered thin only if the
diameter is less than 0.05 millimeter.

So big or small makes sense only when compared with some reference quantity.
We say n is in the thousands if n > 1000 and in the millions if n > 10000000.
The reference quantities 1000 and 1000000 give a sense of the scale of bigness. In

this spirit, the statement lim,, .., — = 0 means the following list of infinitely many
n

implications
1
n>1 = |——0] <1,

n
1

n>10 = |——0| <0.1,
n
1

n > 100 = |- — 0] < 0.01,
n
1

n > 1000000 = |— — 0| < 0.000001,

n

For another example, lim,, - = 0 means the following implications
n!

27'L
n>10 = 5—0 < 0.0003,
2n
n>20 — i 0] < 0.0000000000005,

So the general shape of the implications is
n>N = |z, — | <e

Note that the relation between N (measuring the bigness of n) and e (measuring
the smallness of |x,, — [|) may be different for different limits.

The problem with infinitely many implications is that our language is finite.
In practice, we cannot verify all the implications one by one. Even if we have
verified the truth of the first one million implications, there is no guarantee that
the one million and the first implication is true. To mathematically establish the
truth of all implications, we have to formulate one finite statement that includes the
consideration for all N and all e.
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1.2.1 Rigorous Definition

Definition 1.2.1 (Rigorous). A sequence x, converges to a finite number [, and
denoted lim,, o x, = [, if for any € > 0, there is N, such that n > N implies
|z, — 1] <e.

In case N is a natural number (which can always be arranged if needed), the
definition means that, for any given horizontal e-band around [, we can find N, such

that all the terms xni11,TN12,TN13,... after N lie in the shaded area in Figure
1.2.1.
****** Py T e
I N+ n Tpi I
1 T3 | €
1 - N
N

Figure 1.2.1: n > N implies |z, — | < e.

1
Example 1.2.1. For any € > 0, choose N = —. Then
€

1 0 1<1
——0l==< —==c¢
n n N

n>N —

1
This verifies the rigorous definition of lim,,_,,, — = 0.

n
By applying the rigorous definition to e = 0.1,0.01, ..., we recover the infinitely
many implications we wish to achieve. This justifies the rigorous definition of limit.

Example 1.2.2. For the constant sequence z, = ¢, we rigorously prove
lim c=c.
n—oo

For any € > 0, choose N = 0. Then

n>0 = |z, —c=lc—c=0<e

In fact, the right side is always true, regardless of the left side.
Example 1.2.3. We rigorously prove

1
lim — =0, for p > 0.

n—oo NP
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For any ¢ > 0, choose N = —. Then

a
mwl =

__O np<m:

npkP

n>N — €.

1 ‘ 1 1

We need to be more specific on the logical foundation for the arguments. We
will assume the basic knowledge of real numbers, which are the four arithmetic

x
operations = + y,r — y, xy, —, the exponential operation z¥ (for x > 0), the order
Y
x <y (ory >z and x <y means x < y or x = y), and the properties for these
1
operations. For example, we assume that we already know x > y > 0 implies — < —
x

and xP > yP for p > 0. These properties are used in the example above.

More important about the knowledge assumed above is the knowledge that are
not assumed and therefore cannot be used until after the knowledge is established.
In particular, we do not assume any knowledge about the logarithm. The logarithm
and its properties will be rigorously established in Example 1.7.15 as the inverse of
exponential.

2
n®—1

Example 1.2.4. To rigorously prove lim,, Tl 1, for any € > 0, we have
n

2
n>N=y/--1=
€

— €.

n?—1 ’ 2 - 2 B 2

2 TN T 2 2 /9

n?+1 n2+1 N24+1 (__1>+1
€

Therefore the sequence converges to 1.

2
How did we choose N = /- — 17 We want to achieve
€

2

—1
n?+1

< €. Since

2 2
this is equivalent to — 1 < €, which we can solve to get n > /- — 1, choosing
n €

N = 2 — 1 should work.
€

Example 1.2.5. To rigorously prove the limit in Example 1.1.5, we estimate the
difference between the sequence and the expected limit

_ (n+2)-n 2
|vn + _\/H_O’_—\/n——l—Q+\/ﬁ<\/ﬁ'

2 4
This shows that for any € > 0, it is sufficient to have — <'¢, or n > —. In other
€

NG

4
words, we should choose N = —.
€
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The discussion above is the analysis of the problem, which you may write on
your scratch paper. The formal rigorous argument you are supposed to present is

the following: For any € > 0, choose N = —. Then
€

2

2 2
TZ>N:|\/TZ+ —\/ﬁ—0|:m<\/ﬁ<ﬁ:€
1.2.2 The Art of Estimation

2

n?+1
exact way. However, this may not be so easy in general. For example, for the limit
in Example 1.1.2, we need to solve

In Examples 1.2.4, the formula for N is obtained by solving —1| < ein

2n% +n 2’ 3n —2

—— 2= —————— <.
n2—n+4+1 n?—-—n-+1

While the exact solution can be found, the formula for /V is rather complicated. For
more complicated example, it may not even be possible to find the formula for the
exact solution.
We note that finding the exact solution of |z, — | < € is the same as finding
N = N(e), such that
n>N < |z, -] <e.

However, in order to rigorously prove the limit, only = direction is needed. The
weaker goal can often be achieved in much simpler way.

Example 1.2.6. Consider the limit in Example 1.1.2. For n > 1, we have

2n?+n ol _ 3n — 2 - 3n 3
n?—n+1 T n2—n+1 n2-n n-1
2 2
Since < € implies et n —2| < € and < € is equivalent to
n— n>—n-+1 n—

3 3
n > — + 1, we find that choosing N = — + 1 is sufficient
€ €

N 3+1 2n% +n 5 3n — 2 - 3 - 3
n = — e _— = — €.
€ n?—n+1 n2—-n+1 n—-1 N-1
- n® — 2 : . n?—1
Exercise 1.2.1. Show that | —=—— — 1| < — and then rigorously prove lim, oo ——— = 1.
n2+1 n n2+1

The key for the rigorous proof of limits is to find a simple and good enough
estimation. We emphasize that there is no need to find the best estimation. Any
estimation that can fulfill the rigorous definition of limit is good enough.
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Everyday life is full of good enough estimations. Mastering the art of such
estimations is very useful for not just learning calculus, but also for making smart
judgement in real life.

Example 1.2.7. If a bottle is 20% bigger in size than another bottle, how much bigger
is in volume?
The exact formula is the cube of the comparison in size

(1+0.2)*=1+3-02+3-0.2%40.2°.

Since 3-0.2 = 0.6, 3-0.22 = 0.12, and 0.2% is much smaller than 0.1, the bottle is a
little more than 72% bigger in volume.

Example 1.2.8. The 2013 GDP per capita is 9,800USD for China and 53,100USD for
the United States, in terms of PPP (purchasing power parity). The percentage of
the annual GDP growth for the three years up to 2013 are 9.3, 7.7, 7.7 for China
and 1.8, 2.8, 1.9 for the United States. What do we expect the number of years for
China to catch up to the United States?

First we need to estimate how much faster is the Chinese GDP growing compared
to the United States. The comparison for 2013 is

1+0.077

—— =~ 1+ (0.077 — 0.019) = 1 + 0.058.
1+ 0.019 + ) *

Similarly, we get the (approximate) comparisons 1 + 0.075 and 1 + 0.049 for the
other two years. Among the three comparisons, we may choose a more conservative
1+40.05. This means that we assume Chinese GDP per capita grows 5% faster than
the United States for the next many years.

Based on the assumption of 5%, the number of years n for China to catch up to
the United States is obtained exactly by solving

nn—1) 53,100
1+0.05)"=1 0.05 + ———=0.05 <-4+ 0.05" = ~ 5.5.
(1+ ) +n + 5 + -+ 9,800
. 5.5 —1
If we use 1 4+ n0.05 to approximate (1 + 0.05)", then we get n ~ 00 90.
n(n —1)

However, 90 years is too pessimistic because for n = 90, the third term TO.O52
is quite sizable, so that 1 + n0.05 is not a good approximation of (1 + 0.05)".

An an exercise for the art of estimation, we try to avoid using calculator in

53,100

9,800 ~ 2.32, we may solve

getting better estimation. By

n=2m, (1+0.05)™=1+m0.05+" 0.05% + - - + 0.05™ ~ 2.3.

(m—1)
2
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23-1 -1
0oE 52. Since MO.%Q is still sizable for m = 26 (but

giving much better approximation than n = 90), the actual n should be somewhat
smaller than 52. We try n = 40 and estimate (1 + 0.05)" by the first three terms

40 - 39
(1+0.05)" =~ 1440-0.05 + T0.052 ~ 5.

We get n ~ 2 -

So it looks like somewhere between 40 and 45 is a good estimation.

We conclude that, if Chinese GDP per capita growth is 5% (a very optimistic
assumption) faster than the United States in the next 50 years, then China will
catch up to the United States in 40 some years.

Exercise 1.2.2. 1T wish to paint a wall measuring 3 meters tall and 6 meters wide, give or
take 10% in each direction. If the cost of paint is $13.5 per square meters, how much
should I pay for the paint?

Exercise 1.2.3. In a supermarket, I bought four items at $5.95, $6.35, $15.50, $7.20. The
sales tax is 8%. The final bill is around $38. Is the bill correct?

Exercise 1.2.4. In 1900, Argentina and Canada had the same GDP per capita. In 2000,
the GDP per capita is 9,300USD for Argentina and 24,000USD for Canada. On average,
how much faster is Canadian GDP growing annually compared with Argentina in the 20th
century?

Next we leave real life estimations and try some examples in calculus.

Example 1.2.9. If z is close to 3 and vy is close to 5, then 2x —3y is close to 2-:3—3-5 =
—9. We wish to be more precise about the statement, say, we want to find a tolerance
for z and y, such that 2x — 3y is within +0.2 of —9.

We have

(22 = 3y) = (=9)[ = [2(z = 3) = 3(y — )| < 2|z — 3| + 3]y —5|.

For the difference to be within +0.2, we only need to make sure 2|z — 3| + 3|y — 5| <
0.2. This can be easily achieved by |z — 3| < 20T23 = 0.04 and |y — 5| < 0.04.
Example 1.2.10. Again we assume x and y are close to 3 and 5. Now we want to
find the percentage of tolerance, such that 2z — 3y is within £0.2 of —9.

We can certainly use the answer in Example 1.2.9 and find the percentage % R~
1.33% for z and %2 =~ 0.8% for y. This implies that, if both 2 and y are within
0.8% of 3 and 5, then 2x — 3y is within +0.2 of —9.

The better (or more honest) way is to directly solve the problem. Let ¢; and J,
be the percentage of tolerance for x and y. Then x = 3(1 + 0;) and y = 5(1 + ds),
and

(22=3y)—(=9)| = [2(z—=3)=3(y—5)| < [2:361=3-50| < 216, & = max{[dy], [da}-
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To get 21|0| to be within our target of 0.2, we may take our tolerance § = 0.9% <
0.2

5=~ 0.0095.

21

Example 1.2.11. Assume z and y are close to 3 and 5. We want to find the tolerance
for x and y, such that xy is within £0.2 of 3 -5 = 15. This means finding § > 0,
such that

lz —3| <9, ly—5| <d = |zy— 15| <0.2.

Under the assumptions |z — 3| < § and |y — 5] < §, we have
2y — 15 < [zy — 3y[ + [3y — 15[ < [z = 3|y + 3|y — 5] < (ly[ + 3)0.
We also note that, if we postulate § < 1, then |y — 5| < ¢ implies 4 < y < 6, so that
lzy — 15| < (ly| +3)d0 < (64 3)d = 99.

To get 9|9| to be within our target of 0.2, we may take our tolerance § = 0.02 < 0#92.
Since this indeed satisfies 6 < 1, we conclude that we can take 6 = 0.02.

If the targeted error £0.2 is changed to some other amount +e, then the same
argument shows that we can take the tolerance to be § = {5. Strictly speaking,
since we also use § < 1 in the argument above, we should take 6 = min{{5, 1}

Exercise 1.2.5. Find a tolerance for x,y, z near —2, 3,5, such that bx — 3y 4+ 4z is within
+e of 1.

Exercise 1.2.6. Find a tolerance for = and y near 2 and 2, such that xy is within +e of 4.

Exercise 1.2.7. Find a tolerance for  near 2, such that z? is within =+e of 4.

1

Exercise 1.2.8. Find a percentage of tolerance for x near 2, such that — is within £0.1 of
x

0.5.

1.2.3 Rigorous Proof of Limits

We revisit the limits derived before and make the argument rigorous.

Example 1.2.12. In Example 1.1.5, we argued that lim, .. (v/n +a —/n) = 0. To
make the argument rigorous, we use the estimation in the earlier example. In fact,
regardless of the sign of a, we always have

AT Vi 0] = (WVn+ta—vn)/n+atn) lal lal

vn+a+n vVn+a++n o n
2
a a

For the right side u < ¢, it is sufficient to have n > —. Then we can easily get
€

NG

2

n>a—2 = |[Vn+a—+vn—-0|<e
€
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This gives the rigorous proof of lim,, ,..(v/n +a —+/n) = 0.

2
nt = 1. To make

Example 1.2.13. In Example 1.1.6, we argued that lim,,
n

the argument rigorous, we use the estimation in the earlier example. The estimation

1
suggested that it is sufficient to have 2— < e. Thus we get the following rigorous
n

argument for the limit

2 n -+ 2 n -+ 2 2 n -+ 2
n<- —= 0< —1< —l=—<e¢ = -1
€ n n n n

Exercise 1.2.9. Rigorously prove the limits.

< €.

1 n+2 . Vn+2 10 siny/n

n—2 6. Yrta 11, svAta
2. 3 n+b " n+bsinn’

;o

hta il n_1 12. /n+a—+n+b.
3. .

n+b 3. n+a_n+c. 3 n+a

n+b n+d A
A 2n% — 3n + 2 9 1 \ ,
" 3n2—4dn+1° CVan +b 14. Vn+1-Vn.

Exercise 1.2.10. Rigorously prove the limits, p > 0.

1 a ' 5 nP +a asinn + b
VP +b S nP+b nP + c

Example 1.2.14. The estimation in Example 1.1.7 tells us that |{/a — 1] < 2 for
n

a > 1. This suggests that for any € > 0, we may choose N = 2 Then
€

n>N = ]{1/5—1|<E<g:e.
n N

This rigorously proves that lim, ., /a = 1 in case a > 1.

Example 1.2.15. We try to rigorously prove lim,, o, n?a™ = 0 for |a| < 1.
1

s Then |a| < 1 implies

Using the idea of Example 1.1.11, we write |a| =
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b > 0, and for n > 3, we have

n*a™ — 0| = n?la|” = "
e = 0] = nlal” =
N 1 —1 -2
1+nb+n(n| )b2 n(n 3)|<n )b3+---+bn
- n? B 3n - 3n 3122
n(n—l)(n—?)b3 C (n=1(n—2)p " Plys b
3! 22
3122 3122
Since — < € is the same as n > ——, we have
nb? b3e
3122 122
n>Eandn23 — |n2a”—0|<m<e.

b3’
It is clear from the proof that we generally have

192
This shows that we may choose N = max{ : 3}.

lim nPa" = 0, for any p and |a| < 1.
n—oo

n

Example 1.2.16. We rigorously prove lim,, ., a_' = 0 in Example 1.1.13.
n!
Choose a natural number M satisfying |a| < M. Then for n > M, we have

an

MY M-M- MM MM _ MMM M
n! N

n 1-2.--M M+1 M+2 n = M n MU n

Therefore for any € > 0, we have

MM-H n

MM-H 1 MM-H 1

a
n>maX{W,M} > E—O < M E< M ‘MM+1:€.
M'e
Exercise 1.2.11. Rigorously prove the limits.
1. /n. 5 5 e’ 7. nPa", |a| < 1.
"ol Con!
5.4 5.49n
3 !
2. L. 02 6. —.
n! n! n"

1.2.4 Rigorous Proof of Limit Properties

The rigorous definition of limit allows us to rigorously prove some limit properties.
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Example 1.2.17. Suppose lim,, .o, z, =1 > 0. We prove that lim,_, \/Z, = V1.
First we clarify the problem. The limit lim,,_,., x,, = [ means the implication

For any € > 0, there is N, such that n > N = |z, — | <e.

The limit lim,, . +/Z,, = VI means the implication

For any € > 0, there is N, such that n > N = |\/z, — VI| <e.

We need to argue is that the first implication implies the second implication.

We have

Y e I |20 —
V= Vil = JIn + V1 _\/:c_nJrﬂS Vi

n—1
Therefore for any given € > 0, the second implication will hold as long as % < €,
or |z, —I| < Vle. The inequality |z, — I| < Vle can be achieved from the first
implication, provided we apply the first implication to v/le in place of e.
The analysis above leads to the following formal proof. Let ¢ > 0. By applying

the definition of lim,,_, z, = [ to Vie > 0, there is N, such that
n>N = |z, -1 < Vi
Then

n>N = |z, — 1| < Vie

R R e | 20 — ]
= W= Vil = VI + V1 _@+¢Z§ Vi

< €.

In the argument, we take advantage of the fact that the definition of limit can
be applied to any positive number, v/Ie for example, instead of the given positive
number e.

Example 1.2.18. We prove the arithmetic rule lim, ,o(z, + yn) = lim, o x, +
lim,, .o ¥, in Proposition 1.1.3. The concrete Example 1.2.9 provides idea of the
proof.

Let lim,, . x, = [ and lim,,_.. ¥, = k. Then for any ¢; > 0, €5 > 0, there are
N1, N», such that

n>N = |z, -1 <e,
n> Ny, — ’yn—k’<€2

We expect to choose €1, €5 as some modification of €, as demonstrated in Example
1.2.17.
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Let N = max{Ny, No}. Then

n>N = n>N;, n>N,
= |z, — | < e, |y, — k| < e
= [(xn+yn) — L+ )| <l|xn =1+ |lyn — k| < €1 + €.

If €1 + €3 < ¢, then this rigorously proves lim,, (2, + y,) = [ + k. Of course this
means that we may choose €; = €3 = g at the beginning of the argument.

The analysis above leads to the following formal proof. For any ¢ > 0, apply the
definition of lim,, .., z, = [ and lim,,_,, ¥, = k to % > (0. We find N; and N, such
that

n>N = |xn—l|<§,

n> Ny — \yn—k\<§.

Then
€ €
n > max{Ny, No} = |z, — 1] < 3 lyn — k| < 5

— (e + ) = 4+ R < fan = U +lyw =kl < 5+ 5

2

= €.

Example 1.2.19. The arithmetic rule lim,, o Z,y, = lim, o T, lim, s ¥, in Propo-
sition 1.1.3 means that, if we know the approximate values of the width and height
of a rectangle, then multiplying the width and height approximates the area of the
rectangle. The rigorous proof requires us to estimate how the approximation of the
area is affected by the approximations of the width and height. Example 1.2.11
gives the key idea for such estimation.

area= |z — I||y|
<

l
area= |l||y — k|

X

Figure 1.2.2: The error in product.
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Let lim,, .oz, = [ and lim,,_. ¥, = k. Then for any ¢; > 0, €5 > 0, there are
N1, N», such that

n>N = |z, -] <e,

n> Ny = |y, — k| < ea.
Then for n > N = max{Ny, No}, we have (see Figure 1.2.2)
[ Zntn — k| = [(2n — Dy + U(yn — K|
< Jan = Ulyn| + [U]yn — kI

< e(|k| + e2) + |lez,

where we use |y, — k| < €2 implying |y,| < |k| + €2. The proof of lim,, o z,y, = Ik
will be complete if, for any € > 0, we can choose €; > 0 and €5 > 0, such that

61(|k’| + 62) + |l|€2 S €.
This can be achieved by choosing €1, €5 satisfying

€ €
€9 S 1, 61(“{‘ + 1) S 5, |l|62 S 5

In other words, if we choose

€ €
T e—— f— ] 1_
T+ 7 mm{’zm}

at the very beginning of the proof, then we get a rigorous proof of the arithmetic
rule. The formal writing of the proof is left to the reader.

Example 1.2.20. The sandwich rule in Proposition 1.1.4 reflects the intuition that, if
x and z are within e of 5, then any number y between x and z is also within € of 5

lt—5| <€ [z=5]<e x<y<z = |y—5|<e

Geometrically, this means that if x and z lies inside an interval, say (5 — €,5 + ¢€),
then any number y between x and z also lies in the interval.

Suppose x, <y, < z, and lim,, ,, x,, = lim,, ,, 2, = [. For any € > 0, there are
N; and N, such that

n>N = |z, -] <e,
n>Ny, = |z, — | <e.
Then
n> N =max{Ny, No} = |z, =] <e¢, |z, =] <e€
= l—€e<x,, zp<l+e

= l—ec<1, <y, <z, <l+e¢
= |y, — ] <e
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Example 1.2.21. The order rule in Proposition 1.1.5 reflects the intuition that, if = is
very close to 3 and y is very close to 5, then x must be less than y. More specifically,
we know z < y when x and y are within 1 of 3 and 5. Here 1 is half of the distance
between 3 and 5.

Suppose x, < Y, lim, o , = [, lim, ooy, = k. For any € > 0, there is N,
such that (you should know from earlier examples how to find this N)

n>N = |z, — | <e |y, — k| <e.
Picking any n > N, we get
l—e<zx, <y, <k+e

Therefore we proved that [ — e < k + € for any € > 0. It is easy to see that the
property is the same as [ < k.

Conversely, we assume lim,, ,o x, = [, lim, _ oy, = k, and [ < k. For any € > 0,
there is IV, such that n > N implies |z,, — | < € and |y, — k| < e. Then

n>N = z,<l+e,y>k—€c = ypo—x,>(k—¢€)—(l4+¢) =k—1—2e.

By choosing ¢ = T_ > (0 at the beginning of the argument, we conclude that
Yn > T, for n > N.

Exercise 1.2.12. Prove that if lim,,_,o 2, = [, then lim,_,~ |z,| = [I].
Exercise 1.2.13. Prove that lim,, o |z, — | = 0 if and only if lim,, o0 z, = L.
Exercise 1.2.14. Prove that if lim,_., z, = [, then lim, ., cx, = cl.

Exercise 1.2.15. Prove that a sequence x,, converges if and only if the subsequences s,
and xo,4+1 converge to the same limit. This is a special case of Proposition 1.1.6.

Exercise 1.2.16. Suppose z, > 0 for sufficiently big n and lim, . x, = 0. Prove that
lim,, o0 h = 0 for any p > 0.

Exercise 1.2.17. Suppose x,, > 0 for sufficiently big n and lim,,— , = 0. Suppose y, > ¢

for sufficiently big n and some constant ¢ > 0. Prove that lim,_. 25" = 0.

1.3 Criterion for Convergence

Any number close to 3 must be between 2 and 4, and in particular have the absolute
value no more than 4. The intuition leads to the following result.

Theorem 1.3.1. If x,, converges, then |x,| < B for a constant B and all n.
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The theorem basically says that any convergent sequence is bounded. The num-
ber B is a bound for the sequence.

If x, < B for all n, then we say z,, is bounded above, and B is an upper bound.
If z, > B for all n, then we say x,, is bounded below, and B is a lower bound. A

sequence is bounded if and only if it is bounded above and bounded below.

The sequences n, diverge because they are not bounded. On the

n—+
other hand, the sequence 1,—1,1,—1,... is bounded but diverges. Therefore the
converse of Theorem 1.3.1 is not true in general.

Exercise 1.3.1. Prove that if x,, is bounded for sufficiently big n, i.e., |x,| < B for n > N,
then xz,, is still bounded.

Exercise 1.3.2. Suppose x, is the union of two subsequences z}, and z}. Prove that z, is
bounded if and only if both =} and z} are bounded.

1.3.1 Monotone Sequence

The converse of Theorem 1.3.1 holds under some additional assumption. A sequence
T, is increasing if

v <xy <3< <, <wpg < -
It is strictly increasing if
T < T <3< < Ty <Tpgp <---.

The concepts of decreasing and strictly decreasing can be similarly defined. More-

over, a sequence is monotone if it is either increasing or decreasing.

1 1 1
The sequences —, o V2 are (strictly) decreasing. The sequences ——, n are

n n
increasing.

Theorem 1.3.2. A monotone sequence converges if and only if it is bounded.

An increasing sequence x,, is always bounded below by its first term x;. Therefore
x, is bounded if and only if it is bounded above. Similarly, a decreasing sequence is
bounded if and only if it is bounded below.

The world record for 100 meter dash is a decreasing sequence bounded below by
0. The proposition reflects the intuition that there is a limit on how fast human
being can run. We note that the proposition does not tells us the exact value of the
limit, just like we do not know the exact limit of the human ability.

Example 1.3.1. Consider the sequence
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The sequence is clearly increasing. Moreover, the sequence is bounded above by

1 1
T <1 ——+—++

1.2 2-3 (n—1)n
1 1 1 1 1
=1 1—= - _ =
(ma) s )
=2—-—-<2
n

Therefore the sequence converges.
The limit of the sequence is the sum of the infinite series

We will see that the sum is actually %

Exercise 1.3.3. Show the convergence of sequences.

1 1 1 1
1 1 1 1
3 S !
" 1.3 3.5 5.7 (2n —1)(2n +1)
foa L1 1
.xn_ﬁ—i_i—’—”.—i_ﬁ.

Example 1.3.2. The number \/2 +vV2+ 2+ .- is the limit of the sequence z,

inductively given by
T = \/5, Tnt1 = \/2 + Z,.

After trying first couple of terms, we expect the sequence to be increasing. This
can be verified by induction. We have 2o = V2 + V2 > x; = V2. Moreover, if we
assume x, > x,_1, then

Tl = V2+ Ty > \/2+ 2,1 =2,

This proves inductively that x,, is indeed increasing.

Next we claim that x,, is bounded above. For an increasing sequence, we expect
its limit to be the upper bound. So we find the hypothetical limit first. Taking the
limit on both sides of the equality 2 +1 = 2+ x, and applying the arithmetic rule,
we get [2 = 2 + 1. The solution is [ = 2 or —1. Since z,, > 0, by the order rule, we
must have { > 0. Therefore we conclude that | = 2.
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The hypothetical limit value suggests that x,, < 2 for all n. Again we verify this
by induction. We already have z; = v/2 < 2. If we assume z,, < 2, then

xn+1:\/2—|—xn<\/2+2:2.

This proves inductively that z, < 2 for all n.
We conclude that z,, is increasing and bounded above. By Theorem 1.3.2, the
sequence converges, and the hypothetical limit value 2 is the real limit value.
Figure 1.3.1 suggests that our conclusion actually depends only on the general
shape of the graph of the function, and has little to do with the exact formula

V2 + .

y=u1
!yzf(fv)
f(l‘a)‘ -
f(x2) 7 Y
g
:151 552 $13 f4 l

Figure 1.3.1: Limit of inductively defined sequence.

Exercise 1.3.4. Suppose a sequence x,, satisfies 11 = /2 + xy,.
1. Prove that if —2 < x1 < 2, then x,, is increasing and converges to 2.

2. Prove that if 1 > 2, then z,, is decreasing and converges to 2.

Exercise 1.3.5. For the three functions f(z) in Figure 1.3.2, study the convergence of the
sequences x,, defined by x,11 = f(x,). Your answer depends on the initial value x.

1
Exercise 1.3.6. Suppose a sequence x,, satisfies x,+1 = 5(37% + z,,). Prove the following

statements.
1. If 1 > 1, then the sequence is increasing and diverges.

2. If 0 < z1 < 1, then the sequence is decreasing and converges to 0.

w

. If =1 <1 <0, then the sequence is increasing and converges to 0.

W

. If =2 <21 < —1, then the sequence is decreasing for n > 2 and converges to 0.
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Figure 1.3.2: Three functions

5. If 1 < —2, then the sequence is increasing for n > 2 and diverges.

Exercise 1.3.7. Determine the convergence of inductively defined sequences. Your answer
may depend on the initial value x;.

1. Tppq = 22, 3. Tpy1 =222 — 1. 5. Tpy1 =1+ i
n
2
xs +1 1 1
2. Tpg1 = n2 . 4. Tpy1 = E 6. xpy1 =2 — a

Exercise 1.3.8. Determine the convergence of inductively defined sequences, a > 0. In
some cases, the sequence may not be defined after certain number of terms.

1. pt1 = Va+ . 3. Tni1 =+Va—xn,. 5. Tpy1 = Jn — a.
2. Tpy1 = Vap —a. 4. Tpy1 = Va+ xy. 6. Tpi1 = Ja — xy.

Exercise 1.3.9. Explain the continued fraction expansion

1
V2=1+ I

1
24 ...
What if 2 on the right side is changed to some other positive number?

2+
2+

Exercise 1.3.10. For any a,b > 0, define a sequence by
Tp—1+ Tp—2
r1=a, x9=>, xn:f.

Prove that the sequence converges.

b
Exercise 1.3.11. The arithmetic and the geometric means of a,b > 0 are a—2i— and v ab.

By repeating the process, we get two sequences defined by

Ty +
Ty =a, Y= b? Tnt+1 = nTyna Yn+1 = /TnYn-
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Prove that x,, > Zpy1 > Ynt1 > yn for n > 2, and the two sequences converge to the same
limit.
Exercise 1.3.12. The Fibonacci sequence

1,1,2,3,5,8,13,21,34,...

T
is defined by zo = 1 = 1 and x,+1 = x,, + ,—1. Consider the sequence y,, = ntl

n

1. Find the relation between y,+1 and y,.
2. Assume vy, converges, find the limit [.

3. Use the relation between y,42 and y, to prove that [ is the upper bound of yo; and
the lower bound of yox11.

4. Prove that the subsequence yoy, is increasing and the subsequence yo 11 is decreasing.

5. Prove that the sequence y,, converges to .

Exercise 1.3.13. To find /a for a > 0, we start with a guess z1 > 0 of the value of \/a.

. a . o
Noting that 21 and — are on the two sides of \/a, it is reasonable to choose the average
I

1
To = — (ml + a> as the next guess. This leads to the inductive formula

2 I
1 a
In+l = 5 xn"‘;
n

as a way of numerically computing better and better approximate values of /a.

1. Prove that lim,_,~ z, = v/a.

1
2. We may also use weighted average x,4+1 = 3 T + 2a> as the next guess. Do we
T

still have lim,,_, o x, = v/a for the weighted average?

3. Compare the two methods for specific values of a and b (say a = 4, b = 1). Which
way is faster?

4. Can you come up with a similar scheme for numerically computing /a? What
choice of the weight gives you the fastest method?

1.3.2 Application of Monotone Sequence

We use Theorem 1.3.2 to prove some limits and define a special number e.

Example 1.3.3. We give another argument for lim,, ,,, @™ = 0 in Example 1.1.11.
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First assume 0 < a < 1. Then the sequence a™ is decreasing and satisfies
0 < a™ < 1. Therefore the sequence converges to a limit [. By the remark in
Example 1.1.1, we also have lim,,_,o, a” ! = [. Then by the arithmetic rule, we have

1

I=1lima" = lima-a" ' =alima" ' = al.

n—oo n—oo n—o0

Since a # 1, we get [ = 0.

For the case —1 < a < 0, we may consider the even and odd subsequences
of @™ and apply Proposition 1.1.6. Another way is to apply the sandwich rule to
—la|" < a" < a]".

3" (n!)?
Example 1.3.4. We give another argument that the sequence z,, = (2(n>)' in Exam-
n)!
ple 1.1.16 converges to 0. By lim,, . Tn _ 0.75 < 1 and the order rule, we have
n—1

T

< 1 for sufficiently big n. Since z,, is always positive, we have z,, < x,_; for
Tn—1
sufficiently big n. Therefore after finitely many terms, the sequence is decreasing.

Moreover, 0 is the lower bound of the sequence, so that the sequence converges.

Let lim,, o ©, = [. Then we also have lim,, o x,_1 = [. If [ # 0, then

Tn limy, 00 Tp, l
pu— Z pu— ]_'

lim = —
n=00 Tp—1 limy, 00 -1

But the limit is actually 0.75. The contradiction shows that [ = 0.
Exercise 1.3.14. Extend Example 1.3.3 to a proof of lim,,_,~, na"™ = 0 for |a| < 1.

|z |

=1 < 1, then
|Zn—1]

Exercise 1.3.15. Extend Example 1.3.4 to prove that, if lim, .

1 n
Example 1.3.5. For the sequence (1 + —) , Wwe compare two consecutive terms by
n
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their binomial expansions

1\" 1 nn—1) 1 nn-1)---3-2-11
(”;) R

— ' -
1 1 2 n—1
b= (1- 1- (1
n! n+1 n+1 n+1
1 1 2
v (1= 1 S (L,
(n+1)! n+1 n+1 n+1

A close examination shows that the sequence is increasing. Moreover, by the com-
putation in Example 1.3.1, the first expansion gives

1+1”<1+1+1+ —1—1
n 1! 21 n!

1 1 1
<ltld——d——tot— <3
+ +1-2+2-3jL +(n—l)n

By Theorem 1.3.2, the sequence converges. We denote the limit by e

n—oo

1 n
e = lim (1 + —) = 2.71828182845904 - - - .
n

Exercise 1.3.16. Find the limit.
n+1 1\" 1\" 2 1\"
Ly 2. (1-=) . 3. (14 ). g (1)
n n 2n 2n—1

1 n+1
Exercise 1.3.17. Let z,, = <1 + > .
n

1. Use induction to prove (14 )™ > 1+ nz for z > —1 and any natural number n.

Tpn—1

2. Use the first part to prove > 1. This shows that z,, is decreasing.

Tn

3. Prove that lim,,_, =, = €.

1 n
4. Prove that <1 — ) is increasing and converges to e 1.
n
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Exercise 1.3.18. Prove that for n > k, we have

1\" 1 1 1 1 1 2 k
- > — 4 N e = N —Z]... —— ).
<1+n> > 145+ 5 (1 n>+ + 4 (1 n) (1 n) (1 n)

Then use Proposition 1.1.5 to show that

S R 1+1k
e — — ... —_— — .
TR Kl k

Finally, prove

. 1 1 1

lim I+ 5+5+ -+~ =e
n!

n—00 1! 2l

1.3.3 Cauchy Criterion

Theorem 1.3.2 gives a special case that we know the convergence of a sequence
without knowing the actual limit value. Note that the definition of limit makes
explicit use of the limit value and therefore cannot be used to derive the convergence
here. The following provides the criterion for the convergence in general, again
without referring to the actual limit value.

Theorem 1.3.3 (Cauchy Criterion). A sequence x,, converges if and only if for any
€ > 0, there is N, such that

m,n >N = |z, —z,| <€

Sequences satisfying the property in the theorem are called Cauchy sequences.
The theorem says that a sequence converges if and only if it is a Cauchy sequence.

The necessity is easy to see. If lim,,_,o z, = [, then for big m,n, both x,, and
r,, are very close to I (say within §). This implies that z,, and x, are very close
(within § + ¢ = ¢).

The proof of sufficiency is much more difficult and relies on the following deep
result that touches the essential difference between the real and rational numbers.

Theorem 1.3.4 (Bolzano-Weierstrass). Any bounded sequence has a convergent sub-
sequence.

Using the theorem, the converse may be proved by the following steps.
1. A Cauchy sequence is bounded.
2. By Bolzano-Weierstrass Theorem, the sequence has a convergent subsequence.

3. If a Cauchy sequence has a subsequence converging to [, then the whole se-
quence converges to [.



46 CHAPTER 1. LIMIT

Example 1.3.6. In Example 1.1.19, we argued that the sequence (—1)" diverges be-
cause two subsequences converge to different limits. Alternatively, we may apply
the Cauchy criterion. For e = 1 and any N, we pick any n > N and pick m = n+ 1.
Then m,n > N and |z,, — z,| = [(—=1)"" — (=1)"| = 2 > e. This means that the
Cauchy criterion fails, and therefore the sequence diverges.

Example 1.3.7. In Example 1.3.1, we argued the convergence of

\ \ Ly
(n+1)2  (n+2)? m?
1 1 1

T () R R () B P s vy
n+1)+<ni1_ni2)+"'+(%_%)

1
-

I
S|l
S|

|
—_

Therefore for any €, we have

1 1

1
m>n>N=- = |z, —2,|< - < = =¢e
€ n N

By the Cauchy criterion, x,, converges.
We note that the same argument can be used to show the convergence of

11 L1
Tp=1—-=+4+=—--+(-1) ol

The method in Example 1.3.7 cannot be used here.

Example 1.3.8. The following is the partial sum of the harmonic series
LTI
xn — — — “ e —.
2 3 n

For any n, we have

1 N 1 N n 1 < 1 N 1 N n 1 1
2 n+1 n+2 2n — 2n  2n 2n 2

1
For € = 3 and any N, we choose a natural number n > N and also choose m =

2n > N. Then
| T — x| = Xop — T, > €.

This shows that the sequence fails the Cauchy criterion and diverges.
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Exercise 1.3.19. If x,, is a Cauchy sequence, is |z,| also a Cauchy sequence? What about
the converse?

Exercise 1.3.20. Suppose |z,+1 — 2| < —. Prove that x,, converges.

n?
Exercise 1.3.21. Suppose ¢, is bounded and |r| < 1. Prove that the sequence
Tn :Co+61’l"+02’l"2+"'+cnrn

converges.

Exercise 1.3.22. Use Cauchy criterion to determine convergence.

1 1+i+i+ +i 4 1+1+1+ + !
’ V2 V3 N ' 3 5 2n+1°
11 (—1)"*! S DTRETEE R
2 l-mtg ot R TR
1 2 3 n—1 2 3 n
2L EL 0 6. 14 — 4+ — + - .

Example 1.3.9. Theorem 1.3.4 shows the existence of converging subsequences of a
bounded sequence. How about the limit values of such subsequences?
Let us list all finite decimal expressions in (0, 1) as a sequence

z,: 0.1,0.2, ..., 0.9, 0.01, 0.02, ...,0.99, 0.001, 0.002, ..., 0.999, ....
The number 0.318309 - - - is the limit of the following subsequence
0.3, 0.31, 0.318, 0.3183, 0.31830, 0.318309, ... .

It is easy to see that any number in [0, 1] is the limit of a convergent subsequence
of z,,.

Exercise 1.3.23. Construct a sequence such that the limits of convergent subsequences are

1
exactly —, n € N and 0.
n

Exercise 1.3.24. Construct a sequence such that any number is the limit of some convergent
subsequence.

Exercise 1.3.25. Use any suitable method or theorem to determine convergence.

n n—+1 2 2 3 n n—+1

1
1. =, = =, —— ...
n+1l n ’ 27 173 2 "n+1’ n

g ey

b=
L
el
N W
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12 n—1 1-3-5---(2n— 1)
314 s+ os+-+ . . .

2 3 n2 T a6 on)
P S g L3Bo(Znl)
" 1.2 3.4 (2n —1)2n n!

11 1 11 1
;L SRy (N | 3 N S S [ R Ry (Y
T2 3 TV g T, +J2+ TR V=

3 n

2
6. —— F o —— N
3 et T e DT D 10. \/1+\/2+ 34+ /1.

1.4 Infinity

1.4.1 Divergence to Infinity

A sequence may diverge for various reasons. For example, the sequence n diverges
because it can become arbitrarily big. On the other hand, the bounded sequence
(—1)™ diverges because it has two subsequences with different limits. The first
example may be summarized by the following definition.

Definition 1.4.1. A sequence diverges to infinity, denoted lim,,_.o, x, = oo, if for
any B, there is N, such that n > N implies |z,| > B.

In the definition, the infinity means that the absolute value (or the magnitude)
of the sequence can become arbitrarily big. If we further take into account of the
signs, then we get the following definitions.

Definition 1.4.2. A sequence diverges to +oo, denoted lim, ,, x, = +oo, if for
any B, there is N, such that n > N implies z,, > B. A sequence diverges to —oo,
denoted lim,, o, x, = —00, if for any B, there is NV, such that n > N implies z,, < B.

The meaning of lim,, ., x,, = +00 is illustrated in Figure 1.4.1. For example, we
have lim,,_,.o n = +00. We also note that, in the definition of lim,,_,, z,, = +00, we
may additionally assume B > 0 (or B > 100) without loss of generality.

Example 1.4.1. We have
lim n? = 400, for p > 0.

n—o0

For the rigorous proof, for any B > 0, we have

1
n>Br = n?’ > B.
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n

Figure 1.4.1: n > N implies z,, > B.

Example 1.4.2. Example 1.1.11 may be extended to show that lim,, .., a" = oo for
la| > 1. Specifically, let |a] =14 0. Then |a| > 1 implies b > 0, and we have

(n—1)

" = (1+b)" =1+nb+ ~ 5 b2+ -+ b > nb.

For any B, we then have

B
n> = |a"| > nb > B.
This proves lim,,_,,, a" = oo for |a| > 1. If we take the sign into account, this also
proves lim,,_,,, a" = +oo for a > 1.

1
Example 1.4.3. Suppose x,, # 0. We prove that lim,,_,., z,, = 0 implies lim,,_,,, — =
oo. Actually the converse is also true and the proof is left to the reader. "

If lim,, yoo z, = 0, then for any B > 0, we apply the definition of the limit to
1
5 > 0 to get N, such that

1

1
n>N = |z,| < = = > B.

B

n

This proves lim,,_,o, — = 00.
x

Applying what Wenjust proved to the limit in Example 1.1.11, we get another
proof of lim,,_,~, a"” = oo for |a| > 1.

1
Exercise 1.4.1. Let x,, # 0. Prove that lim,,_,, x,, = 0 if and only if lim, ,,, — = o0.
Tn

Exercise 1.4.2. Prove that lim,, . x, = +oo if and only if x,, > 0 for sufficiently big n

and lim, .o, — = 0.
Tn

Exercise 1.4.3. Rigorously prove divergence to infinity. Determine 4oco if possible.
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n

2 _ a !
n
2. NESS 4. nPa", |a| > 1. 6. nla".

1.4.2 Arithmetic Rule for Infinity

A sequence x,, is an infinitesimal if lim,, .o, z, = 0. Example 1.4.3 and Exercise 1.4.1
show that a sequence is an infinetesimal if and only if its reciprocal is an infinity.
Many properties of the finite limit can be extended to infinity. For example, we

have 0= oo for [ # 0. This means that, if lim,, ,., x, =1 # 0 and lim,,_, y, = 0,

then lim,,_, In _ oo. For example,
1 1
202 4 1 24— Mo (2 * ﬁ) 2
. BT n o _ 4 _
AT AR T T 1 1\ o0
n 2 My 00 ﬁ ﬁ

[
Note that [ in = can represent any sequence converging to [, and is not necessarily

a constant.

The following are more extensions of the arithmetic rules to infinity. The rules
are symbolically denoted by “arithmetic equalities”, and the exact meaning of the

rules are also given.

l n
o — =0: If lim, .o z, = [ and lim,, ., y, = 0o, then lim,, In _ 0.
00 Yn
o (+00) + (4+00) = +oo: If lim, ooz, = 400 and lim, oy, = +00, then
limy, o0 (2 + Yp) = +00.
o (—o0)+ 1= —oc0: If lim, o z, = —00 and lim,,_, ¥, = [, then lim,,_,.(x, +
Yn) = —00.
o (+00) -1 = —o0 for I < 0: If lim,, o 2, = +00 and lim,, o y, = [ < 0, then
hmn—)oo TnYn = —OQ.
l
° oF = +oo for [ > 0: If lim, ,ooz, =1 > 0, lim, .oy, = 0 and y, > 0, then

. Tn
lim,, oo — = +00.
n

On the other hand, we should always be cautious not to overextend the arithmetic
properties. For example, the following “arithmetic rules” are actually wrong

+00

o0 4 00 = 00, =—1, 0-00=0, 0-00=o00.

—00
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A counterexample for the first equality is x,, = n and y, = —n, for which we have
lim,, 00 T, = 00, lim,, 0 Y, = 00 and lim,, (2, +y,) = 0. In general, one needs to
use common sense to decide whether certain extended arithmetic rules make sense.

Example 1.4.4. By Example 1.4.1 and the extended arithmetic rule, we have

3 1
lim (n® — 3n +1) = lim »n’ (1_ﬁ+$) = (+00) - 1 = +00.

n—o0 n—o0

In general, any non-constant polynomial of n diverges to oo, and for rational func-
tions, we have

+oo, ifp > q, ayb, >0,

a,n? + a, nPt 4 4+ ain + ag goo, if p>q, apby <0,
im = .
n—o0 bynd + by_1nd=1 + - - + byn + by oo itp=a,b,#0,
q

0, if p<gq, by #0.

Exercise 1.4.4. Prove the extended arithmetic rules

l l
g =0 I+ (+00) = +00, (400) - (—00) = —00, 0—_:—ooforl>0.

Exercise 1.4.5. Construct sequences xz, and y,, such that both diverge to infinity, but
ZTn + yn can have any of the following behaviors.

1. limy, o0 (2 + ypn) = 0.

2. limp o0 (n + yn) = 2.

3. Tp + Yn is bounded but does not converge.

4. x, + y, is not bounded and does not diverge to infinity.

The exercise shows that co + oo has no definite meaning.

Exercise 1.4.6. Prove that if p > 0, then lim,_o x, = +oo implies lim,_o zh = +o00.
What about the case p < 07

Exercise 1.4.7. Prove the extended sandwich rule: If z, < y, for sufficiently big n, then
limg,, o0 5, = +00 implies limy, 00 Y = +00.

Exercise 1.4.8. Prove the extended order rule: If lim,, ,o x;, = [ is finite and lim, o ¥ =
~+o00, then x,, <y, for sufficiently big n.

Exercise 1.4.9. Suppose lim, o0 z, =1 > 1. Prove that lim,_,. 2] = +o00.
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Exercise 1.4.10. Prove that if lim,,_, I and |I| > 1, then z,, diverges to infinity.
Ln—1

Exercise 1.4.11. Explain the infinities. Determine the sign of infinity if possible.

1 n + sin 2n 4 1 7 3n —-2"
" y/n—cosn’ S Yn— 2 N
! 3n _ 9n
: 8 ———.
2. m,a—i—b;&O. 5. n(vn+2—+/n). 3+ n2
2
_ 2 1\"
g 1 g (S 9. (1+2) .
Yn—1 n—1 n

1.4.3 Unbounded Monotone Sequence

The following complements Theorem 1.3.2.
Theorem 1.4.3. Any unbounded monotone sequence diverges to infinity.

If an increasing sequence x,, is bounded, then by Theorem 1.3.2, it converges to
a finite limit. If the sequence is not bounded, then it is not bounded above. This
means that any number B is not an upper bound, or some xy > B. Then by z,
increasing, we have
n>N — x,>xy > B.

This proves that lim,, .., x, = +o0o. Similarly, an unbounded decreasing sequence
diverges to —oo.

Example 1.4.5. In Example 1.3.8, we showed that the increasing sequence

1+ ! + = + -+ !
:L"n = — — . e —
2 3 n
diverges. By Theorem 1.4.3, we know that it diverges to +00. Therefore the sum of
the harmonic series {1 !
I+-+s++—+-=+00.

2 3 n
Example 1.4.6. For a > 1, the sequence a" is increasing. If the sequence converges
to a finite limit /, then

1

[ = lim ¢" =a lim a" " = al.

n—oo n—o0

Since the sequence is increasing, we have [ > a > 1, which contradicts to [ = al. By
Theorem 1.4.3, therefore, we conclude that lim,, ., a"™ = +o00.

n
Exercise 1.4.12. Prove lim,,_, Q—Q = +o0 for a > 1.
n
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1.5 Limit of Function

Similar to the sequence limit, we say a function f(x) converges to [ at a, and write

lim f(x) =1,

Tr—a

if f(z) approaches | when x approaches a
r—a, r#a = f(z) =1L

Note that we include = # a because f(x) is not required to be defined at a.
The definition allows a or [ to be oo (or £oo if the sign can be determined).
When [ = oo, we should say that f(x) diverges to oo at a.

1
In Figure 1.5.1, as o approaches 0, we see that 22 approaches 0, — gets arbitrarily
x
1
big, and sin — swings between —1 and 1, never approaching any one specific finite
x

1 1
number. We write lim,_,o 2% = 0, lim,_,o — = 0o, and say that lim,_,o sin — diverges.
x x

{1
) |

9 1 1
y=x Yy = Yy = sin —
x

x
Figure 1.5.1: Behavior of functions near 0.

On the other hand, as x approaches the infinity, we find that 2 gets arbitrar-

. . 1 . . .
ily big, and — and sin — approach 0. Therefore lim, ,,, 2°> = 00, lim, oo — =
x x
lim, ,,sin — = 0. Moreover, sinx swings between —1 and 1, and lim, ,,, sinx
x
diverges.

1.5.1 Properties of Function Limit

The function limit shares similar properties with the sequence limit.

Proposition 1.5.1. If f(x) = g(z) for = sufficiently near a and x # a, then
lim, . f(z) = lim,_, g(x).
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Proposition 1.5.2 (Arithmetic Rule). Suppose lim,_,, f(z) =1 and lim,_,, g(z) = k.

Then
lm(f(x)+g(x)=1+k, limcf(x)=-cl, lim f(x)g(x)=1k, lim M = L
Tr—a ’ r—a ’ Tr—a ’ r—a g(x) k:’

where ¢ is a constant and k # 0 in the last equality.

Proposition 1.5.3 (Sandwich Rule). If f(z) < g(z) < h(z) and lim,,, f(z) =
lim, _,, h(x) =1, then lim,_,, g(x) = L.

Proposition 1.5.4 (Order Rule). Suppose lim,_,, f(z) =1 and lim,_,, g(z) = k.
1. If f(z) < g(x) for x near a and x # a, then | < k.

2. Ifl <k, then f(x) < g(x) for x near a and x # a.

Proposition 1.1.6 will be extended to Proposition 1.5.5 (composition rule) and
Proposition 1.6.2 (relation between sequence and function limits).

Since
r—a, x#a = c—c,
and
r—a, r#a = r—a,
we have

limc=c¢, limz=a.
T—a Tr—a

It is also intuitively clear that

1
lim|z] =0, lim — =0 for p > 0.
x—0 T—00 |[L"p

The subsequent examples are based on these limits.

Example 1.5.1. For a > 0, we have |z| = x near a. By Proposition 1.5.1, we have
lim, . || = lim, oz = a = |al.

For a < 0, we have |z| = —x near a. By Propositions 1.5.1 and 1.5.2, we have
lim, . || = lim, ,, —z = —lim, ,, x = —a = |al.
Combining the two cases with lim, o |z| = 0, we get lim,_,, |z| = |al.

Example 1.5.2. Let
y, ify#0,
flz) = .
A, ify=0.

Then f(x) = x for  # 0, and by Proposition 1.5.1, we have lim, o f(z) =
lim, o x = 0. Note that the limit is independent of the value f(0) = A. In fact, the
limit does not even require the function to be defined at 0.
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3

is not defined at x = 1. Yet the function

Example 1.5.3. The rational function T
T —
converges at 1

x3 —

1
lim =lim@2*+z+1) =1 +1+1=3.
x—1 1 — 1 r—1
Example 1.5.4. By the arithmetic rule, we have

3
lim(z® — 32+ 1) = (hmx) —lim3limz+1lim1=a®—3a+ 1.
T—a T—a Tr—a Tr—a Tr—a
More generally, for any polynomial p(z) = c, 2" +c,_ 12" 1+ - +c12 + ¢y and finite
a, we have
lim p(z) = p(a).

p(x)
q(x)

q(z), and is defined at a if g(a) # 0. Further by the arithmetic rule, we also have

A rational function r(z) = is the quotient of two polynomials p(x) and

hm T(l’) _ hmx—mp(x) — p((l) — T(G)

T—a limx_m C](l') Q(a)

whenever r(x) is defined at a.

Example 1.5.5. By the arithmetic rule, we have

1 : 1
02 24+ = 2+ 1lim, oo —
lim 2x +x1 = lim T L = 1 $1 =2
2200 T — T+ z—>ool__+_2 1 —limg oo — + limy oo — - limy o —
r oz x z X

This is comparable to Example 1.1.2. In general, Example 1.4.4 can be extended to
the function limit

oo, ifp>gq,
D p—1 4 ...
lim @Y TG ket a [y, g 20,
700 byt 4 by 12971 + -+ - + by + by by

0, ifp<yq, by #0.

Example 1.5.6. Similar to Example 1.1.5, the function +/|z| + 2 — /|z| satisfies

0< VRT+2 - el = (V'x'“—'ﬁgfiwngu )
1 2

NN
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By lim, . = 2lim,_, = 0 and the sandwich rule, we get

1
Vel
lim (v/]z] 42— +/]z]) = 0.

T—r—+00

2
Vel

Example 1.5.7. The following computation
. 1 . o
lim x sin — = lim x lim sin —
x—0 x z—0 z—0 x

is wrong because lim,_,q sin% diverges. However, if we use

1 :
—|z| <zsin— < |z|, lim|z| =0,
xr z—0

and the sandwich rule, then we get lim,_,o x sin — = 0.
T

Exercise 1.5.1. Explain that lim,_,, f(z) = [ if and only if lim,_,,(f(z) — ) = 0.

LIMIT

Exercise 1.5.2. Use the sandwich rule to prove that lim,_,, | f(x)| = 0 implies lim,_,, f(z) =

0.

Exercise 1.5.3. Find the limits.

T 2
1. I _ : 7 —1
1My — 00 I+ 2 4, hmr_mo m
. T x?—1
2.1 _ ; -
img o o) 5. lim,_,q P rr_2
2
T v —1
. _ . 6. li —_.
3. limgs—2 2= el e 2

Exercise 1.5.4. Find the limits.

1
x?’

. T+ a
1 5. limg o0 4/ —-
2. lim,_ oo —— sinz2. T+b

Vel

1. lim,_,ox cos

3/$2 3/$2

3. limw_mo(\/‘ﬂ Ya-— \/‘x’ ). 6. limg oo <
1.5.2 Limit of Composition Function

Suppose three variables x, vy, z are related by

1y =f@) 5z =)

Vr+a YT+

4. limy oo ((/(z + a)(z +b) — 2).

) |
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Then z and z are related by z = g(f(z)), the composition of two functions. Suppose
both f and ¢ have limits

lim f(z) =0, limg(y)=rc,

r—a y—b

where b is the value of the first limit as well as the location of the second limit. The
problem is whether the composition has limit

lim g(f(z)) =c.

r—a

What we want is to combine two implications

r—a, r#a = y—b,
y—=b y#£b = z—c,

to get the third implication
r—a, r#a = z—c.

However, the two implications cannot be combined as is, because “y — b” does not
imply “y — b, y # b". There are two ways to save this. The first is to strengthen
the first implication to

rT—a, r#a = y—b y#b.

Here the extra condition is f(z) # b for x near a and = # a. The second is to
strengthen the second implication to

y—b = z—c

Here the extra condition is y = b = 2z — ¢. Since y = b implies z = ¢g(b), the
extra condition is simply ¢ = g(b), so the strengthened second implication becomes

y—b = z—c=yg().

Proposition 1.5.5 (Composition Rule). Suppose lim,_,, f(z) = b and lim,_;, g(y) =
c. Then we have lim,_,, g(f(z)) = ¢, provided one of the following extra conditions
15 satisfied

1. f(x) # b for x near a and x # a.
2. ¢=g(b).

Note that the second condition means

lim g(y) = g(b).

y—b
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Later on, this will become the definition of the continuity of g(y) at b. Moreover,
the composition rule in this case means

lim g(f(2)) = ¢ = g(b) = g (lim ().

So the continuity of g(y) is the same as the exchangeability of the function g and
the limit.
The composition rule extends Proposition 1.1.6 because a sequence x,, can be
considered as a function
Tp:m > x(n) = x,.

Then a subsequence can be considered as a composition with a function n;: N — N
that satisfies limy_,o, Ny = 00

Example 1.5.8. We have

[z — 1] < |z —1]
Vr+1 7~ ’
Note that |z — 1] is the composition of z = |y| and y = x — 1. By lim, ,;(z — 1) =
1—-1=0,lim, o |y| = 0= 0|, and the composition rule (both extra conditions are
satisfied), we get lim,_,; | — 1| = 0. Then by the sandwich rule, we get lim,_,; |\/z —
1| = 0. This implies lim, ,;(v/z — 1) = 0 (see Exercise 1.5.2). Finally, by the
arithmetic rule, we get lim, ,; \/z = 1.

0< Vz—1]=

Example 1.5.9. We have lim, (323 —2) = 1 from the arithmetic rule. We also know
lim, 1 \/y = 1 from Example 1.5.8. The composition

rry=flr) =3 -2 2=g(y) = Vy=g(f(z)) = V327 -2

should give us lim,_.; V323 — 2 = 1.

We need to verify one of the extra conditions in the composition rule. If x is
close to 1 and = < 1, then we have 23 < 1> = 1, so that 32® — 2 < 1. Similarly, if =
is close to 1 and = > 1, then 32% — 2 > 1. Therefore for x close to 1 and # 1, we
indeed have 3% — 2 # 1. This verifies the first condition.

Although the validity of the first condition already allows us to apply the com-
position rule, the second condition lim, ,; \/y =1 = V1 is also valid.

Note that it is rather tempting to write

limv3z3 —2= lim 323 —-2= lin% VY.
y—

z—1 3z3-2—1

In other words, the composition rule appears simply as a change of variable. How-
ever, one needs to be careful because hidden in the definition of lim,_,; is  # 0.
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Similarly, the assumption 323 — 2 # 1 is implicit in writing limg,s_o_,1, and the first
equality above actually requires you to establish

r—=1, 141 < 32°—2—1, 325 —2+#1.
This turns out to be true in our specific example, but might fail for other examples.

Example 1.5.10. Example 1.5.8 can be extended to show that lim, ., /2 = y/a for
any a > 0 (see Exercise 1.5.5). This actually means that /z is continuous, and
therefore we may apply the composition rule to get

lim \/\/3x3 — 24+ T = \/lim (\/3x3 -2+ 7a:>
x—1 rz—1
= \/lim V3x3 — 24 lim Tz
r—1 rx—1

= \/ lim (323 — 2) 4 lim 7z
r—r

1 r—1

:\/\/3-12+1+7-1.

Here is the detailed reason. The last equality is by the arithmetic rule. The third
equality makes use of the continuity of the function y/z and the composition rule to
move the limit from outside the square root to inside the square root. The second
equality is by the arithmetic rule. Once we know lim,_,1 (/323 — 2 + 7z) converges
to a positive number, the first equality then follows from the continuity of \/x and
the composition rule.

Exercise 1.5.5. Show that lim,_,, /2 = \/a for any a > 0.
Exercise 1.5.6. Show that lim,_,, /x = /a for any a # 0.

Exercise 1.5.7. Find the limits, a,b > 0.

1. limg_+/a + . 3. lim, g \/m_ @\
* a a+x
1 A1 1 a+x a
2. hmx—wg(\/fﬁ‘l’—\/fl—l’)- . 1mxa0; b Vovxz)

Example 1.5.11. A change of variable can often be applied to limits. For example,
we have

lim f(2?) = lim f(y), for a # 0.

T—a y—a

The equality means that the two limits are equivalent.
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Suppose lim, .2 f(y) = I. Then f(z?) is the composition of f(y) with y = 22,
and by a # 0, the first condition is satisfied

rT—a, x#a = y—a, y#a

Therefore the composition rule can be applied to give lim,_,, f(2?) = [.
Conversely, suppose lim,_,, f(z?) = [. For x near a > 0, f(y) is the composition
of f(2?) with x = /y, and by a # 0, the first condition is satisfied

y—a® y#a® = v —a, v#a.

Therefore the composition rule can be applied to give lim,_,,2 f(y) = {. For the case
a < 0, the similar argument with x = —,/y works, and the composition rule still
gives lim, .2 f(y) = L.
We note that we cannot verify the second condition in the problem above because
not much is assumed about f. In particular, f is not assumed to be continuous.
Here are more examples of equivalent limits

tim () = lim F(y — o). Jim £(o%) = lim F(0), T ) =ty 7 ().

where the first condition for the composition rule is satisfied in both directions

rT—a, r#a << rv—a—0, x—aF#0
T —a, r#a = 2°—=a 2®#ad

1
r— 00 <— — —0.
T

1
In the last equivalence, we automatically have x # co and — # 0.
x

Example 1.5.12. The composition rule fails when neither conditions are satisfied,
which means that f(z) = b for some x # a arbitrarily close to a, and ¢ # g(b).
For a concrete example, consider

! )y, ify#0,
f(x)—wsmx, g(y)—{A’ iy = 0.

We have lim, .o f(x) = 0 (see Example 1.5.7) and lim, o g(y) = 0 (see Example
1.5.2). This means a = b = ¢ = 0. However, the composition is

1
xsin—, if x # (nm)7L,
grtay) = { My He
A, if z = (nm)~L.
and lim,_,o g(f(z)) converges if and only if g(0) = A =0=c.

Exercise 1.5.8. Rewrite the limits as lim,_,. f(x) for suitable c.
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1. lim,_p f(z — a). 3. limy—o f(ax 4+ b). 5. limg 1 f(2? + ).

2. limy o0 f(z + a). 4. limg,q f(Vx). 6. limg o f(2? + ).

1.5.3 One Sided Limit

In the sequence limit lim,, .., z,, the subscript n has only the positive infinity
direction to go. The function limit can have various directions. For example,
lim, 1 f(z) = [ means

r—o00, x>0 = f(x)—IL
Moreover, the left limit lim, ,,+ f(z) = [ means

r—a, r>a = f(x)—1
Similarly, the right limit lim,_,,- f(z) = | means

r—a, r<a = f(x)—I1

All the properties of the usual (two sided) limits still hold for one sided limits.
Moreover, we have the following relation (for a = oo, a* means +oc0).

Proposition 1.5.6. lim, ,, f(z) = [ if and only if lim,_ .+ f(x) = lim,_,,- f(x) = L.

Example 1.5.13. For the sign function

1, if x>0,
f(z) =140, if x =0,
-1, ifx <0,
we have lim, ,o+ f(x) = 1 and lim, ,o- f(z) = —1. Since the two limits are not
equal, lim, o f(z) diverges.
Y

Figure 1.5.2: Sign function.
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|z + 4|

Example 1.5.14. To find lim,_, , we consider the limit at +o0o0 and —oo. For

4 4 1
x > 0, we have [=+4 S + =1+ 4—. By the arithmetic rule, we have
T T T
4 1 1
im 2 (1+4—) — 144 lim —=1.
T—r—+00 €T Tr—r—400 €T r—+00 I

lz+4  x+4
-
4 1 1
i P g ( 1— —) 1-4 lm - =-1.
T——00 x T——00 x T—=—00 T
+

For x < —4, we have

1
=—1— 4— By the arithmetic rule, we have

Since the two limits are different, lim,_,, diverges.

Example 1.5.15. If we apply the argument in Example 1.5.6 to = > 0, then we get
hI}_] (Vr+2—+/z)=0.
T—r+00
If we apply the argument to x < 0, then we get

lim (V2 -2 —+/—z)=0.

T—r—00

Exercise 1.5.9. Find the limits at 0.

1 1, ifx <0, 5 1, ifz#0, 3 x, if x <0,
"2, ifz>0. 2, ifz=0. S =22, ifz>o0.
Exercise 1.5.10. Find the limits.
1 .
1. hmx%Jroo ﬁ sin $2. 3. hm$—>+00 \/:E(\/‘T +a— \/‘T + b)
. YEoVatVia
2. limgy oo (V2T +a— Vo +b). 4. limg gt V22— a2 a>0.

Example 1.5.16. The composition rule can also be applied to one sided limit. For
example, we have lim,_o+ f(2*) = lim,_,o+ f(x) by introducing y = z* and z = /¥,
and the first condition for the composition rule is satisfied in both directions

r—=0,2>0 <= y—0,y>0.
We also have lim,_,o- f(2?) = lim,_,o+ f(z) by
r=—y—=0,r<0 < y=12>—-0,y>0.

Then we may use Proposition 1.5.6 to conclude that lim, o f(2?) = lim, o+ f(2).

Exercise 1.5.11. Rewrite the limits as lim,_,. f(z) for suitable c.
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1. lim,_,+ f(a — x). 3. lim,_,o+ f(ax +b). 5. limg_,(_y)- f(a? + ).

2. limg o f(z +a). 4. lim, o+ f(/2). 6. lim,_,,— f(2% + ).
Example 1.5.17. We show that

9161_1% P = dP, for any a > 0 and any p.

First consider the special case a = 1. We find integers M and N satisfying
M < p < N. Then for z > 1, we have 2™ < 27 < V. By the arithmetic rule, we
have lim,_+ 2™ = (lim,_+ )™ = 1M = 1. Similarly, we have lim,_,;+ 2V = 1.
Then by the sandwich rule, we get lim,_,;+ 2P = 1.

For 0 < = < 1, we have #M > 2P > 2. Again, we have lim, ,;- 2 =
lim,_,;- ¥ = 1 by the arithmetic rule. Then we get lim,_,;- ¥ = 1 by the sandwich
rule.

Combining lim,_,;+ 2? = 1 and lim,_,;- 2P = 1, we get lim,_,; 2P = 1.

x
For general a > 0, we move the problem from a to 1 by introducing y = —
a

lim 2? = lim a”y? = a® lim ¢ = a1 = d”.
T—a y—1 y—1

Specifically, we first use lim,_,; P = 1, which we just proved, in the third equality.
Then we use the arithmetic rule to get the second equality. Finally, the first equality
is obtained by a change of variable, which is essentially the composition rule.

Exercise 1.5.12. Suppose lim,_,q f(z) =1 > 0. Prove that lim,_,, f(z)P = [P. This extends
Exercise 1.1.59 to function limit.
1.5.4 Limit of Trigonometric Function

The sine and tangent functions are defined for 0 < = < g by Figure 1.5.3. The

lengths of line AB, arc BC', and line C'D are respectively sinx, x, and tan x. Since
the length of line AB is smaller than the length of line BC, which is further smaller
than the length of arc BC', we get

. s
0 <sinz < x, for()<x<§.

By lim, .o+ x = 0 and the sandwich rule, we get

lim sinz = 0.
z—0t

Changing x to y = —=x (i.e., applying the composition rule) gives the left limit

lim sinz = lim sin(—y) = lim (—siny) = — lim siny = 0.
z—0— y—0t y—0t y—0+t
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Combining the two one sided limits at 0, we conclude

limsinxz = 0.
x—0

Then we further get

2
lim cosz = lim (1—zsm2;> :1—2(limsing> —1-2.02=1.

r—0 x—0 x—0
1 H——
D
. tan
sinx
xXr
O A C

Figure 1.5.3: Trigonometric function.

1 1
Note that the area of fan OBC' is 5% and the area of triangle ODC' is 5 tan x.

1 1
Since the fan is contained in the triangle, we get 3% < —tanz, which is the same

; 2
sinx
as cosr < ——. Combined with 0 < sinz < x obtained before, we get
x
sin x T
cosr < — <1, for0 <z < —.
T 2
. ) ) sin x
By lim,_,g+ cosx = 1 and the sandwich rule, we get lim, o+ = 1. Then
x
changing = to y = —x gives the left limit
lim 222 — fim sin(=y) — lim 22
x—0— X y—0+t =y y—0t Y
Therefore we conclude )
. sinz
lim =1.
x—0
This further implies
—2sin? d .2 . 2
cosr — 1 _ 9 . —2sin”y 1., siny 1
im ———— = lim =lim ——— = —= lim = —=,
z—0 1‘2 z—0 {L’z y—0 (2y)2 2 y—0 Yy 2
cosx — 1 . cosx—1 1
im—— =lim———a=—--0=0,
z—0 T z—0 r? 2
t i 1 1
lim = lim = 1.~ = 1.
=0 T z—0 T COSZT 1
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We may get the limit of trigonometric functions at any a by using y = x + a to
move the limit to be at 0.

lim sinz = lim sin(a + y) = lim(sin a cos y + cos asin y)
T—a y—0 y—0
(

= sinalim cosy + cosalimsiny = (sina)l 4 (cosa)0 = sina,
y—0 y—0

lim cos z = lim cos(a + y) = lim(cos acosy — sinasiny
r—a y—0 y—0

= cosalimcosy — sina limsiny = (cosa)l + (sina)0 = cosa,
y—0 y—0
lim,_,,sinx  sina

limtanz = — = = tana, if cosa # 0.
T—a lim, ,,cosxz  cosa

Example 1.5.18. By the arithmetic rule and the composition rule, we have

™
cos (y + —) o
cos ( s
l - = lim——— 22 i Y g
=3 r— = y—0 Yy y—0 Y
2
. 1 1
lim xsin — = lim —siny = 1,
T—r00 € y—0 Yy
. sinx —sina . sin(a+y) —sina
lim ——— = lim
r—a TrT — Q y—0 Yy
, ( cosy — 1 siny)
= lim | sina——— + cosa = cosa.
y—0 Yy Yy

Exercise 1.5.13. Find the limit.

) sin Tz . tanz — tana
1. llmx_>_1 T—f—l 8. hmxﬁa ﬁ
. tanx — 1
2. limy ym ————. ) cos(2z + 1) — cos(2x — 1)
4 dr—m 9. lim,_ .o 5 .
T
3 1 sinx — cosx
Dlimy_yr —————.
TR dr - 10. limg 400 z(sin vV + 2 — sin /).

sintz — /3 cosTx

5. limy, oo x tan —.
x .
t
X 12. Tim, o R0T)
6. limg, oo (cos - 1). sin(tan x)
x
COST — Cosa . tan(sin )
i —_— 13. 1 _
7 limy g ——————. M0t T

Exercise 1.5.14. Study the limit of the sequences sin(sin(sin. . .a))) and cos(cos(cos. .. a))),
where the trigonometric functions are applied n times.
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1.6 Rigorous Definition of Function Limit

The sequence limit is the behavior as n approaches infinity, which is described by
n > N (N is the measurement of bigness). The function limit is the behavior as z
approaches a but not equal to a, which may be described by 0 < |x —a|] < § (0 is
the measurement of smallness). By replacing n > N with 0 < |z — a| < § in the
rigorous definition of lim,, . x,, we get the rigorous definition of lim,_,, f(z) = [
for finite a and I.

Definition 1.6.1. A function f(z) converges to a finite number [ at a if for any
€ > 0, there is 6 > 0, such that 0 < |z — a|] < § implies |f(z) — | < e.

The meaning of the definition is given by Figure 1.6. The other limits can be

similarly defined. For example, lim, ..+ f(2) = [ means that for any € > 0, there is
0 > 0, such that

0<z—a<d = |f(x)—I]<e

The limit lim,_,, f(z) = [ means that for any € > 0, there is N, such that
lz| > N = |f(z) -] <e
Moreover, lim,_,,- f(z) = +0c means that for any B, there is § > 0, such that

—0<zr—a<0 = f(x)>B.

Figure 1.6.1: 0 < |z — a| < 0 implies |f(z) — ] <.

Exercise 1.6.1. Write down the rigorous definitions of lim,_,, f(z) = —o0, lim,_,,- f(z) =
[, and limy 4 o f(z) = —00.
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1.6.1 Rigorous Proof of Basic Limits

Example 1.6.1. Here is the rigorous reason for lim, ,,c = ¢. For any € > 0, take
0 = 1. Then
O<|zr—a|<d=1 = |c—c]=0<e

Here is the rigorous reason for lim, ., x = a. For any ¢ > 0, take § = ¢. Then

O0<|r—a|<d=¢ = |z —a|<e

Example 1.6.2. To prove lim,_,; 22 = 1 rigorously means that, for any ¢ > 0, we need
to find suitable § > 0, such that

O<|z—1<6 = |2* -1 <e
We have
O<|z—1l<d = |22 =1 = |z +1]jx — 1| < |z + 1|6

Moreover, when x is close to 1, we expect x + 1 to be close to 2. Such intuition can
be made rigorous by

O0<|z—-1l<1l = |z+1|<|z—-1]+2<3.
Therefore
O<|r—1/<6,0<|z—1<1 = |22 =1 <]z +1]d < 3.

To complete the rigorous proof, we only need to make sure 6 < 1 and 34 < e.
The analysis above suggests the following rigorous proof. For any € > 0, choose

0= min{l, %} Then

O<|z—1<d = |z—1|<1, 3lz—1|<e
= |z +1<|z—-1]+2<3, 3z—1]<e
— [ —1=|(z+1)(z-1)| <3z -1 <e

1
Example 1.6.3. To rigorously prove lim, ,; — = 1, we note
T

1

= —|z—1|.
]

__1‘

When =z is close to 1, we know |z — 1| is very small. We also know that |z| is close

to 1, so that H can be controlled by a specific bound. Combining the two facts,
x

we see that — |z — 1| can be very small. Of course concrete and specific estimation

|z]
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1 1 1
is needed to get a rigorous proof. If |xr — 1| < 2 then x > 3 and W < 2. Therefore
x

1
if we also have |z — 1| < g, then we get ﬂ|x -1l <e
x
The analysis above suggests the following rigorous proof. For any € > 0, choose

0= min{l,f}. Then
2°2

1
0<le-1<d = le—1] <3, o —1] < <

2
= z>1 L | ]<E
x ——=_, |z- -
2 2 2
1 1
= |- —1l=—lz -1 <2z—-1| <e
x |z]

Example 1.6.4. We prove

lim 2 = 0, for any p > 0.

z—0t
For any ¢ > 0, choose § = ev. Then by p > 0, we have
0<zx<d = [aF —0|=2" <’ =e

We also prove

lim 2P = +oo, for any p > 0.
T—+00

For any B > 0, choose N = Br. Then by p > 0, we have
r>N = a2 > NP =B.

Combined with Example 1.5.17, we get

lim 2P =
Tr—a

aP, ifp>0 0<a<+ooora=0",
400, ifp>0, a=+cc.

1
Changing = to —, we get the similar conclusions for p < 0
x
aP, ifp<0, 0<a<+o0,

lima? = +oo, ifp<0, a=0",
Tr—a
0, if p<0, a=-+o0.



1.6. RIGOROUS DEFINITION OF FUNCTION LIMIT 69

Example 1.6.5. We try to rigorously prove the limit in Example 1.5.5. Example 1.2.6
gives the rigorous proof for the limit of the similar sequence. Instead of copying the
proof, we make a slightly different estimation of |f(z) — |

22° + o | 3v—=2 dlz] 12
2—x+1 a2 -z +1 22 x|
3

The crucial inequality is based on the intuition that |3z —2| < 4|z| and |2* —z+1| >
2

% for sufficiently big x. The first inequality is satisfied when 2 < |z|, and the second
z? z? z?
is satisfied when |z| < ey and 1 < R It is easy to see that 2 < |z|, |z| < 5 and
2 12
1< % are all satisfied when |z| > 4. Therefore |f(z) — | < — when |z| > 4.

b |z]
Formally, for any € > 0, choose N = max {4, —} Then
€

12
|z > N = |z| >4, |z| > —
€
2
= 3z —2| <dlz|, |2 -z +1] >, — <e¢
37 |l
227 +x 3r —2 4z| 12
——2 = 2 _ €.
22 —x+1 2—x+1 x ||

3

Exercise 1.6.2. Extend the proof of lim,_.,, ¢ = ¢ and lim,_,, x = a to the case a = Fo0.

Exercise 1.6.3. Rigorously prove the limits.

L. limg s /7 = 2. 4 limgs —FL
241
9 1i 1 x +sinx
F a2 = 5. limy yoo ———— =
T 4+ cosx
322 —2x+1 _ sinzx

3. limy_e0 = 3. 6. limg o —— =0.

2+ 3r—1
Exercise 1.6.4. Rigorously prove the limits. For the first three limits, give direct proof
instead of using Example 1.5.17.
: 2 2 . x
1. lim,_,, 2% = a“. 4. limy yoo —— =1
Tr+a

2. limgq 7 = V/a, a > 0. 5. limy 1 00o(v/Z +a—+Vz+0b)=0.

. 1 1 [T+ a
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Exercise 1.6.5. Suppose f(x) > 0 for x near a and lim,_,, f(z) = 0. Suppose g(x) > ¢
for x near a and constant ¢ > 0. Prove that lim, ., f (m)g(m) = 0. This extends Exercise
1.1.58 to the function limit.

1.6.2 Rigorous Proof of Properties of Limit

Example 1.6.6. The arithmetic rule lim,_,,(f(x)+g(x)) = lim,_,, f(z)+1lim,_, g(x)
in Proposition 1.5.2 can be proved in the same way as Example 1.2.18. For any

e > 0, apply the definition of lim,_,, f(z) = k and lim,,, g(z) = [ to % > 0. We
find é; and d,, such that

0<|z—a| <& = |f(x)—l|<%,

O0<|z—al<d = |g(x)—k| < =.
Then

0 < |z—a|l <d=min{d, s}

— |f@) =1l < 5. lg(a) — Kl <

2

€
= |(f(2) +9(2)) = U+ k)| < [f(z) = U] +|g(z) —k| < 5 +5 =

Example 1.6.7. We prove the extended arithmetic rule (+00)-l = +oo for [ > 0. This
means that, if lim,,, f(z) = 400 and lim,,, g(z) =1 > 0, then lim,,, f(z)g(x) =

+00.
For any B, there is 9; > 0, such that

2
O0<|z—al<é = f(x)>7B.

l

For e = 3 > 0, there is 9o > 0, such that
[ [
0<|z—a|l <d = |g(x)—1| <5 = g(x) > 3
Combining the two implications, we get
: 2 [
0<|z—a| <déd=min{d,dh} = f(zx)g(x) > 7B 5= B.

This completes the proof of (+00) -l = 400.
As an application of the extended arithmetic rule, we have

1
lim (z° —3z+1)= lim 2° lim (1—3—1——):(4—00)-1:4—00.

r——+00 T——+00 T——+00
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In general, we have

lim (ap2™ + ap_12™ * + -+ a1z +ag) =

T—>+00

400, ifa, >0,
—o0, ifa, <0.

Example 1.6.8. We prove Proposition 1.5.6 about one sided limits.
Assume lim,_,, f(z) = [. Then for any € > 0, there is 6 > 0, such that

O<|z—al|<d = |f(x)—I|<e

The implication is the same as the following two implications
O<z—a<d = |f(zx)—1] <e,
—0<zr—a<0 = |f(z)-I <e

These are exactly the definitions of lim, ..+ f(z) = and lim,_ .- f(z) = L.
Conversely, assume lim,_,.+ f(z) = lim,_,,- f(z) = [. Then for any ¢ > 0, there
are 04,0_ > 0, such that

O<z—a<d = |f(zx)—1I <k¢,
—_<zrx—a<0 = |f(z)-I<e
Therefore
O<l|r—a|<min{é;,d.} = 0<z—a<dpor —d_<zx—a<0
= |f(x) =] <e

This proves that lim,_,, f(z) = L.

Example 1.6.9. We prove the second case of the composition rule in Proposition 1.5.5.

In other words, lim,_,, f(x) = b and lim,_,; g(y) = ¢g(b) imply lim,_,, g(f(x)) = g(b).
By lim,_;, g(y) = ¢(b), for any e > 0, there is u > 0, such that

0<b—yl<p = lg(y) —g(b)] <e

Since the right side also holds when y = b, we actually have
ly—bl <p = |g(y) —g(b)| <e (1.6.1)
On the other hand, by lim, ., f(z) = b, for the ;> 0 just found above, there is
0 > 0, such that
O0<|z—al<d = |f(x)—0b| <p.
Then we get
O0<|z—a|<d = |f(x)—bl<u
— g9(f(x)) —g(b)| <e

In the second step, we apply the implication (1.6.1) to y = f(z). This completes
the proof that lim, ., g(f(x)) = g(b).
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Example 1.6.10. In Example 1.5.16, we argued that lim, .o f(2?) = lim,_o+ f(2).
Now we give rigorous proof.
Suppose lim,_,o f(2?) = I. Then for any € > 0, there is § > 0, such that

0<|z|<d = |f(z®) 1| <e
Now for any y > 0, let z = ,/y. Then
O<y<d® = 0<z=\y<d = |fly)—1ll=|f=*) -1 <e

This proves lim,_,o+ f(y) = L.
On the other hand, suppose lim,_,o+ f(z) = [. Then for any € > 0, there is § > 0,
such that

0<z<d = |f(x)—I]<e

Now for any y, let x = y%. Then
O<lyl<Vd = 0<z=9y*<d = |fP) =1 =|f(z) =1 <e
This proves lim, o f(y?) = [.

Exercise 1.6.6. Prove the arithmetic rule lim,_,, f(2)g(z) = limy_, f(2)limy_q g(2) in
Proposition 1.5.2.

Exercise 1.6.7. Prove the sandwich rule in Proposition 1.5.3.
Exercise 1.6.8. Prove the order rule in Proposition 1.5.4.

Exercise 1.6.9. Prove the first case of the composition rule in Proposition 1.5.5.

l
Exercise 1.6.10. Prove the extended arithmetic rules (—o0) +1 = —oo and — = 0 for
00

function limit.

Exercise 1.6.11. For a subset A of R, define limgca y—q f(z) = [ if for any € > 0, there is
6 > 0, such that

r€A 0<|zr—a|<d = |f(x) -1 <e
Suppose A U B contains all the points near a and # a. Prove that lim,_,, f(x) = if and

only if limgeca zsq f(x) =1 = limgyep z—5q f(2).

Exercise 1.6.12. Prove that lim,_,, f(z) = [ implies lim,_,, max{f(z),l} = [ and
lim,_,, min{f(x),l} = {. Can you state and prove the sequence version of the result?

Exercise 1.6.13. Suppose f(z) < 1 for x near a and lim,_,, f(x) = 1. Suppose g(x) is
bounded near a. Prove that lim, 4 f(x)9®) = 1. What about the case f(z) > 1?7
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Exercise 1.6.14. Use Exercises 1.6.12, 1.6.13 and the sandwich rule to prove that, if lim,_,, f(z) =
1 and g(x) is bounded near a, then lim,_,, f(2)9*) = 1. This is the function version of

Exercise 1.1.58. An alternative method for doing the exercise is by extending Proposition
1.1.6.

1.6.3 Relation to Sequence Limit

The sequence limit and the function limit are related.

Proposition 1.6.2. lim, ., f(x) =1 if and only if

lim z, =a, z, #a = lim f(z,) =L

n—o0 n—oo

The necessary direction means that if the whole function converges to [ at a,
then the restriction of the function to any sequence converging to (but not equal to)
a also converges to [. The sufficiency direction means that if all such restrictions
converge to [, then the original function converges to [.

The necessary direction can also be considered as a version of the composition
rule because z,, can be considered as a function z(n) with n as variable, and f(x,)
is a composition

n—x=x,— f(x)=f(x,).

By analogy with the first case of Proposition 1.5.5, we have

lim z, = a, x, # a (at least for big n), and lim f(z) =1 = lim f(z,) =[.

n—o0 Tr—a n—oo

Example 1.6.11. By taking a = +o00 in Proposition 1.6.2, the limit in Example 1.5.5
implies the limit in Example 1.1.2.

i 1 1
Example 1.6.12. From lim, o o = 1 and lim,, 5o — = limy, . — = 0, we get
n NZD
1 )
1 sin — 1 Sl —=
lim nsin — = lim 1” =1, lim v/nsin— = lim v =1

n Vv

Example 1.6.13. A consequence of Proposition 1.6.2 is that, if the restrictions of
f(x) to two sequences converging to a converge to different limits, then lim,_,, f(x)
diverges.

The Dirichlet function is
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For any a, we have a rational sequence x, converging to a, and the restriction of
D(z) to the sequence is D(x,) = 1, converging to 1. We also have an irrational
sequence converging to a, and the restriction of D(x) converges to 0. Therefore
D(x) diverges everywhere.

y=D(x) y = 2D(x)

Figure 1.6.2: Dirichlet function.

By the same reason, the function xD(x) diverges at everywhere except 0. On
the other hand, we have —|z| < |zD(x)| < |z|. By lim,_,¢|z| = 0 and the sandwich
rule, we have lim,_,oxD(z) = 0. So xD(z) converges only at 0.

If lim,, oo f(z,) = [ for one (instead of all) sequence x,, converging to a, then
it suggests (but does not necessarily imply) that lim, . f(z) = [. Sometimes we
can “fill the gap” between z,, and derive lim,_, ., f(z) = [ in general.

Example 1.6.14. The limit lim,, ,,, @™ = 0 in Example 1.1.11 suggests

lim a®* =0, for 0 <a < 1.
r—r+00
Here we do not consider —1 < a < 0 because a” is not always defined.

For rigorous proof, we compare a” with a™ for a natural number n near x. Specif-
ically, for any z > 1, we have n < x < n + 1 for some natural number n. Then
0 < a < 1 implies

0<a® <a".
By lim,, o, a™ = 0, the sandwich rule should imply lim, ,,. a® = 0. However, we
cannot quote the sandwich rule directly because we have a function sandwiched by
a sequence. We have to repeat the proof of the sandwich rule.
For any € > 0, by lim,,_,, a™ = 0, there is N, such that

n>N = a" <e.
For x > N + 1, let n be a natural number satisfying n < x <n + 1. Then

r>N+1 = n>z—1>N — 0<a*"<d"<e.
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This rigorously proves lim, .., a* = 0.

1
For a > 1,let b= —. Then 0 < b < 1 and by the arithmetic rule, we have

a
li v L ! +
im ¢* = —— = — = +o00.
T—+00 lim, 4o b° 0+
Thus we have
400, ifa>1,

lim a* = (1, ifa=1,

T—r+00

0, if0<a<l.
By using the composition rule to change x to —x, we also get
0, ifa>1,
lim o =<1, ifa=1,
T——00
400, f0<a<l.
We emphasize that we cannot use the following argument at the moment

|
z>N = o8¢

=log,e = 0<a” <e.
log a

The reason is that our logical foundation only assumes the arithmetic operations
and the exponential operation of real numbers. The concept of logarithm must be
defined as the inverse operation of the exponential, and will be developed only after
we have a theory of inverse functions. See Example 1.7.15.

Exercise 1.6.15. Use the limit in Example 1.2.15 and the idea of Example 1.6.14 to prove
that limg 400 z%2a® = 0 for 0 < a < 1. Then use the sandwich rule to prove that
limg_s 400 2Pa® = 0 for any p and 0 < a < 1.

Exercise 1.6.16. State and prove the extended exponential rule

4o — 400, ifa>1,
0, if0<a< 1.

Example 1.6.15. The limit lim,, ,o, /7 = 1 in Example 1.1.8 suggests that

. 1
lim z= = 1.
Tr—+00

By the composition rule, this is the same as

lim z% = 1.
z—0+

We will rigorously prove the second limit.
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1 1
For any 0 < x < 1, we have 1 < z < — for some natural number n. Then
n n

1 1 " 1 1
r < <zr' < — < ——.
(n+1)x ~ (n+1)° n® T pa
By Example 1.1.9 (not quite Example 1.1.8), we know
1
lim — = lim —— = 1.
Thus for any € > 0, there is N, such that
1 1
n>N —= |—— — 1| <eg, — — 1| <e
(n+1)x nwet
1 1
- —————>1—¢ ——<l+e
<n+1>5 nn+t
Then
1 1 1
O<z< — < x < — for some natural number n > — —1> N
N+1 n+1 n x
1 1
= l-e< —F <2< ——<1+e¢€
(n—}—l)% N+l

= 2" - 1| <e

Example 1.6.16. We show that
b

lima® = a’.

z—b
For the special case b = 0, the limit is lim, ,qa® = 1, and is closely related to
lim,, o {/a = 1 in Example 1.1.7. This suggests us to prove the special case using
the idea in Example 1.6.15. See Exercise 1.6.17. Alternatively, we may prove the

special case by comparing with lim,_,o+ ¥ = 1 in Example 1.6.15. For sufficiently

small z > 0, we have x < a < —. This implies
x

1
¥ < a® < — for sufficiently small x > 0.
xac

1
Since Example 1.6.15 tells us that lim, o+ 2 = 1 = lim, o+ —, by the sandwich

rule, we get lim,_,o+ a® = 1. For x < 0, we may use the change of variable y = —x
to get
1
Iimae*=lmae?¥%9=———=1.
z—0~ y—0+ hmy_>0+ a¥y

Combing the left and right limits gives the special case lim, ,ya® = 1.
The general case can be derived from the special case by introducing z =y + b

lim a¢® = lim a?™® = lim a¥a® = a’lim ¥ = a® - 1 = &°.
z—b y—0 y—0 y—0
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Exercise 1.6.17. Prove lim,_,oa” = 1 by comparing with lim,, o, ¥/a = 1.

Exercise 1.6.18. Prove that lim, .o x,, = [ implies lim,, o, a®" = al.

Exercise 1.6.19. Use Exercises 1.1.58 and 1.6.18 to prove that lim, ..oz, = I > 0 and
limy,—s00 Y, = k imply limy, oo 29" = 1.

Exercise 1.6.20. Prove that lim,_ ., f(x) = [ implies lim,_,, b/ (@) = pt,

Exercise 1.6.21. Use Exercises 1.6.14 and 1.6.20 to prove that lim,_,, f(z) = > 0 and
lim,_,q g(z) = k imply lim,_,q f(x)9®) = Ik,

Example 1.6.17. Example 1.3.5 suggests that

lim <1 +

T—00

S R
N—
8
I
®

This is the same as

Suppose n < x < n+ 1. Then

1 n 1n 1ac 1n+1 1n+1
(i) <(+3) <(+2) <(2) =(+0)
n+1 T T T n

By Example 1.3.5, we have
1 n+1
lim,,— o0 <1 + )

1 n
lim <1+ +1> = nt
n—o00 n X
limy, 0 <1 + — 1)

1\ 1\" 1
lim (1 + ) = lim (1 + ) lim (1 + > = e.
n—00 n n—00 n n—00 n

Therefore for any € > 0, there is IV, such that
1 n+1
(1 + ) —e
n

1 n 1 n+1
- <1+> > e — €, (1—1—) <e+e.
n—+1 n

==

<€, < €,

1 n
n>N:>’(1+> —e
n+1

Then

z>N+1 — n<zxz<n+1 for some natural number n >z —1> N

1 n 1 x 1 n+1
:>e—e<<1+ ) <<1+> <<1+> <e+te
n—+1 T n

1 xT
— <1+> —e
T

< €.
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1 €T
This proves limg 400 (1 + ) = e. Then we use the composition rule to further get
x

1\* 1\ 77 T r
lim <1 + ) = lim <1 — > = lim < )
T——00 x T—+00 z—+oo \ x — 1
x—1 I~
1
< * T — 1) z—1
-1 x
= lim (1 + > lim
T—+00 r—1 r—t+oo x — 1

1+ > lim a:
z—+oo x — 1

= lim
Tr—r—+00

= lim
T—r—+00

Exercise 1.6.22. Find the limits.

2

1.1 (1 9>z 1\*
X

. a\ bx 1 22
2. limg o0 (1 + E) : 5. limg, o <1 — > .
T
- 1Y’ . z+a\”

Exercise 1.6.23. Find the limits.
1 n
1. (1 — ) . 6.
n
n n+1
7. |14+ —--— .12,
) )

( (
(o ( (s
o (142" (=7 B (5
X ( <
(

n+1
1+ ) . 11.

a —
1 7> 2\ n1 14.
t 9. (1+ n) :

<1+ ) " 10. <1+7(l;1_)2>n 15.

1.6.4 More Properties of Function Limit

ot

The following is the function version of Theorem 1.3.1.
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Proposition 1.6.3. If f(x) converges at a, then |f(z)| < B for a constant B and
all x near a.

1
Like the sequence limit, the example of sin — at 0 shows that a bounded function

x
does not necessarily converge. However, Theorem 1.3.2 suggests that a bounded
monotone function should converge.

Definition 1.6.4. A function f(x) is increasing if

T <1y = f(x1) < f(22).
It is strictly increasing if

11 <z = f(21) < f(z2).

The concepts of decreasing and strictly decreasing are similar, and a function is
(strictly) monotone if it is either (strictly) increasing or (strictly) decreasing.

Theorem 1.6.5. If f(x) is monotone and bounded on (a,a+ 6), then lim, ,,+ f(z)
converges.

The theorem also holds for the left limit. The theorem can be proved by choosing
a decreasing sequence x, converging to a. Then f(z,) is a bounded decreasing
sequence. By Theorem 1.3.2, we have lim,_, f(z,) = . Then lim, ,.+ f(z) = [
can be proved by comparing with the sequence limit, similar to (actually simpler
than) Examples 1.6.15 and 1.6.17.

The Cauchy criterion in Theorem 1.3.3 can also be extended to functions.

Theorem 1.6.6 (Cauchy Criterion). The limit lim,_, f(x) converges if and only if
for any e > 0, there is 0 > 0, such that

O<l|lr—a| < 0<|y—a|l<d = |f(z)— fly)| <e.
The criterion also holds for one sided limit. Again the proof starts by choosing a
sequence x,, converging to a, then applying the sequence version of Cauchy criterion

(Theorem 1.3.3) to f(x,), and then comparing lim,,_,, f(x,) and lim,_,, f(x).

Exercise 1.6.24. If f(z) is monotone and bounded on (a—d,a)U(a,a+4¢), does lim,_,, f(x)
converge?

Exercise 1.6.25. Prove that if lim,_,, f(x) converges, then f(z) satisfies the Cauchy crite-
rion.
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1.7 Continuity

A function is continuous at a if its graph is “not broken” at a. For example, the
function in Figure 1.7.1 is continuous at ay and a5, and we have lim,_,,, f(z) = f(a2)
and lim, .. f(z) = f(as). It is not continuous at the other a; for various reasons.
The function diverges at a; and a; because it has different left and right limits. The
function converges at az but the limit is not f(as3). The function diverges to infinity
at ay. The function diverges at ag because the left limit diverges.

Figure 1.7.1: Continuity and discontinuity.

Definition 1.7.1. A function f is continuous at a if lim,_,, f(z) = f(a).

The left side lim,_,, f(x) implies that the function should be defined for x near
a and x # a. The right side f(a) implies that the function is also defined at
a. Therefore the concept of continuity can only be applied to functions that are
defined near a and including a, which means all x satisfying | — a| < § for some
d > 0. Then by the definition of lim,_,, f(z), it is easy to see that f(x) is continuous
at a if and only if for any € > 0, there is 6 > 0, such that

lz—al <d = |f(z) — f(a)] <e.

A function f(z) is right continuous at a if lim, ,,+ f(z) = f(a). The definition
can be applied to functions defined for z satisfying a < x < a 4 ¢ for some § > 0.
Similar remark can be made for the left continuity. A function is continuous at a if
and only if it is left and right continuous at a.

The function in Figure 1.7.1 is left continuous at a; and right continuous at ag,
but is not continuous at the two points.

A function is continuous on an interval if it is continuous at every point of the
interval. For example, a function is continuous on [0, 1) if it is continuous at every
0 < a <1 and is also right continuous at 0.



1.7. CONTINUITY 81

1.7.1 Meaning of Continuity

By Example 1.5.4, polynomials are continuous and rational functions are continuous
wherever it is defined. By Examples 1.5.17, the power function x” is continuous
(0, 00) for all p and, by Example 1.6.4, is right continuous at 0 for p > 0. In Section
1.5.4, we find that all trigonometric functions are continuous wherever they are
defined. By Example 1.6.16, the exponential function a” is continuous.
By the properties of limit, we know that the arithmetic combinations and compo-
sitions of continuous functions are continuous, wherever the new function is defined.
As remarked after Proposition 1.5.5, if f(x) is continuous at b and lim,_,, g(z) =
b, then
lim f(g(x)) = /() = f (1im g(x)) .

T—a T—a

In other words, the continuity of f means that the limit and the evaluation of f can
be exchanged. By using Proposition 1.6.2 (another variant of the composition rule),
the same remark can be applied to a sequence limit lim,,_,,, x, = b instead of the
function limit lim, ., g(x) = b, and we get

lim f(z,) = f(b) = f (nm xn)
n—00 n—00

Example 1.7.1. The sign function in Example 1.5.13 is continuous everywhere except
at 0. The Dirichlet function zD(z) in Example 1.6.13 is not continuous anywhere.
The function xD(x) is continuous at 0 and not continuous at all the other places.

3

x
Example 1.7.2. The function
x JR—
cannot talk about its continuity at the point. In order to make the function contin-
3
x> —1
=3,

r—1

in Example 1.5.3 is not defined at = 1, and we

uous at 1, we need to assign the value of the function at 1 to be lim,_.;

and we get a continuous function

P

1
if 1
fl)=<¢ z—1" ifz 7
3, ifex=1

>+ + 1.

Example 1.7.3. By the composition rule and the continuity of \/z, a® and sinz, we
have

hm\/x?’ = hmx3+1—3
z—2

lim @71 = gro w1
n—oo

lim sinv1 — 22 =sin ( lim v1 —x2) =sin, / lim (1 —2%) = 0.

r—1— r—1— r—1—
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Example 1.7.4. The continuity of y/z implies that, if lim, ,,,x, = [ > 0, then
lim,, oo /Ty, = V1. This is Example 1.2.17.
The continuity of a® implies that, if lim,, . #, = [, then lim,, ., a® = a!. This

implies the limit lim,, o, {/a = 1 in Example 1.2.14, and also implies the limits such
1 V41
as lim,_,,o av® =1 and lim,, o, avVi—sinn = q.

Exercise 1.7.1. Determine the intervals on which the function is continuous. Is it possible
to extend to a continuous function at more points?

1 x2—3x+2. 3. sign(z). 5. x%.
x2 -1
2
v —1 1 Ccos ¥
2. . 4. xsin —. 6. .
r—1 T 20—

Exercise 1.7.2. Find a function on R that is continuous at 1, 2,3 and is not continuous at
all the other places.

Exercise 1.7.3. Find a function on R that is not continuous at 1,2, 3 and is continuous at
all the other places.

1+ f(0)g(x)
1+ f(x)g(0)

Exercise 1.7.4. Find two continuous functions f(x) and g(z), such that lim,_,o

converges but the value is not 1.

1.7.2 Intermediate Value Theorem

If we start at the sea level and climb to the mountain top of 1000 meters, then we
will be at 500 meters somewhere along the way, and will be at 700 meter some other
place. This is the intuition behind the following result.

Theorem 1.7.2 (Intermediate Value Theorem). If f(z) is continuous on [a,b], then
for any number v between f(a) and f(b), there is ¢ € [a,b] satisfying f(c) = .

Figure 1.7.2: Intermediate value theorem.
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Example 1.7.5. The polynomial f(x) = 23 —3x +1 is continuous and satisfies f(0) =
1, f(1) = —1. Therefore f(x) must attain value 0 somewhere on the interval [0, 1].
In other words, the polynomial has at least one root on (0,1).

To find more precise location of the root, we may try to evaluate the function
at 0.1,0.2,...,0.9 and find f(0.3) = 0.727, f(0.4) = —0.136. This tells us that f(z)
has a root on (0.3,0.4).

The discussion can be summarized as follows: If f is a continuous function on
[a,b], such that f(a) and f(b) have opposite signs, then f has at least one root in

(a,b).

Example 1.7.6. By Example 1.6.7, we have lim, ,, (2> — 3z + 1) = +oo and
lim, , (2% — 3z + 1) = —oo. Therefore for sufficiently big b > 0, we have f(b) > 0
and f(—b) < 0. By the Intermediate Value Theorem, the polynomial has a root on
(—b,b).

In general, any odd order polynomial has at least one real root.

Back to f(z) = 23 —3z+1. In Example 1.7.5, we actually already know that f(x)
has at least one root on (0,1). In fact, by f(—b) <0, f(0) > 0, f(1) <0, f(b) > 0,
we know f has at least one root on each of the intervals (—b,0), (0,1), (1,b). Since
a polynomial of order 3 has at most three roots, we conclude that f(z) has exactly
one root on each of the three intervals.

Example 1.7.7. We know

_ lim,  --sinx 1
lim tanr = ——2—— = — = 400,
s—I lim, ,=-cosxz OF
2
- hmx%y sinz 1
im tanr = —">2—=—— = —0.
_n+ lim, . x+cosx  OF
T— 2 m—)g

T T
Therefore for any number ~, we can find a > —5 and very close to —5 such that

™ T
tana < 7. We can also find b < — and very close to 5 such that tanb > ~. Then
tan z is continuous on [a,b] and tana < v < tanb. This implies that v = tanc for

T

some ¢ € (a,b). Therefore any number is the tangent of some angle between —5
T
and —.

2
The example shows that, if f(z) is continuous on (a,b) satisfies lim, ,,+ f(z) =

—oo and lim, ,,- f(z) = 400, then f(x) can take any number as value on (a,b).
Note that the interval (a, b) here does not even have to be bounded.

Example 1.7.8. The function

f(x):{x, if —1<x<0,

2 +1, if0<ax <1,
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satisfies f(—1) = —1, f(1) = 2, but does not take any number in (0, 1] as value. The
problem is that the function is not continuous at 0, where a jump in value misses the
numbers in (0, 1]. Therefore the Intermediate Value Theorem cannot be applied.

Exercise 1.7.5. Let f(z) : [0,1] — [0, 1] be a continuous function. Prove that there exists
at least one c¢ € [0, 1] satisfying f(c) = c.

Exercise 1.7.6. Find all the possible values.

1 x? — 3z + 2 4. sinz.
e P I
5. sin —.
2. x% r
6 12 if —1<z<0,
3. €”. C 2?43, ifo<z<l1.

Exercise 1.7.7. lim,_, ;o cos(vx + 2++/z) and lim,_, o /2 (sin vVa + 2 —sin \/z) diverge.

1.7.3 Continuous Inverse Function

Given a function f(z), its inverse function f~'(y) is obtained by solving f(x) =y
for x.

Example 1.7.9. To find the inverse of f(x) = 3z — 2, we solve 3z — 2 = y and get

1 2 1 2
z= 3y + 3 Therefore the inverse function is f~!(y) = 3Y + 3

Example 1.7.10. To find the inverse of f(x) = 22, we try to solve 2% = y.

The problem is that the equation has no solution for y < 0 and has two solutions
for y > 0. The ambiguity on which of the two solutions to choose can be removed if
we additionally specify z > 0 or z < 0. In other words, in order to unambiguously
specify an inverse of f(x) = x?, we must specify the ranges for x and for y.

If we consider

fi(z) = 2*: [0, +00) — [0, +00),

which means that we specify > 0 and y > 0, then 2> = y always has unique
non-negative solution, which is usually denoted x = f; ' (y) = VY-
If instead we consider

fo(x) = 2°: (=00, 0] — [0, +00),
then 22 = y also has a unique non-positive solution and gives the inverse

f2_1(y) = _\/g: [07+OO> - (_0070]'
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As a more elaborate example, the function
f3(x) = 2%: (=00, —1]U[0,1) — [0, +00)
has inverse

fs' () = {\_/y\/g i2§?< t [0, +00) — (=00, —1] U [0,1).

The examples show that, for the concept of inverse function to be unambiguous,
we have to specify the ranges for the variable and the value. In this regard, if two
functions have the same formula but different ranges, then we should really think
of them as different functions.

In general, if a function f(x) is defined for all x € D, then D is the domain of
the function, and all the values of f(x) is the range

R={f(x): x € D}.
With the domain and range explicitly specified, we express the function as a map
f(z): D — R.

Now the equation f(z) = y has solution only when y € R. Moreover, we need to
make sure that the solution is unique in order for the inverse to be unambiguous.
This means that the function is one-to-one

X1, To € D, T 7é Ty — f(ZL‘l) 7é f(l‘g)
The condition is the same as

1,22 € D, f(x1) = f(x2) = 21 = 2.

Example 1.7.11. Consider the function f(z) = 2% + 323 + 1 defined for all z. By the
remark in Example 1.7.7, together with (see Example 1.6.7)

we see that any number can be the value of f(z). This shows that the range of f is
R.

Is the function one-to-one? This can be established as follows. If z; # x5, then
either 1 < x9 or &1 > 4. In the first case, we have

T <@y = 25 < b, 2t <ol
= f(z1) =27+ 32 +1 < f(xq) = a5 + 325 + 1.

By switching the roles of x; and x5, we get x; > 5 implying f(x1) > f(z3). Either

way, we get x1 # xo implying f(z1) # f(x2).
We conclude that f(z) = 2° + 32* + 1: R — R is invertible.
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The argument in the example can be generalized. Suppose f(x) is a continuous
function defined on an interval domain D. Then the Intermediate Value Theorem
implies that the range R is also an interval. Moreover, the uniqueness of the solution
to f(x) =y can be obtained if f(x) is strictly increasing or strictly decreasing.

Theorem 1.7.3. A strictly increasing and continuous function on an interval is
invertible, and the inverse function is also strictly increasing and continuous. The
same holds for strictly decreasing and continuous functions.

It is remarkable that, according to the theorem, we get the continuity of the
inverse function for free. For example, although it is impossible to find the formula
for the solution of 2° 4+ 323 + 1 = y, we already know the solution is a continuous
function of vy,

Example 1.7.12. The sine function can take any value in [—1, 1]. To make sure it is
one-to-one, we specify the domain and range

T
iz |- —| = [~1,1].
sin x [ 5 2} [—1,1]
This is strictly increasing and continuous, and takes any number in [—1, 1] as value.
Therefore we get the inverse sine function
T
arcsiny: |—1,1| — [——,—]
resiny: | ] 53

The inverse sine function is also strictly increasing and continuous.

tap a
7 arcsinx [
N I
: |
1|----/+-—=sinx /!
| us !
| \ 2 '”f“‘ ”””” arctanx
_T ! ! _T |
7 —1 | | 2 !
! ! _ s | T
o 13 ‘ 5
|
| 2 L I —g
L=t foo-| ] :/
|
Lo T |
2 |
a

Figure 1.7.3: Inverse trigonometric functions.

Example 1.7.13. The cosine function

cosz: [0,7] — [—1,1]
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is strictly decreasing, continuous, and takes any number in [—1, 1] as value. There-
fore we get the inverse cosine function

arccosx: [—1,1] — [0, 7],
which is also strictly decreasing and continuous.

However, the inverse cosine function is not much a new function. If x = arccosy,
z €07,y

€ [—1,1], then

. <7T ) T c |: m 7T:|
mif{— — = = — = [
S 5 X COS T Yy, 5 T 2, B

T
shows that 5 %= arcsin y. Therefore we have the equality

. T
arcsiny + arccosy = —.

Example 1.7.14. The tangent function

t (Wﬂ>—>( +00)
anr: (——, = -
nx 59 00, 00

is strictly increasing, continuous, and by Example 1.7.7, takes any number as the
value. Therefore we have the inverse tangent function

T
arctany: (—oo, +00) — (——, —) :
2°2
which is also strictly increasing and continuous.
We claim that

s
lim arctany = —, lim arctany .
Yy——+00 2 Yy——00 2

Foranyg>e>0, letN:tan<g—e>. Then ~ — ¢

increasing property of arctan implies

arctan N, and the strict

T T ™
y>N — §>arctany>arctanN:——e — |arctany — —| < e.
This proves the first limit. The second limit can be proved similarly.

Example 1.7.15. For a > 1, the exponential function

a”: R — (0, 400)
is strictly increasing and continuous. Moreover, by Example 1.6.14, we have

lim ¢* =0, lim a" = +o0c.
r—r—00 T—r—+00
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Then by an argument similar to Example 1.7.7, any number in (0, +00) is a value
of a”. Therefore the exponential function has an inverse

log, z : (0, +00) — R,

called the logarithmic function with base a. Like the exponential function, the
logarithmic function is strictly increasing and continuous. We can also show
lim log,x = +o00, lim log,z = —o0, fora>1
T—>+00 x—07F

by method similar to Example 1.7.13.

The logarithm log, x based on the special value e is called the natural logarithm.
We will denote the natural logarithm simply by log z.

For 0 < a < 1, the exponential a” is strictly decreasing and continuous. The
corresponding logarithm can be similarly defined and is also strictly decreasing and
continuous. Moreover, we have

lim log,z = —oo0, lim log,x =400, for0<a<1.
z—+00 z—0t
(,'J('
1 log
o 1

Figure 1.7.4: Exponential and logarithm.

Exercise 1.7.8. Let f be a strictly increasing function. Show that its inverse is also strictly
increasing.
1.7.4 Continuous Change of Variable

Suppose f(x) is continuous and strictly increasing near a. Then by Theorem 1.7.3,
f(z) can be inverted near a, and the inverse f~!(y) is also continuous and strictly
increasing near b = f(a). The continuity of f and f~! means that

r—a <<= y—b.
The one-to-one property implies that

r#a <<= y#b.
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Therefore the composition rule can be applied in both directions, and we have
lim g(f(z)) = lim g(y).
T—a y—b
Here the equality means that the convergence of both sides are equivalent, and the

limits have the same value.

Example 1.7.16. Since sinz is strictly increasing and continuous near 0, we have
arcsin y

lim = lim — =1.
y=0 x—0 sin
The same argument also tells us
arctany . T
im ——— = lim =1
y—0 Y z—0 tan x

Example 1.7.17. In Examples 1.5.11, 1.5.16, 1.6.10, we find lim,_,, f(2?) = lim,_,q2 f(z)
for a # 0 and lim,_,o f(2?) = lim,_,o+ f(z). Here we explain the two equalities from
the viewpoint of continuous change of variable.
The function
2%: [0, +00) — [0, +00)
is strictly increasing and continuous, and is therefore invertible, with strictly in-
creasing and continuous inverse

V: [0, +00) = [0, +00).

The continuous change of variable implies that lim, ,, f(2z?) = lim, . f(z) for
a > 0 and lim,_,o+ f(2?) = lim,_,o+ f(x). Note that the second equality makes use
of the right continuity of 22 and /z at 0.

Similarly, the function

z%: (—00,0] = [0, 4+00)

is strictly decreasing and continuous, and is therefore invertible, with strictly de-
creasing and continuous inverse. This implies that lim, ., f(2?) = lim, .2 f(x) for
a < 0 and lim,_,o- f(2?) = lim,_,o+ f(z).

By

Jim f(z?) = lim f(z) = lim f(2?),

we also conclude that lim, ¢ f(2?) = lim,_o+ f().

Example 1.7.18. Since the natural logarithm log x is continuous, we may move the
limit from outside the logarithm to inside the logarithm

lim log(z + 1)

: 1 . 1
lim " :glcll}r(l)log(l—i—x)z = log (zgr(l)(l—i—x)z) =loge = 1.

Here the third equality follows from Example 1.6.17.

Exercise 1.7.9. Find the limits.



90 CHAPTER 1. LIMIT

| —1 1 —1
1. Tim, o 8@ D) 5 lim, ,, 087 ~loga 3. lim,.,, %% ~logya
T r—a Tz —a
Exercise 1.7.10. Find the limits.
log(z? — 2z +1 log(z? — 2z + 1 log(2? — 2z + 1
1 lim,,, 8@ Z20 4 ) oy loe@ =24 l) g log(e” — 2 4 )
x2 -4 x?2 -1 x
Exercise 1.7.11. Find the limits.
. 1 ax +c ar +b
1.1 —1 . 4. li | .
Mha—0 2108 3 e a0 208 e ¥ ¢
1 ar +b ar+b
2. lim, o —log o d 5. lim, o0 x log e d

a2x2 + a1z + ag
bg$2 + bll‘ + bo '

31 1 1 asx® + a1z + ag
. lim, — 1o .
70 xT & b21'2 + blx + b(]

6. lim, o xlog

Exercise 1.7.12. Find the limits.

i v . log(z? + 3x + 2) — log 2
L limz o log(ax +1)° 3. limg 0 ( - ) .
2
. z© -1 log x
2.1 : i &
a1 log x 4. limg sinmx

Example 1.7.19. Since y = e* — 1 is strictly increasing and continuous, with inverse
x = log(y + 1), we may change the variable and use Example 1.7.18 to get

et — Y

lim = lim —~2——
y=0log(y +1)

r—0 X

Exercise 1.7.13. Find the limits.

] 2:E_1 ) ax_ab ) ax_ebx
1. lim,_,g 4. limg,_yp b 7. lim, .o
. a® —1 . et —1 . eam_ebx
2. limgz_yo . 5. limg_veo . 8. limy,— 1o
X
. et — et . a® — bp* ) a® — p*
3. hmx*)a ﬁ 6 hmx*)O 9. hmmHO m

Example 1.7.20. The continuity of the logarithm implies the continuity of the func-
tion 2% = e*1°¢% on (0, 00). In general, if f(z) and g(z) are continuous and f(x) > 0,
then f(2)9@® = 9@ f(@) i5 continuous.
The continuity of the exponential and the logarithm can also be used to prove
that
lim a, =1>0, lim b, =k = lim ab» = [~

n—oo n—oo n—oo
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The reason is that the continuity of log implies lim,, .o loga, = logl. Then the
arithmetic rule implies lim,,_,o b, loga, = klogl. Finally, the continuity of the
exponential implies

lim abn — lim eb" log an, — elimnaoo by, logan, — 6k;logl — lk
n—oo n n—oo

In Exercises 1.6.19 and 1.6.21, we took a number of steps to prove the same
property, without using the logarithmic function.

Example 1.7.21. For p # 0, y = plog(z + 1) is strictly increasing and continuous.
Using change the variable and Examples 1.7.18 and 1.7.19, we get

(x4 —1 st 1 st 1 og(a + 1)

lim im
z—0 x z—0 x =0 plog(x + 1) P T

. eplos@tl) — 1 log(x +1)

= plim

PAS plog(x + 1) 20 T

e —1 . log(x+1)
lim

= plim =p-1-1=np.
y—0 Yy z—0 €T
Exercise 1.7.14. Find the limits.
P _1 P _ oD in P — qin aP
1. limg_; —— = 3. limy g 5. lim,_,, o ? —SMA
r—1 r—a r—a
. P —1 . P — aP . e’ — e
2. limg,_yq a_1 4. limg_q P 6. lim,_,q b
Exercise 1.7.15. Let
1 1 1 1
Tpn=14+-4+-+——logn, y,=1+=+ -+ ——log(n+1).
2 n 2 n

3=

! <1 1+1 <
o -
14+n & n

2. Prove that x,, is strictly decreasing and y, is strictly increasing.

1. Use Exercise 1.3.17 to prove that

3. Prove that both z, and y, converge to the same limit

n—00 3

1 1 1
lim <1 + B +-+-+ o logn> = 0.577215669015328 - - - .

The number is called the Euler'-Mascheroni® constant.

Leonhard Paul Euler, born 1707 in Basel (Switzerland), died 1783 in St. Petersburg (Russia).
Euler is one of the greatest mathematicians of all time. He made important discoveries in almost
all areas of mathematics. Many theorems, quantities, and equations are named after Euler. He
also introduced much of the modern mathematical terminology and notation, including f(x), e, &
(for summation), i (for /—1), and modern notations for trigonometric functions.

2Lorenzo Mascheroni, born 1750 in Lombardo-Veneto (now Italy), died 1800 in Paris (France).
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The Euler-Mascheroni constant first appeared in a paper by Euler in 1735. Euler calculated the
constant to 6 decimal places in 1734, and to 16 decimal places in 1736. Mascheroni calculated the
constant to 20 decimal places in 1790.



Chapter 2

Differentiation

2.1 Linear Approximation

The basic idea of differentiation is solving problems by using simple functions to ap-
proximate general complicated functions. The simplest functions are the constant
functions, which are usually too primitive to be useful. More effective approxima-
tions are given by linear functions A 4+ Bz.

Definition 2.1.1. A linear approximation of a function f(z) at xg is a linear function
L(z) = a+ b(z — xp), such that for any € > 0, there is § > 0, such that

[z — 2ol <0 = [f(x) = L(x)| = |f(z) — a = b(z — 20)| < €| — ol

A function is differentiable if it has a linear approximation.

The differentiability at x( requires the function to be defined on a neighborhood
of xy, and the linear approximation depends only on the function near x;.

In everyday life, we use approximations all the time. For example, when we
measure certain distance and get 7 meters and 5 centimeters, we really mean give or
take some millimeters. So the real distance might be 7.052 meters or 7.046 meters.
The function f(z) is like the real distance (7.052 meters or 7.046 meters), and the
linear function L(z) is like the reading (7.05 meters) from the ruler.

The accuracy of the measurement depends on how refined the ruler is. We often
use the rulers with two units m and cm. The centimeter cm is smaller among the
two units and is therefore the “basic unit” that gives the accuracy of the ruler. The
error |[Tmb5.2em — Tmbem| = 0.2cm between the real distance and the measurement
should be significantly smaller than the basic unit lem.

Analogously, the linear function L(z) = a-14b- (x — 2¢) is a combination of
two units 1 and x — xg. Since the approximation happens for x near xg, * — x¢ is
much smaller than 1 and is therefore the “basic unit”. The error |f(z) — L(x)| of
the approximation should be significantly smaller than the size |z — x| of the basic
unit, which exactly means < e|x — | on the right side of the definition.

93
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2.1.1 Derivative

Geometrically, a function may be represented by its graph. The graph of a linear
function is a straight line. Therefore a linear approximation at x( is a straight line
that “best fits” the graph of the given function near xy. This is the tangent line of
the function.

Lpg
tangent L

Figure 2.1.1: The linear approximation is the tangent line.

Specifically, the point P in Figure 2.1.1 is the point (zg, f(x¢)) on the graph
of f(x). We pick a nearby point @ = (z, f(z)) on the graph, for x near xy. The
straight line connecting P and @) is the linear function (the variable in Lpg is ¢
because z is already used for Q)

) = flao)

r — g

Lpq(t) = f(xo) + (t — o).

As z — 1z, (Q approaches P, and the linear function approaches L(t) = a+b(t — ).
Therefore we have a = f(zy), and b is given below.

Definition 2.1.2. The derivative of a function f(z) at zg is

f(z) — f(zo) ~ lim f(xo+h) — f(xo)
2 S > .

T—T0 xr — X h—0

We emphasize that the linear approximation is the concept. As the coefficient b
of the first order term, the derivative f'(xq) is the computation of the concept. The
following says that the concept and its computation are equivalent.

Proposition 2.1.3. A function f(x) is differentiable at xo if and only if the derivative
f'(xg) exists. Moreover, the linear approzimation is given by f(zo) + f'(z0)(x — x0).

The notation [’ for the derivative is due to Joseph Louis Lagrange. It is simple
and convenient, but could become ambiguous when there are several variables related

d
in more complicated ways. Another notation d_f’ due to Gottfried Wilhelm Leibniz,
x
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is less ambiguous. So we also write

ﬁ — lim M — lim ﬂj
dx z—To T — g Az—0 Az

T=x0

Af = f(z)— f(zg), Az = x — x0.

We emphasize that Leibniz’s notation is not the “quotient” of two quantities df and
dz. It is an integrated notation that alludes to the fact that the derivative is the

A
limit of the quotient A_f of differences.
x

Example 2.1.1. The function f(x) = 3z — 2 is already linear. So its linear approx-

imation must be L(x) = f(x) = 3z — 2. This reflects the intuition that, if the

distance is exactly 7Tmbcm, then the measure by the ruler in centimeters should be

d(3x — 2)
dx

7mbem. In particular, the derivative f'(z) = 3, or
have (A + Bz) = B.

= 3. In general, we

Example 2.1.2. To find the linear approximation of 2% at 1, we rewrite the function
in terms of x — 1

=1+ @-1))>2=1+2x—-1)+ (z - 1>~
Note that L(z) = 1+ 2(x — 1) is linear, and the error |2? — L(z)| = (z — 1)? is
significantly smaller than |x — 1| when x is near 1

lz—1|<d=€¢ = |2° - L(2)| < e|lz —1].

Therefore 1 + 2(z — 1) is the linear approximation of z* at 1, and the derivative

(@) |1 = d(df; )

z=1
Exercise 2.1.1. Find the linear approximations and then the derivatives.

1. bz 4+ 3 at xg. 3. x2 at xo. 5. 2™ at 1.

2. 23 —2z+1at 1. 4. 23 at xg. 6. " at xop.

Exercise 2.1.2. Interpret the limits as derivatives.

1 pP_1 . cos & . arcsin
1. limy_ % 3. hmm%g p— 5. limg_o
T
. vr+9—-3 . sin x . 1 T
2. hmz_>0 T 4. 11mx4)77 ﬁ 6. hmxﬂg m 10g 5

2.1.2 Basic Derivative

We derive the derivatives of the power function, the exponential function, the loga-
rithmic function, and the trigonometric functions.
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Example 2.1.3. For 2y # 0, we have

1 1
d (1 o I_o . To— T . 1 1
el = lim = lim —— = lim — = ——.
dr \z ) |,_,, ~#7%0 T—To @ rox(r — T9) TowO  TT xg
L. . . .11
Therefore — is differentiable at z(, and the linear approximation is — — — (z — o).
x Lo Ty

We express the derivative as
1
r) a2

Example 2.1.4. For zy > 0, we have

ddﬁ zlimﬂzlim VT — Vo — 1
x

o—gy %0 T — o Tz (\/__\/17_0)(\/5—1—\/:70) 2\/50.

1
2./%o

Therefore 1/ is differentiable, and the linear approximation is /g — (x —x9).

We express the derivative as

dx 2z

Example 2.1.5. By Example 1.7.21, we have

(vay =t ]

d(xP)
dx

1 P _
T U L) il
h—0

=1
Therefore z? is differentiable at 1 and has linear approximation 1 + p(z — 1).

Examples 2.1.3 and 2.1.4 are the derivatives of z? for p = —1 and 3 at general

xo > 0. For general p, we take h = zgy and get

d(z?) _ (xo + h)P — ) i (o + zoy)? — f)
dx w0 h—0 y—0 Toy
(1 P—1 _
=ty <

We express the derivative as
(2P) = pa?P~ .

Example 2.1.6. By Example 1.7.18, we have

dlog x . logz —logl . log(y+1)
m———=lim ——~= = 1.
dx =1 z—1 x—1 y—0 Yy
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Therefore log x is differentiable at 1 and has linear approximation x — 1.
In general, at any zy > 0, by taking h = xqy, we have

dlogx

_ lim log(xg + h) — log g _ lim log(y+1) 1

dx R h y—=0 Ty o

We express the derivative as

1
logz) = =,
(logz) "

Example 2.1.7. By Example 1.7.19, we have

de® . emth _ero o ch

— = lim —— = lim €™

dx _ h—0 h h—0 h
T=10

We express the derivative as
(e*) = e€".

Example 2.1.8. In Section 1.5.4, we find

. sinz —sin0 . sinz
lim ——— = lim =1,
x—0 xr — 0 x—0 I

Therefore sin z is differentiable at x = 0, and the linear approximation at 0 is x.
More generally, we have

dsinx Y sin(xg + h) — sinxg
do |,_,  n0 h
. sin h cos xy + cos h sin xy — sin xg
= Wl h
. cosh—1 . sin h
= ]lllil(lj (T sin xg + N cos a:o)

=0-sinzg+ 1-cosxzyg = cosxg.
We express the result as
(sinz)" = cosx.
By similar method, we have

(cosz) = —sinz.

Example 2.1.9. In Section 1.5.4, we find

. sinx —sin0 . sinz
lim ———— = lim =1,
z—0 x—0 z—0 I

Therefore sin z is differentiable at x = 0, and the linear approximation at 0 is x.
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More generally, we have

dsinx sin(xg + h) — sin g
dv |,_, ~ h>0 h

! sin h cos x¢ + cos h sin xy — sin xg

=1
h—0 h

. cosh—1 . sin h

=lim | ———sinzg + COS Tg

h—0 h h

=0-sinzg+ 1 cosxy = cosxp.

We express the result as
(sinz) = cosx.
By similar method, we have

cosz) = —sinz.
(cos )

Exercise 2.1.3. Find the derivatives and then the linear approximations.

1. Jx at 1. 3. cosz? at 0. 5. arcsinx at 0. 7. sinsinz at 0.
2. (logx)? at 1. 4. tanx at 0. 6. arctanz at 0. 8. x2D(x) at 0.

Exercise 2.1.4. Find the derivatives, a > 0.

xT

1. log, . 2. a®. 3. tanw. 4. arcsinw.

Exercise 2.1.5. We have log|z| = log(—=x) for x < 0. Show that the derivative of log(—x)
at zg < 0 is —. The interpret your result as
Zo
1
log |z]) = =.
(log )/ = -

Exercise 2.1.6. What is the derivative of log, |z|?

Exercise 2.1.7. Suppose p is an odd integer. Then P is defined for x < 0. Do we still have
(xP)" = paP~! for x < 07

2.1.3 Constant Approximation

If a measurement of distance by a ruler in centimeters gives 7 meters and 5 centime-
ters, then the measurement by another (more primitive) ruler in meters should give
7 meters.

Analogously, if a + b(z — ) is a linear approximation of f(z) at z¢, then a is a
constant approzimation of f(x) at xo. Since the “basic unit” for constant functions
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is 1, the constant approximation means that, for any ¢ > 0, there is 6 > 0, such that
|t —x9] <6 = |f(z) —al <e

This means exactly that f(z) is continuous at x(, and the approximating constant
is a = f(xg). Therefore the fact of linear approximation implying constant approx-
imation means the following.

Theorem 2.1.4. If a function is differentiable at a, then it is continuous at a.

We do not expect the continuity to imply differentiability, because we do not
expect the measurement in meters can tell us the measurement in centimeters.

Example 2.1.10. The sign function

1, if x>0,
sign(z) =<0, ifz=0,
-1, ifx <0,

is not continuous at 0, and is therefore not differentiable at 0. Of course, we have
(sign(z))’ = 0 away from 0.

Example 2.1.11. The absolute value function |z| is continuous everywhere. Yet the
derivative o] — [l
PR i e |
(|z])"e=0 = lim =0 :lcli%sgn(x)

diverges. Therefore the continuous function is not differentiable at 0.

Example 2.1.12. The Dirichlet function D(z) in Example 1.6.13 is not continuous
anywhere and is therefore not differentiable anywhere.
On the other hand, the function zD(z) is continuous at 0. Yet the derivative

xD(z
(xD(x))|3=0 = lim () = lim D(x)
x—0 x x—0
diverges. Therefore xD(z) is not differentiable at 0, despite the continuity.
Exercise 2.1.8. Find the derivative of |z| at xo # 0.
Exercise 2.1.9. Determine the differentiability of |z|P at 0.

Exercise 2.1.10. Is xD(x) differentiable at xo # 07

Exercise 2.1.11. Determine the differentiability of |z|PD(x) at 0.
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Exercise 2.1.12. Determine the differentiability of
|:z:]f"sinl ite#0
flz) = a’ ’
0, if x =0,

at 0.

Exercise 2.1.13. Let [z] be the greatest integer < z. Study the differentiability of [x].

2.1.4 One Sided Derivative

Like one sided limits, we have one sided derivatives

fi(@o) = xlfilg f(x:i - iémo‘)’ f(@o) = xlfila f(:}cx) = isx[))

The derivative f'(x¢) exists if and only if both f’ (z¢) and f” (x¢) exist and are equal.

Example 2.1.13. We have

Nor = lim P o = fim 2
(2l awor = Tim 0= 1, (fal)aco- = lim = 1.

Therefore |z| has left and right derivatives. Since the two one sided derivatives are
different, the function is not differentiable at 0.

Example 2.1.14. Consider the function

e’, if x>0,
Jw) = {x—l—l, if x <0.

We have (note that f(0) =¢e®=0+1)
O = (@Yoo =1, £(0) = (& + 1V]oo = 1.

Therefore f/(0) = 1 and has linear approximation 1+ z at 0.

Exercise 2.1.14. Determine the differentiability.

1. |22 — 32z +2| at 0,1, 2. 3. |sinz| at 0.
2. /1 —coszx at 0. 4. |n% — 2?|sinz at 7.

Exercise 2.1.15. Determine the differentiability at 0.
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] 22, ifz> 0, 3 ace_%, if x >0,
"z, ifz<o. "o, if z < 0.
1 .
9 dorr Tr=0 , Jleg(l+ ), ifa >0,
T, if x <0. e’ —1, if x <0.

Exercise 2.1.16. Determine the differentiability, p, g > 0.

) (x—a)P(b—2)1, ifa<az<b, 3 2e™ ™ if x| <1,
o, otherwise. e, if |z| > 1.
N E:Trctanx, if |z| <1, A log|z|, if |z|>1,
VR& if |z] > 1. ", if |z| < 1.

Exercise 2.1.17. Find a, b, ¢, such that the function

a

-, ifx>1,
fl)y=q¢2 ,
bxr +c, ifx<I1,

is differentiable at 1.
Exercise 2.1.18. For p > 0, 2P is defined on [0,4). What is the right derivative of P at 07

Exercise 2.1.19. For some p (see Exercises 2.1.7 and 2.1.18), x? is defined on (-4, §). What
is the derivative of z* at 07

Exercise 2.1.20. Suppose g(z) is continuous at xg. Show that f(z) = |z — zolg(z) is
differentiable at x( if and only if g(z¢) = 0.

2.2 Property of Derivative

2.2.1 Arithmetic Combination of Linear Approximation

Suppose f(x) and g(z) are linearly approximated respectively by a + b(z — () and
¢+ d(z — xg) at zg. Then f(x) + g(x) is approximated by

(a+b(x —x0)) + (c+d(x —x0)) = (a+¢) + (b+ d)(x — x0).

Therefore f + g is differentiable and (f + g)'(z9) = b+ d. Since b = f'(x() and
d = ¢'(z9), we conclude that

d d d
(F + 9)(x) = F(x) + ¢'(x), or UTW) _ é + 2
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Similarly, C'f(z) is approximated by
Cla+b(x —xg)) = Ca+ Cb(z — x9).
Therefore C'f(z) is differentiable and (C'f)'(x¢) = Cb, which means

(Cf)(x)=Cf'(x), or % = C’%.

We also have f(x)g(z) approximated by

(a+b(z — x0))(c+ d(z — 29)) = ac + (be + ad)(x — x¢) + bd(z — 7).

Although the approximation is not linear, the square unit (z — x)? is much smaller

than = — xy when z is close to zg. Therefore f(x)g(x) is differentiable and has
linear approximation ac + (bc + ad)(z — xg), and we get (fg)'(zo) = bc + ad. By
a = f(xg),b= f'(x0),c= g(x0),d = ¢'(x0), we get the Leibniz rule

U@@ﬂzf@h@%+ﬂ@ﬂ@’mg%?:f%9+E%'

The explanation above on the derivatives of arithmetic combinations are analo-
gous to the arithmetic properties of limits.

Exercise 2.2.1. Find the derivative of the polynomial p(x) = ¢ 2™ + - -+ + 12 + ¢o.

Exercise 2.2.2. Compute the derivatives.

1. e’sinz. 4. sin®z cos . 7. (x —1)e". 10. 2z%logx — 2.
2. sin? . 5. sinz — xcosz. 8. x2e”. 11. ze*cosx.
3. e%z, 6. cosx + zsinz. 9. zlogz — . 12. ze® cosxlogx.

Exercise 2.2.3. Find a polynomial p(x), such that (p(z)e®) = z2e*. In general, suppose
(pn(z)e®) = z™e”. Find the relation between polynomials p,,(z).

Exercise 2.2.4. Find polynomials p(z) and ¢(x), such that (p(z)sinz + ¢(x)cosz) =

z2sin z. Moreover, find a function with derivative z2 cos z?

Exercise 2.2.5. Find constants A and B, such that (Ae” sin x+ Be® cos z)’ = e” sinz. What
about (Ae”sinx + Be® cosz)’ = e” cosx?

2.2.2 Composition of Linear Approximation

Consider a composition g o f

vy = f(r) = 2=g(y) = g(f(x)).
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Suppose f(x) is linearly approximated by a + b(z — xg) at xg and g(y) is linearly
approximated by ¢+ d(y — yo) at yo = f(zo). Then

a= f(xo) =y, b=f(x0), c=glyo)=9(f(x0)), d=g' () =g (f(x0)),

and the composition g o f is approximated by the composition of linear approxima-
tions (recall a = yp)

c+d[(a+ bz —xg)) — yo| = ¢+ db(z — x).
Therefore the composition is also differentiable, with

(g0 f) (zo) = db = g'(yo) f'(w0) = g'(f (w0)) f'(0)

This gives us the chain rule

(9(f () = (g o f)(x) = g'(f (@) f'(2) = g W)ly=r@ [ (),

or

& _dzdy
de  dydx’

1
Example 2.2.1. We know (logz)' = — for x > 0. For x < 0, we have
T

(log(—2))" = (log y)'|y=—o(—2)" = = (—1) = —(-1) = i

Therefore we conclude )
(log |x|) = =, for z # 0.
x

Example 2.2.2. In Example 2.1.5, we use the definition to derive 2? = paxP~!. Alter-
natively, we may also derive the derivative of 2P at general xy > 0 from the derivative
(xP)! _, = p at a special place.
To move from xq to 1, we introduce y = :cﬁ Then 2? is the composition
0

T
ry=—+—z=ua =z’
Zo

Then x = x( corresponds to y = 1, and we have

o)) _de) dy)_d) 4
dx N dy =1 dx N dy =1 dr \ xg N
d(y”) 1 1 -1
=ab. —= c—=abp-— =pzb.
0 dy " o P 70 bxy

Exercise 2.2.6. Use the derivative at a special place to find the derivative at other places.
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T

1. log . 2. e”. 3. sinzx. 4. cosz.

Exercise 2.2.7. Use cosz = sin (— — x) and the derivative of sine to derive the derivative

of cosine. Use the similar method to find the derivatives of cot  and csc x.
Exercise 2.2.8. A function f(z) is odd if f(—z) = —f(x), and is even if f(—x) = f(z).

What can you say about the derivative of an odd function and the derivative of an even
function?

Example 2.2.3. By Example 2.1.3 and the chain rule, we have

() - (G)

Then we may use the Leibniz rule to get the derivative of quotient

(565) - (r5t) =g+ ()

/ f'(@)
2 f xT) = EYIRVE
y=1() =

y=f(z) Y

T g'(x) _ flx)g(x) — f(x)g'(x)
=105 T gy oy
Exercise 2.2.9. Derive the derivatives.
(tanz) =sec’z, (secz) =secxtanz, (e %) = —e %,

Exercise 2.2.10. Compute the derivatives.

1 2 —z+1 1 z
1. . Lo 5. . 7. -
x4+ 2 3. 2B+1 axr +0b z?+ar+b
g L1 g B g ot S
x—2 22 —x+1 cx+d (x+a)(x+0)

Exercise 2.2.11. Compute the derivatives.

1. loga:. 2. logm' 3. 2’ . ¢ .
T P log zlogx

Exercise 2.2.12. Compute the derivatives.

1 sin x 9 1 3 1+ xztanx 4 cosx + xsinx
" a+cosx’ a+tanx tanz — x " sine —zcosz’

Exercise 2.2.13. The hyperbolic trigonometric functions are

. e’ —e T ef +e*
sinhx = ————, coshx = —s
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and inh h 1 1
sinh cosh z

tanhz = , cothx = — ,  sechx = , cschx = — .

cosh x sinh z cosh x sinh x

Find their derivatives and express them in hyperbolic trigonometric functions.

Example 2.2.4. The function (2 —1)° is the composition of z = y'° and y = 2% — 1.
Therefore

10 2
(2% = 1)) = dgy )d(xdx Y 10y 20 = 200(s? — 17"

Example 2.2.5. The function a* = €**, b = loga, is the composition of z = ¥ and
y = bx. Therefore

(ax)l = (ey)/|y:bx(bl‘)/ = ebmb =a” 1og a.

Exercise 2.2.14. Compute the derivatives.

1. (1— ). 4. (14 (1 —22)10)9. - (z+1)°
" (x4 5)%
2. (3z + 2)10. 5. ((23—1)8+(1—22)10)". o
xr(x +
3. (23 —1)10(1 — 22)°. 6. (1-@Bz+2°+1)°. % G romra)

Exercise 2.2.15. Compute the derivatives.

1. cos(z® + 322 + 1). 6. \/Sinz + cos . 10, Sn¥@
L
sin
2. tan'® (z(z + 1)?). sin3 2\ "
. 7. (cos4 x) . 1 sin 2z + 2 cos 2x
3. sin(vz +3). " 2sinz —cos2x
4. sin(vz — 2+ 3). 8. sin(cosz). .
19 sin® \/z
5. (sinz + cos ). 9. sin(cos(tanx)). " 1+ cosO(sin® z)”
Exercise 2.2.16. Compute the derivatives.
1. e, 5. log, e. 9. log|cosz|.
2. (22 —1)e*". 6. log(log z). 10. log|tanx|.
3. ele”) 7. log < 1 ) 11. log|secx — tanx|.
log x
) 121 1—sinz
ogzx . e
4. e°87%, 8. log(log(logx)). %8 sina

Exercise 2.2.17. Compute the derivatives.
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1. (ax + b)P. 4. e,
2. (az? + bz + c)P. 5. log(azx +b).
3. (a+ (bz? + c)P)1. 6. sin(azx + b).

Exercise 2.2.18. Compute the derivatives.

1 1 Z
- - 5., —.
Ly B o
1
2 —— S 6. —— .
va? + z? a? — x2 7?2 — a?
Exercise 2.2.19. Compute the derivatives.
1. \/1+ z. g _ Vrt+l L (LvE 10
, (I-vz+a)? \1-yz/)
p— (VI +1)*
\/ 9, ————.
L+ v (1 -z + )3 15 Ve+1l—+vz—1
5 CVrHl+Vr—1
3.4/ 14+ 1+ V. 10, J1E®
. —-
l-w 16 Vitzrz—+vV1—-2
4. \Jz +x+ Ve 1 ol S Vtz+VI-z
V1= a2
10
5. (14 2vz+1)". " NGy . < 1 . 1 >10
A= “\1 1-— ’
6. (1+2vz +1)-10. V1-vr Ve Ve
; Vatl 13, [LEVE 18, (14—
Cx—2 1-Vz Va2 +1
Exercise 2.2.20. Compute the derivatives.
1. |2%(x +2)3]. 2. |sin® |, 3. |z(e® —1)]. 4. |(z—1)%logz|.

Exercise 2.2.21. Compute the derivatives.

1. Vz —log|vz +al.

b

1
s+ =1 b|.
a?(ax +b) + a? og laz + 9]

3. —llog ar b.
b T

4 1 —ilo ar +b
" blax +b) b2 87

CHAPTER 2. DIFFERENTIATION

7. cos(ax + b).
8. tan(ax + b).

9. sec(ax +b).

1
5. 5 log(a? + 2%).

6. v/z(a+ ) —alog(/z +Vr + a).

7. L jog YaZ D= VE
RV g\/ax—l-b—l-\/g'

8. xzlog(x + V22 +a) — Va2 +a.

1 a4+ Va?+ x?
9. ——log———.
a x
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2

1 1
10. - log ———M——. 12. —§x2 + 3 <x2 - Z2> log(a? — b%z?).

b 1., 1 b?
11 —z—-224+= (22— % )1 .
5.8 7% ts <x a2> og(azx+b)

Example 2.2.6. By the chain rule, we have

!
<10g ‘l’ +Vvartta ) = (log |y|)/|y:x+m [I/ + (V2) |s=a pala® + a)/]
1 1 1
S |, 7% [ ————
T+vVr2+a 2vV12 +a Vi +a

Now suppose we wish to find a function f(x) with derivative

1

!
)= ——— .
f(w) Vi +axr+b
By
1 1 a a?
flz) = = , Y=+ -, c=b——,
! \/<$+2>2+b—a—2 Ve ’ !
2 4

2
a a
we may substitute x by x + 5 and substitute a by ¢ = b — R Then we get

). Gx5)

/
(log’x+%—|—\/x2+am+b‘> = (log‘y+ Vyr+ec

y:a:+§
1 1
B y2+cy7m+a ViZfar+b

Exercise 2.2.22. Find constants A and B, such that (Ae® sin bx+ Be® cosbzx) = e cos bz.
What about (Ae® sinbx + Be® cosbx) = e sin bx?

Exercise 2.2.23. Use Example 2.2.6 to compute the derivatives.

1. log(e® + V1 + €2%). 2. log |z — Va2 + al. 3. log(tanz + sec ).

Exercise 2.2.24. Compute the derivative of log
1
(x+a)(x+0b)

x T Then find a function with derivative
T

. In case a® > 4b, can you find a function with derivative ————?
22 +axr+b

Exercise 2.2.25. Compute the derivative of zvz? + a + alog(z + V22 + a). Then find a
function with derivative va? + ax + b.

Exercise 2.2.26. Use Example 2.2.6 to compute the derivatives.
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1. log(e” + V1 + e2%). 2. log(x — Va2 + a). 3. log(tanz + secx).

Example 2.2.7. By viewing 2P = eP'°8% as a composition of z = ¢¥ and y = plogz,
we have

d(z") (ePlos ) _d(eY) d(plog x) _ plogaP

dx de dy

p _
y = gPZ = paP L.
y=plog x x x

This derives the derivative of 2P by using the derivatives of e* and log x.

Example 2.2.8. Suppose u(x) and v(x) are differentiable and u(x) > 0. Then
u<x>v(x) —_ 6u(a:) logv(a:)j and

(u(2)" @) = (") = (e7)'|, (o) og ute) (v(2) log u(x))'.

By

(6y)/|y:7’($) logu(z) — ey|y:fu(ac) logu(z) = V(@) logu(z) — U(l')v(x)a

and
(v(z)logu(x)) = v'(x)log u(z)+v(x)(log u) |umum v (z) = v'(x) log u(z)+

We get

(u(l’)v(z)), _ U(I)v(m) (U’(ZE) logu(x) 4 U(Z)(z;’)(iﬂ))

= u(2)"@ " u(z)v' (x) logu(z) + o' (z)v(x)).

Exercise 2.2.27. Compute the derivatives.

1. 2% 4. (a®)*. 7. (z%). 10. z(="),
2. . 5. (%) 8. al@”). 11. @),
3. (2?)*. 6. (%)% 9. x@), 12. (%)),

Exercise 2.2.28. Compute the derivatives.

1. zsine, 3. (sinx)°os?. 5. Vlogx. 7. (e +e )"
2. (sinz)®. 4. . 6. o887 8. (log|z? — 1])=.

Exercise 2.2.29. Let f(z) = u(x)"®). Then log f(z) = u(x)logv(z). By taking the deriva-
tive on both sides of the equality, derive the formula for f/(z).

Exercise 2.2.30. Use the idea of Exercise 2.2.29 to compute the derivatives.
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L rta 5 (z +c)(x+d) . (2% +2+1)7
z+b " (zta)(z+b) (a2 —z+1)3
5 1 A (x+3)"V2xr -1 6 e t1y/sinx
" (x+a)(z+b) ' 2z +1)3 S (2?2 —ax+1)3loga

2.2.3 Implicit Linear Approximation

The chain rule can be used to compute the derivatives of functions that are “implic-
itly” given. Such functions often do not have explicit formula expressions.

Strictly speaking, we need to know that implicitly given functions are differen-
tiable before taking their derivatives. There are general theorems confirming such
differentiability. In the subsequent examples, we will always assume the differentia-
bility of implicitly defined functions.

Example 2.2.9. The unit circle 22 + y?> = 1 on the plane is made up of the graphs
of two functions y = v/1 —z2? and y = —v/1 — 2. We may certainly compute the
derivative of each one explicitly

(VI= ) = %(1 R e

On the other hand, we may use the fact that both functions y = y(x) satisfy
the equation x? + y(x)? = 1. Taking the derivatives in z of both sides, we get
22 + 2yy’ = 0. Solving the equation, we get

y ="
Y
This is consistent with the two derivatives computed above.

There is yet another way of computing the derivative y'(x). The circle can be
parametrized as x = cost, y = sint. In this view, the function y = y(x) satisfies
sint = y(cost). By the chain rule, we have

cost = ¢ (z)(—sint).

Therefore
cost oz

! = — — .
y(:c)— sint Y

In general, the derivative of a function y = y(z) given by a parametrized curve
z=ux(t), y=y(t)is

iy = Y0
Note that the formula is ambiguous, in that ¢'(z) = — cott and 3/(¢) = cost are not

the same functions. The primes in the two functions refer to T and 7 respectively.
x
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So it is better to keep track of the variables by using Leibniz’s notation. The formula
above becomes

dy
dy _ dr
dv dr’
dt
d dy d
This is just another way of expressing the chain rule @ _ e
dt  dx dt

Exercise 2.2.31. Compute the derivatives of the functions y = y(x) given by curves.
1. x =sin?t, y = cos’t.
2. x =a(t —sint), y = a(l — cost).
3. x = elcos2t, y = el sin 2t.

4. x = (1 +cost)cost, y = (1+ cost)sint.

Example 2.2.10. Like the unit circle, the equation 2y —2x? —siny+1 = 0 is a curve on
the plane, made up of the graphs of several functions y = y(z). Although we cannot
find an explicit formula for the functions, we can still compute their derivatives.
Taking the derivative of both sides of the equation 2y — 22? — siny + 1 = 0 with
respect to x and keeping in mind that y is a function of =, we get 23/ —4x—y’ cosy = 0.

Therefore
, 4z

4= 2 —cosy’

The point P = (\/g, g) satisfies the equation and lies on the curve. The

tangent line of the curve at the point has slope

Wy oo
y,’p_ = 2.
2—COS§

Therefore the tangent line at P is given by the equation

y—g:\/ﬁ(x_\/§>,

Yy =V2rw — g

or



2.2. PROPERTY OF DERIVATIVE 111

Example 2.2.11. The equations 2 + y* 4+ 22 = 2 and = + y + z = 0 specify a circle
in the Euclidean space R? and define functions y = y(z) and z = z(z). To find the
derivatives of the functions, we take the derivatives of the two equations in z

20 +2yy’ + 222 =0, 1+4y +2 =0.

Solving for 3/ and 2/, we get

/ Z-Z / y—x
y = , 2= :
y—= ~-Y

Exercise 2.2.32. Compute the derivatives of implicitly defined functions.

Ly +33° +1=nx. 4. T+ Yy = Va.
2. siny = x. 5. Y = xy.
2 2
xr
3.§+%2:1' 6. a* +2zy — y* — 22 = 0.

Exercise 2.2.33. Find the derivative of the implicitly defined functions of z.
L.a2P+yP=2atx=1,y=1.
2. zy=sin(x+y)at x =0,y = 7.

r+y y+z z4+x
= = atr=y=z2z=1.

3.

z T

Exercise 2.2.34. If f(sinz) = z, what can you say about the derivative of f(z)? What if
sin f(z) = a?

Example 2.2.12. In Example 1.7.11, we argued that the function f(z) = 2%+ 32%+1
is invertible. The inverse g(z) satisfies g(x)° 4+ 3g(z)* 4+ 1 = 2. Taking the derivative
in z on both sides, we get 5g(x)*¢'(z) + 9g(x)?¢/(x) = 1. This implies

1
bg(x) + 9g(x)*

g'(x) =

Example 2.2.13. In Example 2.2.12, we interpreted the derivative of an inverse
function as an implicit differentiation problem. In general, the inverse function
g(x) = f~Y(z) satisfies f(g(x)) = z. Taking the derivative of both sides, we get
f'(g(x))g'(x) = 1. Therefore

r_ 1 r(f! r_ 1
(g(%)) - f/(g(x))v 0 (f (l’)) f/(f_l(l'))
For example, the derivative of arcsinx is
1 1 1

(arcsinz)’ = = =

(SiIl y>/|y=arcsinx (COS y) |:E=siny vV 1 — ZEZ .
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In the last step, we have positive square root because y € [—— —

CHAPTER 2. DIFFERENTIATION

7T7Ti|
2721

The computation can also be explained by considering two variables related by
y = y(x) and x = z(y), with x(y) being the inverse function of y(x). The chain rule

dz d d
tells us ﬁ% = d_i = 1. Then we get
dx 1 ,
d_y = @, or z'(y)

dx

1 1

Y () |e=a(y)

y'(z(y))

Specifically, for y = arcsin x, we have r = siny. then

1 1 1

darcsinx_@_i_ 1
de  do  dr  (siny)
dy

cosy V1 —sin?y VI

Exercise 2.2.35. Derive the derivatives of the inverse trigonometric functions

1

tanz) = ——
(arctan ) 22

Exercise 2.2.36. Compute the derivatives.

1. arcsin/z.

2. arcsin 1 — z2.

3. arctan

Exercise 2.2.37. Compute the derivatives.

Tr—a

1. 2 i .
arcsin —

La
2. —arcsin —.
a T

1 x
3. —arcsec—.
a a

(arccosx) = —

1 ( ), 1
———, (arcsecx) = ————.
V1—22 zvzr? —1

arccosz 1 1—+v1—22
4. + —log ————.
x 2 141 — 22
arcsin x 1
5 ——— + —log(1 — x2).
T T g L8l )
6 ; 1—=x
. arctan ————.
V2 — x?
5. — x(a—:r)—aarctanM.
T —a

1 1
6. fx\/m + —a? arctan _r .
9 9 a2 — 12

7. xlog(x? + a?) + 2a arctan T o
a

Exercise 2.2.38. Compute the derivative of arcsin . Then use the idea and result of

Example 2.2.6 to find a function with derivative

a
1

Var2 +br + ¢



2.3. APPLICATION OF LINEAR APPROXIMATION 113

Exercise 2.2.39. Compute the derivative of zva? — z2 + a? arcsin E. Then combine with
a
the result of Exercise 2.2.25 to find a function with derivative vax? + bx + c.

1
Exercise 2.2.40. Compute the derivative of — arctan L. Then for the case a2 < 4b, find a
a a
1

function with derivative ——————. This complements Exercise 2.2.24.
22+ ax+b

Vi 1-1
\/%1“ and arctan+/x. Then find a
T

Exercise 2.2.41. Compute the derivative of log

function with derivative

1

avaz + b

Exercise 2.2.42. Suppose f(z) is invertible, with f(1) =1, f/(1) = a. Find the derivative
_

x

)
Exercise 2.2.43. Explain the formula for the derivative of the inverse function by consid-
ering the inverse of the linear approximation.

of the functions f and f~1(f~1(x)) at 1.

Exercise 2.2.44. Find the place on the curve y = 22 where the tangent line is parallel to
the straight line z +y = 1.

Exercise 2.2.45. Show that the area enclosed by the tangent line on the curve zy = a? and
the coordinate axes is a constant.

Exercise 2.2.46. Let P be a point on the curve y = 23. The tangent at P meets the curve
again at ). Prove that the slope of the curve at @) is four times the slope at P.

2.3 Application of Linear Approximation

The linear approximation can be used to determine behaviors of functions. The
idea is that, if the linear approximation of a function has certain behavior, then the
function is likely to have the similar behavior.

2.3.1 Monotone Property and Extrema
We say a function f(x) has local maximum at xo, if

x € domain, |r —xo| <J = f(z) < f(z0).
Similarly, f(z) has local minimum at x, if

x € domain, |r —xo| <J = f(z) > f(z0).
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The function has a (global) maximum at x¢ if f(xg) > f(x) for all x in the
domain
x € domain = f(z) < f(xo).

The concepts of (global) minimum can be similarly defined. The maximum and
minimum are extrema of the function. A global extreme is also a local extreme.

The local maxima are like the peaks in a mountain, and the global maximum is
like the highest peak.

max

loc|max

loc min

n

a b
Figure 2.3.1: Local and global extrema.
The following result shows the existence of global extrema in certain case.

Theorem 2.3.1. Any continuous function on a bounded closed interval has global
mazximum and global minimum.

If a function f is increasing on (xg—4d, zo| (i.e., on the left of 25 and including ),
then f(xg) is the biggest value on (zq—0d, xo|. If f is also decreasing on [xq, 2o+0) (i.e.,
on the right of zy and including xg), then f(x() is the biggest value on [z, z + 9).
In other words, if f changes from increasing to decreasing as we pass z( from left to
right, then z is a local maximum of f. Similarly, if f changes from decreasing to
increasing at xg, then zj is a local minimum.

Example 2.3.1. The square function z? is strictly decreasing on (—o0, 0] because
1 <19 <0 = m§>x§

By the same reason, the function is strictly increasing on [0, +oc). This leads to
the local minimum at 0. In fact, by 22 > 0 = |0| for all z, we know 22 has a
global minimum at 0. The function has no local maximum and therefore no global
maximum on R.

On the other hand, if we restrict 2% to [—1,1], then 22 has global minimum at
0 and global maxima at —1 and 1. If we restrict to [—1,2], then 2% has global
minimum at 0, global maximum at 2, and local (but not global) maximum at —1. If
we restrict to (—1,2), then 22 has global minimum at 0, and has no local maximum.
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Example 2.3.2. The sine function is strictly increasing on [er — g, 2nm + g} and

3
is strictly decreasing on [Qnﬁ + g, 2nm + ;} . This implies that 2nm + g are local

maxima and 2nm — T are local minima. In fact, by sin <2n7r - g) = —-1<sinz <

1 =sin <2n7r + g), these local extrema are also global extrema.

Exercise 2.3.1. Determine the monotone property and find the extrema for |z|

1. on [—1,1]. 2. on (—1,1]. 3. on [—2,1]. 4. on (—o0,1].

Exercise 2.3.2. Determine the monotone property and find the extrema on R.

1

1. |z|. 5. 5. 9 — 13. e”.
1 241
2 _ —
2. 2%+ 2z. 6. o 10 cos . 14. e 7.
3. |22 + 2z 7.\ zl. 11. sin?z. 15. logz.
1
4. z3. 8. :n+;. 12. sinz2. 16. x=®.

Exercise 2.3.3. How are the extrema of the function related to the extrema of f(z)?

1. f(z)+a. 2. af(x). 3. f(z) 4. a/@),

Exercise 2.3.4. How are the extrema of the function related to the extrema of f(x)?
1. f(z+a). 2. f(az). 3. f(2?). 4. f(sinz).

Exercise 2.3.5. Is local maximum always the place where the function changes from in-
creasing to decreasing? In other words, can you construct a function f(z) with local
maximum at 0, but f(x) is not increasing on (—4, 0] for any § > 07

Exercise 2.3.6. Compare the global extrema on various intervals in Example 2.3.1 with
Theorem 2.3.1.

2.3.2 Detect the Monotone Property

Suppose f(x) is approximated by the linear function L(z) = f(xzo) + f'(x0)(z — o)
near ro. The linear function L(z) is increasing if and only if the slope f'(xq) >
0. Since L(z) is very close to f(x), we expect f(z) to be also increasing. The
expectation is true if the linear approximation is increasing everywhere.

Theorem 2.3.2. If f'(x) > 0 on an interval, then f(z) is increasing on the interval.
If f'(z) > 0 on the interval, then f(x) is strictly increasing on the interval.
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Similar statements hold for decreasing functions. Moreover, for a function on
a closed interval [a, b], we just need the derivative criterion to be satisfied on (a, b)
and the function to be continuous on [a, b].

Example 2.3.3. We have (2%) = 2z < 0 on (—00,0) and z? continuous on (—o0, 0].
Therefore 22 is strictly decreasing on (—oo,0]. By the similar reason, x? is strictly
increasing on [0, +00). This implies that 0 is a local minimum. The conclusion is
consistent with the observation in Example 2.3.1 obtained by direct inspection.

x (—o0, 0) 0 (0, +00)
f=a? Ny loc min 0 N
f=2x - 0 +

Example 2.3.4. The function f(z) = ®—3x+1 has derivative f'(z) = 3(z+1)(z—1).
The sign of the derivative implies that the function is strictly increasing on (—oo, —1]
and [1,400), and is strictly decreasing on [—1,1]. This implies that —1 is a local
maximum and 1 is a local minimum.

f=2®—3c+1 ya loc max 3 N loc min —1 /"
f=3x+1)(z—-1) + 0 — 0 +

Example 2.3.5. The function f(z) = sinz — xcosz has derivative f'(z) = zsinz.
The sign of the derivative determines the strict monotone property on the interval
[—5, 5] as described in the picture. The strict monotone property implies that —m, 5
are local minima, and —5, 7 are local maxima.

z| =5 | (=b,—m) | =7 | (—m,0) [0 | (O,7) | =w | (mb)]| b
f || max Ny min ya /4 | max | \, | min
1 - 0 + 0] + 0 -

5 2
Example 2.3.6. The function f(z) = Vx2(z + 1) has derivative f'(z) = %
T

for x # 0. Using the sign of the derivative and the continuity, we get the strict

monotone property of the function, which implies that — is a local maximum, and

0 is a local minimum.

ot N

T (_ > ) _% (_§>0) 0 (07+OO)
f /" max N min Vs
+ — -

no
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local max
local max T
2.377
T 5

-5 T
—2.377
i local min

local min

Figure 2.3.2: Graph of sinz — x cosz.
3 202
-3
Example 2.3.7. The function f(z) = xzx_ . has derivative f'(z) = %

x # £1. The sign of the derivative determines the strict monotone property away
from +1. The strict monotone property implies that —v/3 is a local minimum, and
V3 is a local maximum.

x -3 -1 0 1 V3

S| ] max | N\ Nl N N\ | min | N
1+l 0 | —|no|—-—|0|—=|no|—1| 0 |+

Exercise 2.3.7. Determine the monotone property and find extrema.
1. 2 —3z+2onR. 4. |23 — 3z +2| on R. 7./ |x® — 3z +2|.
9. 2% —3x+2on[-1,2. 5 |z3—3z+2lon[-1,2. 8 V(&¥=3z+2)%

1
3. a®=3x+2o0n(-1,2). 6. [2°=3z+2on(-1,2). 9 Fgo

for

Exercise 2.3.8. Determine the monotone property and find extrema.

L 1 2
T2 o [—1,1]. n +x on [~1,0)U (0.1].
x
sinx
st 02 5. tana -+ cota on [~2.0) U (0.7].
CoS T
. m on [O, 27T] 6 ex—i‘e_x on R

Exercise 2.3.9. Determine the monotone property and find extrema.
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2

1. 2% on [-1,1]. 2. cos*z on R. 3. sin“x on R.

Exercise 2.3.10. Determine the monotone property and find extrema.

1. —z* 4222 —1on [-2,2]. 10. 2% + 3logz on (0, +00).
2. V3+2z—2%on (-1,3]. 11. = —log(1 + ) on (—1,400).
3. |#[P(z +1) on R. 12. e *sinx on R.

4. z2¢® on R.

13. = —sinx on [0, 27].

5. 2Pa” on (0,400).
14. |x —sinz| on [—7,7].

6. |zle~1*=1 on [-2,2]. o
15. |z — si [—f, f].
7. xlogx on (0,400). | — sinz| on 29
8. x2log®z on (0, 400). 16. 2sinz + sin 2z on [0, 27].
9. zPlogx on (0,400). 17. 2z — 4sinx + sin 2z on [0, 7].

Exercise 2.3.11. Show that 2z 4 sinx = ¢ has only one solution. Show that z* +x = ¢ has
at most two solutions.

Exercise 2.3.12. If f is differentiable and has 9 roots on (a,b), how many roots does f’
have on (a,b)? If f also has second order derivative, how many roots does f” have on
(a,b)?

Exercise 2.3.13. Find smallest A > 0, such that logz < Ay/x. Find smallest B > 0, such
B
that logz > ——.

NZ7

Exercise 2.3.14. A quantity is measured n times, yielding the measurements x1,...,z,.
Find the estimate value Z of o that minimizes the squared error (z —z1)%+-- -+ (z —,)%.

Exercise 2.3.15. Find the biggest term in the sequence {/n.

2.3.3 Compare Functions
If we apply Theorem 2.3.2 to f(z) — g(x), then we get the following comparison of

two functions.

Theorem 2.3.3. Suppose f(x) and g(x) are continuous for x > a and differentiable
forxz>a. If f(a) > g(a) and f'(z) > ¢'(x) for x > a, then f(z) > g(z) for x > a.
If f(a) > g(a) and f'(x) > ¢'(x) for x > a, then f(x) > g(z) for x > a.

There is a similar statement for the case z < a.
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Example 2.3.8. We have ¢* > 1 for x > 0 and e* < 1 for x < 0. This is the
comparison of e” with the constant term of the Taylor expansion (or the Oth Taylor
expansion) in Example 2.5.5. How do we compare e* with the first order Taylor
expansion 1+ x?

We have e’ = 1+0. For z > 0, we have (%)’ = e” > (1+x)" = 1. Therefore we get
e > 14x for x > 0. On the other hand, for z < 0, we have (¢”) = ¢e* < (1+z) = 1.
Therefore we also get ¢* > 1 4+ x for z < 0. We conclude that

e’ > 14z for x # 0.

Example 2.3.9. We claim that
H%<log(1+x)<a:forx>—1, x # 0.

The three functions have the same value 0 at 0. Then we compare their derivatives

( i >/: L fog(l42)) = ——, (@) =1

1+ (1+2z)¥ 1+
We have
! < L < 1 f >0
or T
(1+2)? 1+4x ’
and

1 - 1
(1422 14z
The inequalities then follow from Theorem 2.3.3.

>1for —1<z<0.

Example 2.3.10. For a,b > 0 and p > ¢ > 0, we claim that

Q=

(a? + W) < (a + b9)7,

Q|

By symmetry, we may assume a < b. Then ¢ = — > 1, and the inequality means

that f(z) = (14 ¢*)+ is strictly decreasing for z > 0.
By Example 2.2.8, we have

1+c¢* 1
)= (1+c)! (— +26 log(1 + ¢®) + ¢*(log c)—)
T T
1 T %—1
— —( +;2) (c®log c® — (14 ¢®)log(1 + ¢¥)).

So we study the monotone property of the function g(¢) = tlogt. By

gt)=logt+1>0, fort>e

we see that g(t) is increasing for ¢ > e~!. Since ¢ > 1 and z > 0 implies 1 + ¢* >

®>1>e ! we get c®logc® < (1+ ¢®)log(1l + c®). Therefore f/(z) < 0 and f(x)
is decreasing.
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Exercise 2.3.16. State Theorem 2.3.3 for the case z < a.

Exercise 2.3.17. Prove the inequality.

2
1. sinz > —=, f0r0<x<z
us 2

1
2. F§ajp+(1—x)p§1,for0§x§1,p>1

V3 14+ V3
3. < S < .
6+2v3 " 2+22 7 6-2V3

1 T 1 r+1
<1+> <e<(1+> , for z > 0.
T T

r—y

-

5. arctanz — arctany < 2 arctan , for z >y > 0.

2 2

6. ﬁ<x—log(l+x)<%, for x > 0. What about —1 < z < 07

Exercise 2.3.18. For natural number n and 0 < a < 1, prove that the equation

2 "

Izt o et — =aqe”
2! n!

has only one solution on (0, +00).

2.3.4 First Derivative Test

We saw that the local extrema are often the places where the function changes
between increasing and decreasing. If the function is differentiable, then these are the
places where the derivative changes the sign. In particular, we expect the derivatives
at these places to become 0. This leads to the following criterion for the candidates
of local extrema.

Theorem 2.3.4. If f(x) is differentiable at a local extreme xq, then f'(xq) = 0.

If f'(x9) > 0, then the linear approximation L(z) = f(xo) + f'(zo)(x — o) of
f near xzq is strictly increasing. This means that L(z) < L(zo) for x < z( and
L(x) > L(zo) for x > x. Since L is very close to f near x(, we expect that f is also
“lower” on the left of zy and “higher” on the right of z¢. In particular, this implies
that xo is not a local extreme of f. By the similar argument, if f'(xy) < 0, the
is also not a local extreme. This is the reason behind the theorem.

Since our reason makes explicit use of both the left and right sides, the criterion
does not work for one sided derivatives. Therefore for a function f defined on an
interval, the candidates for the local extrema must be one of the following cases:
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f(x) > f(o)

L(z) > L(zo)

f(z) < f(=o) |
L(x) < L(xo)

Figure 2.3.3: What happens near xy when f’(xy) > 0.

1. End points of the interval.
2. Points inside the interval where f is not differentiable.

3. Points inside the interval where f is differentiable and has derivative 0.

Example 2.3.11. The derivative (z?) = 2x vanishes only at 0. Therefore the only
candidate for the local extrema of 22 on R is 0. By 22 > 02 for all , 0 is a minimum.

If we restrict 22 to the closed interval [—1,2], then the end points —1 and 2 are
also candidates for the local extrema. By x? < (—=1)? on [~1,0] and z* < 22 on
[—1,2], —1 is a local maximum and 2 is a global maximum.

On the other hand, the restriction of 2% on the open interval (—1,2) has no other
candidates for local extrema besides 0. The function has global minimum at 0 and
has no local maximum on (—1,2).

Example 2.3.12. Consider the function

22, if x #0,
f(m)_{z, ifr =0,

that modifies the square function by reassigning the value at 0. The function is not
differentiable at 0 and has nonzero derivative away from 0. Therefore on [—1,2],
the candidates for the local extrema are 0 and the end points —1 and 2. The end
points are also local maxima, like the unmodified 2. By z? < f(0) = 2 on [—1,1],
0 is a local maximum. The modified square function f(z) has no local minimum on
[—1,2].

Example 2.3.13. The function f(z) = z* — 3z + 1 in Example 2.3.4 has derivative
f'(x) =3(x+1)(x —1). The possible local extrema on R are £1. These are not the
global extrema on the whole line because lim,_, o, f(z) = —o0 and lim, 1, f(x) =
+00.
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If we restrict the function to [—2, 2], then £2 are also possible local extrema. By
comparing the values

we get global minima at —2, 1, and global maxima at 2, —1.

Example 2.3.14. By (23)’ = 322, 0 is the only candidate for the local extreme of 3.
However, we have 2® < 03 for z < 0 and 2® > 03 for z > 0. Therefore 0 is actually
not a local extreme.

The example shows that the converse of Theorem 2.3.4 is not true.

Example 2.3.15. The function f(x) = ze™* has derivative f'(z) = (z — 1)e*. The
only possible local extreme on R is at 1. We have lim, , o f(z) = —oo and
lim, , 0 f() = 0. We claim that the limits imply that f(1) = e~! is a global
maximum.

Since the limits at both infinity are < f(1), there is N, such that f(z) < f(1)
for || > N. In particular, we have f(£N) < f(1). Then consider the function
on [—N,NJ]. On the bounded and closed interval, Theorem 2.3.1 says that the
continuous function must reach its maximum, and the candidates for the maximum
on [-N,N] are —N,1, N. Since f(£N) < f(1), we see that f(1) is the maximum

n [N, N|. Combined with f(z) < f(1) for |z] > N, we conclude that f(1) is the
maximum on the whole real line.

Exercise 2.3.19. Find the global extrema.

1. 2%(z —1)3 on R, 6. sinz? on [—1,/7].
2. 22(z —1)3 on [-1,1]. 7. xlogx on (0,+00).
3. |z% — 1] on [-2,1]. 8. xlogz on (0,1].

4. 22+ bz +con R. 9. z% on (0, 1].

5 1—a'+ 2% on R. 10. (22 +1)e® on R.

2.3.5 Optimization Problem

Example 2.3.16. Given the circumference a of a rectangle, which rectangle has the
largest area?

Let one side of the rectangle be x. Then the other side is g — x, and the area

A(x)za:(%—x).

The problem is to find the maximum of A(z) on [O, %} .
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By A'(z) = g — 2x, the candidates for the local extrema are 0, %, g. The values
2

of A at the three points are 0, (11_6’ 0. Therefore the maximum is reached when x = Z,

which means the rectangle is a square.

Example 2.3.17. The distance from a point P = (z,yo) on the plane to a straight
line ax + by + ¢ = 0 is the minimum of the distance from P to a point (x,y) on the
line. The distance is minimum when the square of the distance

f(@) = (z = z0)* + (y — %0)*

is minimum. Note that y is a function of x given by the equation ax + by + ¢ =0
and satisfies a 4+ by’ = 0.

P(-fo,yo)

ar+by+c=0

(z,9)

Figure 2.3.4: Distance from a point to a straight line.

From

2

f(@) =2(x — o) +2(y —wo)y' = E(b(fﬁ —x0) — a(y — o)),

we know that f(x) is minimized when
b(x — xp) — aly — yo) = 0.
Moreover, recall that (z,y) must also be on the straight line
ar + by +c=0.

Solving the system of two linear equations, we get

a(azxy + byy + ¢) b(azg + byy + ¢)

The minimum distance is

. |CLJ,’0 + byo + C|

V(@ —20)? + (y — 10)?
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Figure 2.3.5: Snell’s law.

Example 2.3.18. Consider light traveling from a point A in one medium to point B
in another medium. Fermat’s principle says that the path taken by the light is the
path of shortest traveling time.

Let v and v be the speed of light in the respective medium. Let L be the place
where two media meet. Draw lines AP and BQ perpendicular to L. Let the length
of AP, BP, PQ be a,b,l. Let x be the angle by which the light from A hits L. Let
y be the angle by which the light leaves L and reaches B.

The angles x and y are related by

atanx + btany = [.

This can be considered as an equation that implicitly defines y as a function of x.
The derivative of y = y(z) can be obtained by implicit differentiation
2

asec™x

/ —_—
y(w) = bsec?y’

The time it takes for the light to travel from A to B is

b
T aseca . secy
u v
By thinking of y as a function of x, the time T" becomes a function of x. The time
will be shortest when

_dI'  asecxtanz . bsecytany |,

0= — =
dx U v
asecrtanz  bsecytany asec’x
u v bsec? y
B 9 sinx siny
=asec’x — .
U v

This means that the ratio between the sine of the angles x and y is the same as the
ratio between the speeds of light

sin x U

siny v’
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This is Snell’s law of refraction.

Exercise 2.3.20. A rectangle is inscribed in an isosceles triangle. Show that the biggest
area possible is half of the area of the triangle.

Exercise 2.3.21. Among all the rectangles with area A, which one has the smallest perime-
ter?

Exercise 2.3.22. Among all the rectangles with perimeter L, which one has the biggest
area?

Exercise 2.3.23. A rectangle is inscribed in a circle of radius R. When does the rectangle
have the biggest area?

Exercise 2.3.24. Determine the dimensions of the biggest rectangle inscribed in the ellipse

2 2
T+ -
a b2

Exercise 2.3.25. Find the volume of the biggest right circular cone with a given slant height
[.

Exercise 2.3.26. What is the shortest distance from the point (2,1) to the parabola y =
2227

2.4 Mean Value Theorem

If one travels between two cities at the average speed of 100 kilometers per hour,
then we expect that the speed reaches exactly 100 kilometers per hour somewhere
during the trip. Mathematically, let f(t) be the distance traveled by the time ¢.
Then the average speed from the time a to time b is

f(b) — f(a)
b—a
Our expectation can be interpreted as
M = f'(c) for some ¢ € (a,b).
—a

2.4.1 Mean Value Theorem

Theorem 2.4.1 (Mean Value Theorem). If f(z) is continuous on [a,b] and differen-
tiable on (a,b), then there is ¢ € (a,b), such that

f(b) = f(a)

P e
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The conclusion can also be expressed as
f(b) = f(a) = f'(c)(b—a), for some a < ¢ < b,

or

fla+h)— f(a) = f'(a+ 6h)h, for some 0 < 6 < 1.

We also note that the conclusion is symmetric in a, b. Therefore there is no need to
insist a < b.

Figure 2.4.1: Mean value theorem.

Geometrically, the Mean Value Theorem means that the straight line L connect-
ing the two ends (a, f(a)) and (b, f(b)) of the graph of f is parallel to the tangent
of the function somewhere. Figure 2.4.1 suggests that ¢ in the Mean Value Theo-
rem is the place where the the distance between the graphs of f and L has local
extrema. Since such local extrema for the distance f(x) — L(z) always exists by
Theorem 2.3.1, we get (f — L)'(¢c) = 0 for some ¢ by Theorem 2.3.4. Therefore
f/(C) — LI(C) _ f(b[)) — £(&)

Example 2.4.1. We try to verify the Mean Value Theorem for f(x) = 2*> — 3z + 1 on
[—1,1]. This means finding ¢, such that

f-f=y _ -1-3

1—(-1) 1-(-1 =2

fllo)=3(c-1)=

1
We get ¢ = +—.
g /3

Example 2.4.2. By the Mean Value Theorem, we have

19 z for some 0 < 6 < 1.

og(l+z) =log(1 + z) — log iy

Since
x

<
1+~ 1+6x

x<uzforx>-—1,
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we conclude that
T < log(l+z) <z
1+2 — -

The inequality already appeared in Example 2.3.9.

Example 2.4.3. For the function |z| on [—1, 1], there is no ¢ € (—1, 1) satisfying

Q) = f(=1) =0=f(o)(1 = (-1)).

The Mean Value Theorem does not apply because |z| is not differentiable at 0.

Exercise 2.4.1. Is the conclusion of the Mean Value Theorem true? If true, find ¢. If not,
explain why.

1. 2% on [-1,1]. 4. |23 —3z+1| on [1,1]. 7. logz on [1,2].

2. 2% on [0, 1]. 5. /|z| on [-1,1]. 8. log|z| on [—1,1].
1

3. Zon [1,2]. 6. cosx on [—a,al. 9. arcsinz on [0, 1].

Exercise 2.4.2. Suppose f(1) =2 and f'(z) < 3 on R. How large and how small can f(4)
be? What happens when the largest or the smallest value is reached? How about f(—4)?
Exercise 2.4.3. Prove inequality.

1. |sinz —siny| < |z — yl.

9. XY

r T —

<log—<7y,f0rx>y>0.
) Y

3. |arctanx — arctany| < |z —y|.

Exercise 2.4.4. Find the biggest interval on which |e*—e¥| > |x—y|? What about | —e¥| <
|z —y|?

Exercise 2.4.5. Suppose f(z) is continuous at x¢ and differentiable on (zo—J, o) U (zo, o+
d). Prove that if lim,_,,, f'(x) = [ converges, then f(x) is differentiable at 2o and f'(x¢) =
l.

2.4.2 Criterion for Constant Function

The Mean Value Theorem can be used to prove Theorem 2.3.2: If f/ > 0 on an
interval, then for any x; < x5 on the interval, by the Mean Value Theorem, we have

f(x2) = f(x1) = f(c) (w2 — 1) > 0.

For the special case f* = 0 throughout the interval, the argument gives the following
result.
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Theorem 2.4.2. [f f'(x) =0 for all x € (a,b), then f(x) is a constant on (a,b).
Applying the theorem to f(z) — g(x), we get the following result.

Theorem 2.4.3. If f'(x) = ¢'(x) for all x € (a,b), then there is a constant C, such
that f(x) = g(x) +C on (a,b).

Example 2.4.4. The function e” satisfies f(z) = f(x). Are there any other functions
satisfying the equation?
If f(x) = f(z). Then

(e f(z)) = (") fz) + e "(f(x)) = e"(—f(z) + f'(x)) = 0.
Therefore e ® f(x) = C'is a constant, and f(x) = Ce”.

IL‘2

/
Example 2.4.5. Suppose f'(x) = x and f(1) = 2. Then f'(z) = (?> implies

2

1
flz) = % + C for some constant C'. By taking x = 1, we get 2 = 5 + C. Therefore
3 243
éandf(x):x + :

¢= 2

Example 2.4.6. By

1 1
(arcsinz) = ———, (arccosz) = —

1— 22 V1—22

we have (arcsin x+arccos )’ = 0, and we have arcsin x+arccos x = C. The constant
can be determined by taking a special value x = 0

C = arcsin (0 + arccos0 = 0 + g = g

Therefore we have -
arcsin x + arccos r = 5

Exercise 2.4.6. Prove that a differentiable function is linear on an interval if and only if its
derivative is a constant.

Exercise 2.4.7. Find all functions on an interval satisfying the following equations.

L f(x) = —2f(x). 3. f'() = f(2)?
2. f'() = 2f(x). 4. f(@)f(z) = 1.

Exercise 2.4.8. Prove equality.
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v
1. arctanz + arctanz ! = 5 for = # 0.

1
2. 3arccosx — arccos(3z — 4x3) = 7, for |x| < 7
3. arctan — arctan z = arctan a, for ax < 1.
—az
4. arctan — arctanz = arctana — 7, for ax > 1.
—az

2.4.3 L’Hospital’s Rule

The following limits cannot be computed by simple arithmetic rules.

0 -1 sinz . log(l+x)
—: lim hm , lim ———=;
0 221 ¢ —1" 20 x z—0 T

00 logz .. logx . a2

—: lim , lim , lim —;

00 20 717 250 g z—00 %

1 x
1%°: lim (1 + —) hm(l + sin z)'°8?;
T—00 x —0

We say these limits are indeterminate. Other indeterminates include 0 - 0o, co + oo,
0°, 0c?. The derivative can help us computing such limits.

Theorem 2.4.4 (L'Hospital's Rule). Suppose f(x) and g(x) are differentiable func-
tions on (a,b), with ¢'(x) # 0. Suppose

1. Eitherlim, ,,+ f(x) = lim, .+ g(x) = 0 orlim, ,,+ f(x) = lim, ,,+ g(x) = cc.
f'()
g'(x)
@,
9()

2. lim,_,,+ ——= =l converges.

Then lim,_,,+ —=

0 00
The theorem computes the limits of the indeterminates of type 0 or —. The
00

conclusion is the equality

lim @) = lim J'w)
z—at g(l‘) z—at g/(I)

whenever the right side converges. It is possible that the left side converges but the
right side diverges.



130 CHAPTER 2. DIFFERENTIATION

The theorem also has a similar left sided version, and the left and right sided
versions may be combined to give the two sided version. Moreover, I’Hospital’s rule
also allows a or [ to be any kind of infinity.

The reason behind I’'Hospital’s rule is the following version of the Mean Value
Theorem, which can be proved similar to the Mean Value Theorem.

Theorem 2.4.5 (Cauchy’'s Mean Value Theorem). If f(z) and g(z) are continuous
on la,b] and differentiable on (a,b), such that ¢'(x) # 0 on (a,b), then there is
c € (a,b), such that

Consider the parametrized curve (g(t), f(t)) for t € [a,b]. The theorem says that
the straight line connecting the two ends (g(a), f(a)) and (g(b), f(b)) of the curve is
/')
g'(c)

parallel to the tangent of the curve somewhere. The slope of the tangent is

Figure 2.4.2: Cauchy’s Mean Value Theorem.

For the case lim,_,,+ f(x) = lim,_,,+ g(x) = 0 of I'Hospital’s rule, we may extend
f and g to continuous functions on [a,b) by assigning f(a) = g(a) = 0. Then for
any a < x < b, we may apply Cauchy’s Mean Value Theorem to the functions on
[a, z] and get

= = — = for some ¢ € (a, ).

~

() flz

= [ implies lim,_,,
0 implies 1m_>+g(x

Since x — a™ implies ¢ — a™, we conclude that lim,_, .+

.
1
By changing the variable x to —, it is not difficult to extend the proof to the case
x

Q

00
a = Fo00. The proof for the — type is must more complicated and is omitted here.
00

Example 2.4.7. In Example 1.2.15, we proved that lim, ,,,a” =0 for 0 < a < 1.
Exercise 1.6.15 extended the limit to lim,_, . 2%a® = 0. We derive the second limit
from the first one by using I'Hospital’s rule.
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1
We have b = — > 1, and lim,_, ., a® = 0 is the same as lim,_, ., b* = co. We
a
2

3

also have lim,_, . 2> = oco. Therefore lim,_, . z%2a® = lim,_,  — is of type —,
00

and we may apply 1'Hospital’s rule (twice)

o2 . (2% . 2x
lim — =@ =
z——+oo b T—+00 (bz)/ z—+oo b IOg b
2x) 2
=(2) lim i = lim —— =(1) 0.

z—+oo (b* log b)’ e b*(log b)? N

Here is the precise reason behind the computation. The equality =) is from
Example 1.2.15. Then by I'Hospital’s rule, the convergence of the right side of =)
implies the convergence of the left side of =(y) and the equality =(y) itself. The left of
=(2) is the same as the right side of =(3). By I'Hospital’s rule gain, the convergence of
the right side of =(3) implies the convergence of the left side of =3y and the equality

—@)-

Example 2.4.8. Applying I’'Hospital’s rule to the limit lim,_, el

0
of type —, we get
x 0

= lim cosz = 1.
=0 I z—0 (x)’ z—0

However, this argument is logically circular because it makes use of the formula
(sinz)’ = cosx. A special case of this formula is

. sinz
lim
x—0

= (sinx)|z=0 = 1,

which is exactly the conclusion we try to get.

Exercise 2.4.9. Are the application of 'Hospital’s rule logically circular?

T cosx — 1 . 21

1. lim,_,q Snz 3. lim,_ g 2 5. limg_q BT
-1 22 —1 log(1

2. lim, g <2 4. limy 6. tim, o 25
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Example 2.4.9. By blindly using 1'Hospital’s rule four times, we have

2 2 2

. sin“x —sinzx 2sinxcosx — 2x cosx
lim ——————" = lim
z—0 x? 20 43
~ cos?x —sin?x — cosx? + 222 sin a2
= lim
250 622
. —4coszsinx + 6z sin x? + 423 cos 22
= lim
x—0 122
’ 4sin’ x — 4 cos? x + 6sin 22 + 2422 cos 22 — 8z sin 22
= lim
x—0 12
1
3

We find that it is increasingly difficult to calculate the derivatives. The following
compute the the limit after calculating the derivatives twice.

~ sin®z — sin 22 . 2sinzcosx — 2z cos 2
lim ——— = lim
x—0 374 x—0 4;[,’3
~cos?x — sin®x — cos 22 + 222 sin 22
= lim
20 6122
i 1 (sinz 2+1—COS$2+1 o
=lim [ —= —sinz
50 3 x 622 3
S L
3 3 3

In fact, the smartest way is not to calculate the derivatives at all. See Example
2.5.11.

Exercise 2.4.10. Use ’'Hospital’s rule to compute the limits.

: sinz — . 1 — cosa?
1. lim,_g — 5. limg,_ .o 3
xz x°slnx
sinxz —tanx ¥ —x
2. lim, g ———. 6. lim, 1
x3 T g —x+ 1
T sin x
et —e . r —tanx
3. lim . 7. limg,_ g ————.
e=0 x3 U —singx
4T cos(sinx) — cosx 8 Tim (x —1)logz
. lim . . .
e=0 zd v 1+ cosmzx

00
Example 2.4.10. The limit lim,_o+ z logx is of type 0 - co. We convert into type —

00
and apply I'Hospital’s rule (in the second equality)

log = x1

lim zlogx = lim = lim = lim —z =0.
z—0t z—=0t T~ z—=0t —T ™ z—0t
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The similar argument gives

lim 2P logxz =0, for p > 0.
z—0t

Taking a positive power of the limit, we further get

lim zP(—logx)? =0, for p,q > 0.

z—0t

1
By converting x to —, we also have
x

q
lim (log )

T —~+00 xP

=0, for p,q > 0.

Example 2.4.11. We compute the limit in Example 2.5.13 by first converting it to
0
type 0 and then applying I’'Hospital’s rule

. 1 1 et —=1—=x . et —1 . er
lim [ — — =lim———=lm——— = lim —— =
=0 z(e® —1)  a=0e® — 14 xe®  a—02e” + xe®

1
5

Example 2.4.12. If we apply 'Hospital’s rule to the limit lim, . TS of type
x

00
—, then we get
00

i
lim 27T gy (14 cosx).
T—00 €T T—00

We find that the left converges and the right diverges. The reason for the I’'Hospital’s
rule to fail is that the second condition is not satisfied.

2.5 High Order Approximation

Linear approximations can be used to solve many problems. When linear approxi-
mations are not enough, however, we may use high order approximations.

Definition 2.5.1. An n-th order approzimation of f(x) at xq is a degree n polynomial
P(z) = ag + ai(x — x0) + ag(x — 20)* + - + an(z — 20)",
such that for any € > 0, there is 6 > 0, such that
|t — 29| <6 = |f(z) — P(z)| < €|z — zo|™.

A function is n-th order differentiable if it has n-order approximation.
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The error R,(x) = f(z) — P(x) of the approximation is called the remainder.
The definition means that

f(x) = P(x) + Ry (x)
= ag + a1 (z — z9) + az(x — 20)* + -+ + an(@ — x0)" + o((x — 0)"™),

where the “small 0” notation means that the remainder term satisfies

@ -P@) R
z—a (IB — JZO)" z—a (:)j — ;po)n

The n-th order approximation of a function is unique. See Exercise 2.5.7. More-
over, if m < n, then the truncation ag+ a;(z — xo) + az(x — x0)* + - - - + @ (x — o)™
is the m-th order approximation of f at xy. After all, if we have the 10th order
approximation, then we should also have the 5th order approximation.

Example 2.5.1. We have
=1+ (x-1))"'=1+4(x—-1)+6(x—1)*+4(z—1)° + (z — 1)~
For any € > 0, we have |z — 1| < 6 = min {1, g} implying
[t = 1= 4z — 1) — 6(z — 1% = [z — 1*+ (2 = )| < (44 Jo — o — 1P
< (4+1)§|x—1|2=6|x—1|2.

Therefore 1 + 4(z — 1) + 6(x — 1)? is the quadratic approximation of z* at 1. By
similar argument, we get approximations of other orders.

linear: 1 +4(z — 1),

quadratic: 1+ 4(x — 1) + 6(x — 1),
cubic: 1+4(z — 1) + 6(z — 1)* + 4(x — 1)%,
quartic: 1+ 4(z — 1) +6(x — 1) + 4(z — 1)* + (z — 1)*,
quintic: 14+ 4(zx — 1) +6(x — 1)* +4(z — 1)* + (x — 1)*,
Example 2.5.2. The limit
cosx — 1 1
im— = ——
x—0 Qj2 2
in Example 1.5.18 can be interpreted as
cosx — 1+ =22
lim 2 _ 0.

z—0 xz

This means that cos z is second order differentiable at 0, with quadratic approxima-

1
tion 1 — —x2.
101 2:13‘
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n+1

. What does this tell you

at 07

1
Exercise 2.5.1. Prove that 1 =l4z+22+- 2"+ f

about the differentiability of T
—x

1
Exercise 2.5.2. Show that and —— are differentiable of arbitrary order. What
+x 1+ a2

are their high order approximations?
Exercise 2.5.3. What is the n-th order approximation of 1+ 2z + 322 + - - - + 1002190 at 07

Exercise 2.5.4. Use I'Hospital’s rule to compute the limits. Then interpret your results as
high order approximations.

1 lim,_o o0 S 5. limg_yo w
x x
2. lim,_,q sinx;;—xQ' 6. limg o % (ex —1—z— ;x2>
3. lim,_0 sin” ;64_ z* 7. lim, % (log(l +x)—x+ ;x2> .
4. lim,_o % <sin:c —x+ (13333) 8. lim, .1 2logx —E;x_—l)l?))(a: — 3).

Exercise 2.5.5. For what choice of a, b, ¢ is the function

z?, if x> 1,
a+bx+cx?, ifx<l,

second order differentiable at 17 Is it possible for the function to be third order differen-
tiable?

Exercise 2.5.6. Suppose f(x) is second order differentiable at 0. Show that

3f(x) — 3f(2x) + f(3x) = f(0) + o(z?).

P(x)

xr —a)?
Prove that ag = a1 = as = 0. Then explain that the result means the uniqueness of
quadratic approximation. Moreover, extend the result to high order approximation.

Exercise 2.5.7. Suppose P(x) = ag + a1(x — a) + az(z — a)? satisfies lim,_,, = 0.

Exercise 2.5.8. Suppose P(x) is the n-order approximation of f(z). What is the n-order
approximation of f(—xz)? Then use Exercise 2.5.7 to explain that the high order ap-
proximation of an even function has not odd power terms. What about the high order
approximation of an odd function?
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2.5.1 Taylor Expansion

The linear approximation may be computed by the derivative. The high order
approximation may be computed by repeatedly taking the derivative. The idea is
suggested by the following example. By applying I’Hospital’s rule three times, we
get a more precise limit than the one in Example 2.5.2

—_— —_— 2 . .
cosw 1+2$ . —sinz—x .. —cosz—1 . sinz
lim =lim——— =lim—— = lim =
z—0 3 z—0 32 z—0 3.2z z—03-2-1

Each application of the I’'Hospital’s rule means taking derivative once. Therefore we
get the third order approximation of cosx at 0 by taking derivative three times.

If f(z) is differentiable everywhere on an open interval, then the derivative f’(z)
is a function on the open interval. If the derivative function f’(z) is also differ-
entiable, then we get the second order derivative f"(x) = (f'(x)). If the function
f"(x) is yet again differentiable, then taking the derivative one more time gives the
third order derivative f"”(x) = (f”(x))’. The process may continue and we have

the n-th order derivative f (”)(a:). The Leibniz notation for the high order derivative

d"f

(n) is —L
fi(x) is e 1
Let f(x) = cosx and P(z) =1 — §x2. The key to the repeated application of

the I'Hospital’s rule is that the numerator is always 0 at zo = 0. This means that

f(xo) = P(x0), f'(w0) = P'(x0), f"(x0) = P"(w0), f"(w0) = P" (o).

In general, if P(x) = ag + a1(x — x0) + as(x — 20)? + az(x — z0)?, then the above
equalities become

f(xo) = ao, f'(x0) = ay, f"(w0) = 2az, f"(20) =3 - 2as.

Theorem 2.5.2. [f f(x) has n-th order derivative at x, then f is n-th order differ-
entiable, with n-th order approximation

Tn(x) = f(xO) + f/(ﬂfo)(ZB — $0) + w(;p — 3;0)2 4+

fmnx@

n!

(x — o)™,

The polynomial T, is called the n-th order Taylor expansion of f.

Note that the existence of the derivative f™(z) implicitly assumes that f*)(z)
exists for all x near xy and all k¥ < n. The theorem gives one way (but not the only
way!) to compute the high order approximation in case the function has high order
derivative. However, we will show in Example 2.5.8 that it is possible to have high
order approximation without the existence of the high order derivative. Here the
concept (high order differentiability) is strictly weaker than the computation (high
order derivative).
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Example 2.5.3. The high order derivatives of the power function z? are
(") = pa™,

(%) = p(p — 1)z"~2,

(@)™ =p(p—1)---(p—n+ ™"
More generally, we have
((a+bzx)?)™ =p(p—1)---(p— n+ 1)b"(a + bx)P™™,
For a = b =1, we get the Taylor expansion at 0

-1 -1 (p—n+1
(1+x)p:1+px—|—p(p2—')x2+---+p(p )ngp o 4 ofam).

Fora=1,b= —1 and p = —1, we get the Taylor expansion at 0

] =1l+z+a°+- +a2"+o(z").
—x

You may compare with Exercise 2.5.1.

Example 2.5.4. By (logz) = ! and the derivatives from Example 2.5.3, we have

—1)!
(logz)™ = (—1)"‘1u. This gives the Taylor expansion at 1
x’n

logz = (z — 1) — %@; —12 4 %(:g Py (—1)”“%(95 — )" o — 1)),

This can also be expressed as a Taylor expansion at 0
1

1 1
log(l+x) =2 — 5:1:2 + ga:B — -+ (—1)”“533” + o(x™).

Example 2.5.5. By (e®) = €7, it is easy to see that (%)™ = ¢® for all n. This gives
the Taylor expansion at 0

J:_l 1 1 2 1 n n
e’ = +ﬁx+§x +---+mx + o(z").

Example 2.5.6. The high order derivatives of sinx and cosx are 4-periodic in the

sense that sin™** z = sin™ z and cos" ¥ 2 = cos™ z, and are given by
(sinz)" = cosx, (cosz) = —sinz,
(sinz)” = —sinz, (cosz)" = —cosz,
(sinz)"” = — cosw, (cosx)” =sinwx,

)/l//

(sinz)" = sinw, (cos )" = cos .
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This gives the Taylor expansions at 0

1 1 1
sing = = o’ 4 o — oo (1) g™+ ole™),
cosx =1 — lm2 —+ lx‘l — 4 (_1>n 1 x2n + 0(1’2n+1)

Note that we have o(2?") for sinx at the end, which is more accurate than o(z**~1).
The reason is that the 2n-th term 0 - 2" is omitted from the expression, so that the
approximation is actually of 2n-th order. The similar remark applies to cos x.
We also note that the Taylor expansions of e*, sinx, cosx are related by the
equality
e =cosx+isinx, = v—1.

Exercise 2.5.9. Prove the following properties of high order derivative

(f +9)™ = f 4 g™,
(cf)™ = cf™,

s |
(n) — E (), 0)
Exercise 2.5.10. Prove the chain rule for second order derivative

(9(f(@))" = g"(f (@) f' (2)* + ¢ (f(2)) f" ().

Exercise 2.5.11. Compute derivatives of all order.

1. a®. 4. cos(ax +b). 7. ax+b'
cx+d
9 paztb. 5. log(axz +b).
' 6. log 2% +0b ) 1
3. sin(ax + b). 08 T " (az +b)(cx +d)

Exercise 2.5.12. Compute high order derivatives.

1. (tanz)”. 3. (sinx?)™. 5. (arctanx)”. . d? ( 1)9”
©dax? '

14 =
T

2. (secx)”. 4. (arcsinz)”. 6. (z%)".

Exercise 2.5.13. Use high order derivatives to find high order approximations.

1. a®, n =25, at 0. 4. sin?z, n =6, at 7. 7. 23e*, n =75, at 0.
2. a*,n=>5, at 1. 5. e“”2,n:6, at 0. 8. x3e®, n=>5,at 1.
3. sin?z, n=6, at 0. 6. er,nzﬁ, at 1. 9. e’sinxz, n =25 at 1.
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Exercise 2.5.14. Compute high order derivatives.
L (2% +1)e”. 2. (22 +1)sinz. 3. x%(x — 1)P. 4. xlogw.

(=" 1

. IR
Exercise 2.5.15. Prove (z" tez)™ = g al

Exercise 2.5.16. Prove (e** sin(bz + ¢))™ = (a? + b?)2 e® sin(bx + ¢ + nf), where sin =
b

Va2 + b2’

What is the similar formula for (e%* cos(bx + ¢))™?

Exercise 2.5.17. Suppose f(z) has second order derivative near . Prove that

f(wo) = Jim flo+h)+ f(;;g —h) —2f(x0o)

Exercise 2.5.18. Compare e, sinz, cos z,log(1 + x) with their Taylor expansions. For ex-
n
ample, is e® bigger than or smaller than 1 4+ x + % + % +- —'?

2.5.2 High Order Approximation by Substitution

The functions (and their variations) in Examples 2.5.3 through 2.5.11 are the only
ones that we can compute all the high order derivative functions. These give the ba-
sic examples of high order approximations. We get other high order approximations
by combining the basic ones.

b
Example 2.5.7. Substituting = by —x in the Taylor expansion of (1 + z)?, we get
a

p
(a+ bx)? = adP (1 + Sx)

— 1)
— P 1—|—p—x+p(p )_2+_.
a 2l a?
1) (p—nt )" b
R VA Y L n+0(_xn)]
n! an ar
= a? + pa? 'bx + p(p; )ap’sz:cz 4o
1) (p— 1
+ plp—1) fp nt )ap_”b"x" + o(z").
n!
Note that we used a’o | —a" | = o(z") in the computation. The reason is that

a
n

b" b
o) (—x”) really means a function R (—x”), where R(x) is the remainder of the
a” a”
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R
n-th order Taylor expansion of (1 + x)P. Since lim, g ﬂ =0, we get
xn

a’R (—nx”) »
S N/ P %(y) = a’7"b" lim M =0.

x—0 " y—0 @ y—0 ym”

Y2

This means a? R —n:r"
a

= o(z").

Further substitution of a, b, x by ¢, 1, x — xy gives the Taylor expansion of x? at
Zo

P = (xo+ (z — x0))?

. -1) ,_
—af o p o =) 4 PR -

plp—1)---(p—n+1) ,,

+ - xy (= z0)" + o((z — zo)").

The Taylor expansion can also be obtained from the high order derivative in Example
2.5.3.

Example 2.5.8. The Taylor expansion of at 0 in Example 2.5.3 induces the

11—z
following approximations
! 1—x+a® + (=1)"z" + o(a™)
=l—z+z"— -+ (=1)"2" +o(x
1+x ’
22 =1—2+2*— - 4 (=1)"2* + o(z®).

Similar to the Taylor expansions of sin x and cos x, we expect that the odd power

Therefore the remainder should be

terms vanish in the Taylor expansion of ] 5
x
improved to o(x?" ™). To get the improved remainder, we consider the 2(n + 1)-th

order Taylor expansion of

14 22
1
= " -1 ZB2 + 1"4 — (_1)n$2n + (_1)n+1x2(n+1) + 0($2(n+1)).
This shows that the remainder of the 2n-th order Taylor expansion is (—1)"*+122("*+1) 4
T R(z)
R(z), where R(x) satisfies lim, .o ey 0. By

lim (—1)r g2+l 1 R(z)
z—0 xr2n+l z—0
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we get

(—1)n+1$2(n+1) +O(I2(n+1)) — 0(1‘2n+1),

and the improved approximation

1
ke 1—2? 2t — o 4 (=1)"2® + o(2®™ ).

1
Finally, it is easy to see that ] has derivative of any order. From the

+ 22
coefficients in the Taylor expansion, we get

( 1 )_n'a o if n =2k — 1,
weo \L4+22) " (= D)R(2K), if o= 2k,

It is practically impossible to get this by directly computing the high order deriva-
tives (i.e., by repeatedly taking derivatives).

a
dx™

Exercise 2.5.19. Explain and justify the following claims about remainders.

1. o(z®) = o(z3). 3. o(z*) + o(x®) = o(z?). 5. o(x®)o(z°) = o(z8).

2. o(x®) + o(x®) = o). 4. 2%0(2%) = o(x®). 6. o(z?) + 2% = o(2?).

Exercise 2.5.20. Find the Taylor expansion of

1 5 at 0, and the high order derivatives
-
of the function at 0.

Exercise 2.5.21. Use the high order derivatives in Example 2.5.8 to find the Taylor expan-
sion of arctan z at 0.

Exercise 2.5.22. Find the Taylor expansion of at 0. Find the high order derivatives

11—z
of the function at 0. Then find the Taylor expansion of arcsinx at 0.

Example 2.5.9. The Taylor expansion of ¢ at 0 induces
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Note that we have the more accurate remainder o(z2**1) for e*” for the reason similar
to Example 2.5.8. Moreover, the Taylor expansion of v’ gives

o 0, if =2k -1,
e ) o0 = '
() e —(2]5), if n = 2k.

Example 2.5.10. The high order approximation of z%e® at 0 is

1 1 1
2. __ .2 2 n n
et =ux (1+—1!x—|—2!:€ + —l—n!x + o(z ))

1 1 1
2 3 4 n+2 n+2
=+ +—2!x + —l——n!a: + o(z"T).

Here we use x%0(x™) = o(2™"?). The n-th order approximation is

1 5 1
20 _ 2+ .3 L o4
et =x ~|—1!x —|—2!w + +(n—2)!

" + o(x").

Can you find the n-th order derivative of x%e® at 07?

On the other hand, to find the high order approximation of z%e® at 1, we express
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the variables in terms of x — 1 and get

2?¢” = ((x —1) + 1% D =e((x = 1)> + 2(x — 1) + 1)e" !

n

=e((z— 1) +2x—1)+1) (Z L= 1)+ ol(a - 1)"))

!

=D e ol 1))

4 zeiz:; le(‘c C 1) 4 oz — 1)

+egi—ﬁ<x— 1)+ of(z = 1))
_ egﬁ(z— 1) + o((z — 1))

+2e(z —1) + Qeizn; ﬁ(m — 1) +o((z—1)")

el e ) g1 o= 1))
:e+3e(:c—1)—i—eg ((Z,_12>! + (¢_21)! +%) (— 1) + o((z — 1))

=e+3e(x—1)+ ez %(az —1)'+o((z—1)").
i=2 )

Exercise 2.5.23. Use the basic Taylor expansions to find the high order approximations
and derivatives of functions in Exercise 2.5.11.

Exercise 2.5.24. Use the basic Taylor expansions to find the high order approximations
and derivatives at 0.

1. 1 _ 5. log(1 + 3z + 22?%). 9. sinx cos 2.
z(z+1)(z+2) ,
1+2 10. si 97 si
9. V122 6. IOgl—x?" 0. sinz cos 2z sin 3.
3. ,/1+x3_ 7. er. 11. Sinﬂ?2.
4. log(1 + 22). 8. a®. 12. sin®z.

Exercise 2.5.25. Use the basic Taylor expansions to find high order approximations and
high order derivatives.
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1. 23 +5x—1 at 1. 5. e 2% at 4. 9. sinz at 7.
2. 2P at —3. 6. logz at 2. 10. cosx at .
3
3. iil at 1. 7. log(3 — x) at 2. 11. sin 2z at %
. T
4. vz +1at 1. 8. sinzx at 5 12. sin®z at 7.

Exercise 2.5.26. Use the basic Taylor expansions to find high order approximations and
high order derivatives at xg.

1. a®. 3. logx. 5. sinx cos 2x.

2. x2e”. 4. sinz. 6. sin® .

2.5.3 Combination of High Order Approximations

So far we only used simple substitutions to get new approximations. In the subse-
quent examples, we compute more sophisticated combinations of approximations.

Example 2.5.11. By the Taylor expansion of sinx, we have

1 1 ? 1
sin?z — sin2? = (x - gx?’ + mﬁ + 0(x6)> — (m2 — 6376 + 0((m2)4))

1 1 1
= (mz — §x4 + %16 - @x(s + 0(2%)? 4 2z0(2%) - - - )

The term o(z”) at the end comes from

R R(x)? R
TGN YRR 11 M L CON
20 6 =0 g7 =0 o7
In particular, we get the limit in Example 2.4.9
. sin®x — sin2? 1
lim —M = ——.
z—0 x4 3

We also get the high order derivatives of f(x) = sin?x —sin2? at 0

F1(0) = f"(0) = f"(0) = f*(0) =0, fP0)=-8 fO(0) =152
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Example 2.5.12. We may compute the Taylor expansions of tan x and sec x from the

Taylor expansions of sin z, cosx and

— X

1 1
secr = =
CoS T

1 1
1— §m2 + ﬁ$4 + o(z®)

1 1 1 1 2
=1+ <§Jf2 — ﬂmél + 0(135)) + <§$2 - ﬂ‘IA + O($5))
1 1 3
L2 L o4 5 6
+ (295 51" + o(x )) + o(z°)

1 1 1
=1+ -2 — —z* + -2* + o(z?)

2 24 4
=1+ L + D + o(z”)
2 24 ’
tanx = sinzsecr = (:c L + L + 0(x6)) (1 + 1 + D + 0(x5))
6 120 2 24
1 1

1 1 5
ot s g L5 O ;5 6
=z 6x +120x +2:)3 1293 +24$ + o(x”)

1 2
=x+ §x3 + 1—5x5 + o(z?).

The expansions give (sec :c)g(fz)o =5 and (tan :C)S:)D = 16.

1 1
Example 2.5.13. We computed lim, .o (— —
x

1) by using ’Hospital’s rule in
e.T —

Example 2.4.11. Alternatively,, we use the Taylor expansions of e* and

-
1 1 1 1 1 1
pTesi s 2 i i rem

:c+7—|—0(:132) 1+§+0(aj)
1 x x 1 o(z)
(11 (o) oG ote) -+ 22
w( + 2+0(93) +o0 2+0(35) 2+ .
o o1
This implies that the limit is 5
1 x
Example 2.5.14. We know lim,_,., <1 + — = e from Example 1.6.17. The next
x

1 x
question is what the difference (1 + —) — e looks like. As x goes to infinity, does
x

1
the difference approach 0 like —7?
x
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The question is the same as the behavior of (1 + x)% — e near 0. By the Taylor
expansions of log(1 + ) and e” at 0, we get

(1+ a:)% —e=exlsltn) _o

= 6% (I—%-‘,—o(a@))

=e (6_%“(”3) — 1)

e [(—g + 0(95)) +o0 (—g + o(a:)ﬂ

= —gx + o(x).

—e

Translated back into x approaching infinity, we have

(1+3) ~e=5+(3)
1+—-) —e=——+o0|—-|.
T 2z T

Exercise 2.5.27. Find the 5-th order approximations at 0.

1. e’sinz. 3. (14 x)*. 5. logcos .
sinx x
2. v+ 1e®” tan z. 4. log s 6. prame

Exercise 2.5.28. Use approximations to compute limits.

. 1 — cos x2 . et — eSine
1. lim,_,g — 7. lim, g —a
r3sinx T
sinz —tanx cosazr
2. limy_,g ——————. 8. lim, 0 log
z—=0 3 * cos br
1 1 9 1 r —tanx
; - = Climg g ———.
3. limg 0 (sin2 22/ TV x —singz

W

1 1 10. 1 2o L (1. 1Y
- limgso (1;2 > - Mg —00 T 6—;— —i—; .

 tan?x
1
. x 1 11. lim 22 log (x sin )
5.1 —_ . L0
a1 (ac -1 10gx> r
1 . (x —1)logz
6. lim,_o(cos z 4 sinx)#EFD 12. limg,_yq I pp—

Exercise 2.5.29. Use whatever method you prefer to compute limits, p, ¢ > 0.
1. lim, g+ xPe™". 4. lim,_,1+(z — 1)Plog z.
2. limg o0 2Pe™". 5. lim,_,1+(z — 1)P(log z)4.

3. limy_y 400 2P log 2. 6. limg_s o0 2Pe " log z.
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7. limg 4 o0 2P log(log x). 9. lim,_,.+(x — e)Plog(log x).

8. limy_ 4o (log )P (log(log x))9.

Exercise 2.5.30. Use whatever method you prefer to compute limits, p,q > 0.

LI tan? x — xP 3 1 tanx — cot x
Clim, g ———m——. Climy, 7 ————
0T GinP gy — gp 1 dx—7
5 1 sin ¢z — tan? x 41 atanbxr — btanax
Clim, g —m . . limg o - - .
z=0 x4 asinbr — bsinax

Exercise 2.5.31. Use whatever method you prefer to compute limits.

. o1 1.2 ) 1 1
1. limg, oo 3 (Smx — §sm w) 3. lim,_ .o (k)g(l—i—a?) — w)
2. 1i L 2 ! 4. lim < 1 1
. lim — — . . —
0y z(2+x) e*—1 v log(z + V1 +22) log(l+x)

Exercise 2.5.32. Use whatever method you prefer to compute limits.

1. lim,_,;- logxlog(1l — z). 4l x(ﬂ)i—;p
- a0t x2(log z)?
X
—1
2. lim,_yor . o logr g
xlogx 5. limg 1 ———5-.
(log z)?
¥ —1—xlogx 2T o
3. li ' T _at-w
Mg+ 2(log 7)? 6. limg T—

Exercise 2.5.33. Use whatever method you prefer to compute limits.

(1+ax)’ — (14 bz)? cos(sinzx) — cosz

1. lim,_,q 2 8. limg 0 24
2. Tim, (14 az + cx®)® — (1 + bz + dmz)“' 9. lim, .o arcsin 2z —32 arcsinz
z? x
. a® — x* . 1 — cos 22
3. hmz—}a ﬁ 10. hmzi)o W
_ (a+x)* —a” 1—2sinz
4.1 —_ i T —
img_q 2 11 hmgﬁHg P
r _ ,sinz . T
5. lim, o+ %’ a> 0. 12. lim, ,;+ logx tan o5
x
log(sin ax) 13. lim,_,g+ 2% L.
6. li —— =, a,b>0. T
o0t log(sin bx) “

14. limy_oz%™7,

log(cos ax)

7. lim, g W 15. lim,_,o+(—logz)®.

)
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1
. _ 1\ z @
16. limg o (6 "1+ m)z) . 18. lim,_q <2 arccos:c)
T
) cosr \=
17. limg_o(z~ ! arcsin a:)z% 19. Timg o <1 + sinx) '

Exercise 2.5.34. In Example 2.4.2, we applied the Mean Value Theorem to get log(1+z) =
for some 0 < 0 < 1.

x
140z
1. Find explicit formula for § = 6(x).
2. Compute lim,_,o 0 by using I’Hospital’s rule.
3. Compute lim,_,9 6 by using high order approximation.

You may try the same for other functions such as e® — 1 = e%*. What can you say about
lim, .90 in general?

Exercise 2.5.35. Show that the limits converge but cannot be computed by L’Hospital’s
rule.

T“sin — 2. limy yoo ——.
x T+ sz

Exercise 2.5.36. Find a, b so that the following hold.

1. 2 — (a+bcosx)sinz = o(x?). 2. x —asinz — btanz = o(z?).

2.5.4 Implicit High Order Differentiation

Example 2.5.15. In Example 2.2.9, the function y = y(z) implicitly given by the unit circle
22 + y? = 1 has derivative ¢/ = ~ % Then
Y

e
/ y+z—
. Y

L A
=—=.

y? y? y3 y

You may verify the result by directly computing the second order derivative of y =

+v/1 — 22.

Example 2.5.16. In Example 2.2.10, we computed the derivative of the function y = y(z)
implicitly given by the equation 2y — 222 — siny + 1 = 0 and then obtained the linear
T
272
second order derivative of y(z) and then get the quadratic approximation at P.

approximation at P = > We can certainly continue finding the formula for the
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Alternatively, we may compute the quadratic approximation at P by postulating the
approximation to be

Yy = g + a Az + asAz? + o(Az?), Ar =z — g

Substituting into the equation, we get
7r T 2
0=2 (5 + a1 Az + asAz? + 0(A:U2)> -2 <\/;+ Ax>
. ™ 2 2
— sin (5 + a1 Az + ag Az + o Ax )) +1
= 2a1 Az + 2a9Az? — 4\/§A$ — 2A2? + o(Az?) — cos(a1 Az + axAz? + o(Az?)) + 1

1
= 2a1 Az + 2a5Ax% — 221 Az — 2A2% + §(a1Ax + agAx2)2 + 0(A3:2)
The coefficients of Az and Axz? on the right must vanish. Therefore
L,
2a1 —2vV2mr =0, 2a9—2+ §a1 = 0.

2—7
The solution is a; = V27, ag = , and the quadratic approximation is

y(x) = g +V2rAzx + %TﬂAl'Q +o(Az?), Ax=1x—

s

5"

Exercise 2.5.37. Compute quadratic approximations of implicitly defined functions.

Ly +33 +1 =z 4. T+ Yy = a.
2. siny = x. 5. eTTY = gy.
22 2
3,¥+Z—2:1. 6. x2+2xy—y2—296=0-

Exercise 2.5.38. Compute quadratic approximations of functions y = y(z) given by the
curves.

1. x =sin?t, y = cos®t.
2. x =a(t —sint), y = a(l — cost).
3. x =elcos2t, y = el sin 2t.

4. x = (1+cost)cost, y = (14 cost)sint.
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2.5.5 Two Theoretical Examples

Theorem 2.5.2 tells us that the existence of high order derivative implies the high
order differentiability. The following example shows that the converse is not true.

Example 2.5.17. The function 2®D(z) satisfies
7| < §=¢ = [2°D(x) — 0] < |z|* < €|z].

Therefore the function is second order differentiable, with 0 = 0 4+ 0z + 0z? as the
quadratic approximation.

On the other hand, we have (z3D(x))|.—o = 0 and 2*>D(z) is not differentiable
(because not even continuous) away from 0. Therefore the second order derivative
is not defined.

Exercise 2.5.39. Show that for any n, there is a function that is n-th order differentiable
at 0 but has no second order derivative at 0.

Exercise 2.5.40. The lack of high order derivatives for the function in Example 2.5.17 is
due to discontinuity away from 0. Can you find a function with the following properties?

1. f that has first order derivative everywhere on (—1,1).
2. f has no second order derivative at 0.

3. f is second order differentiable at 0.

The next example deals with the following intuition from everyday life. Suppose
we try to measure a length by more and more refined rulers. If our readings from
meter ruler, centimeter ruler, millimeter ruler, micrometer ruler, etc, are all 0, then
the real length should be 0. Similarly, the Taylor expansion of a function at 0 is the
measurement by “z"-ruler”. The following example shows that, even if the readings
by all the “x"-ruler” are 0, the function does not have to be 0.

Example 2.5.18. The function

has derivative

—e ol if x>0,
1'2

fl(x) = _ize‘m, if <0,
T
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The derivative at x # 0 is computed by the usual chain rule, and the derivative at
0 is computed directly

1 1
/ s _—7: . v
f(0) = lim —e =1 = lim —

0.

In general, it can be inductively proved that

Iy 1 .
p(—)ez, if z >0,
x
() () — 1
f(e) = (=1)"p <——> e~r, ifz <0,
x
0, if =0,

where p(t) is a polynomial depending only on n.

The function has the special property that the derivative of any order vanishes
at 0. Therefore the function is differentiable of any order, and all the high order
approximations are 0

f(z) =0+ 02+ 02 + - + 02" + o(2™).
However, the function is not 0.

The example can be understood in two ways. The first is that, for some functions,
even more refined ruler is needed in order to measure “beyond all orders”. The
second is that the function above is not “measurable by polynomials”. The functions
that are measurable by polynomials are call analytic, and the function above is not
analytic.

Exercise 2.5.41. Directly show (i.e., without calculating the high order derivatives) that
the function in Example 2.5.18 is differentiable of any order, with 0 as the approximation
of any order.

2.6 Application of High Order Approximation

2.6.1 High Derivative Test

Theorem 2.3.4 gives the first order derivative condition for a (two sided) differen-
tiable function to have local extreme. As the subsequent examples show, the theorem
only provides candidates for the local extrema. To find out whether such candidates
are indeed local extrema, high order approximations are needed.

Let us consider the first non-trivial high order approximation at g

f(x) = f(z0) + c(z — 10)" + o((x — 20)") = f(w0) + c(x — 20)"(1 +0(1)), c#O0.
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When z is close to zg, we have 1 + o(1) > 0 and therefore f(x) > f(zo) when
clx —xo)" > 0 and f(x) < f(xg) when c(z — xp)" < 0. Specifically, we have the
following signs of ¢(x — x)™ for various cases.

e If n is odd and ¢ > 0, then ¢(x — )" > 0 for & > zy and ¢(x — )" < 0 for
T < Xg.

e If nis odd and ¢ < 0, then c¢(z — x0)" < 0 for x > zg and c¢(x — ()" > 0 for
r < Tg.

e If n is even and ¢ > 0, then ¢(x — ()" > 0 for x # .
e If n is even and ¢ < 0, then ¢(x — )" < 0 for x # xy.

The sign of ¢(x—1x)™ then further determines whether f(x) < f(xo) or f(z) > f(xo),
and we get the following result.

Theorem 2.6.1. Suppose f(x) has high order approzimation f(xo) + c(x — zo)" at
Zo-

1. If n is odd and c # 0, then xqy is not a local extreme.
2. If n is even and ¢ > 0, then xq is a local minimum.

3. Ifn is even and ¢ < 0, then xy is a local maximum.

If f has n-th order derivative at z(, the condition of the theorem means

fl(xo) = f"(zg) =+ = f(nfl)(xo) =0, f(")(xg) =nlc # 0.

The special case n = 1 is Theorem 2.3.4. For the special case n = 2, the theorem
gives the second derivative test: Suppose f'(x9) = 0 (i.e., the criterion in Theorem
2.3.4 is satisfied), and f has second order derivative at .

1. If f"(x¢) > 0, then zy is a local minimum.

2. If f"(zo) <0, then x( is a local maximum.

Example 2.6.1. In Example 2.3.13, we found the candidates £1 for the local extrema
of f(z) = 2®—3x+1. The second order derivative f”(z) = 6x at the two candidates
are

f”(l) =6>0, f”(—l) - _6<0.

Therefore 1 is a local minimum and —1 is a local maximum.
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Example 2.6.2. Consider the function y = y(x) implicitly defined in Example 2.2.10.

By /(z) = T eos e find a candidate = 0 for the local extreme of y(x). Then
— Cos Y
we have
4 d 1
2 /
y(x)——+4x—(—> Y.
2 — cosy dy \ 2 — cosy —
4
At the candidate = 0, we already have y/(0) = 0. Therefore y"(0) = ———— >
2 — cosy(0)

0. This shows that z = 0 is a local minimum of the implicitly defined function.

Example 2.6.3. The function f(z) = z? — 23D(x) has no second order derivative
at 0, but still has the quadratic approximation f(z) = z* + o(z?). The quadratic
approximation tells us that 0 is a local minimum of f(z).

Example 2.6.4. Let f(z) = ST

to 0, we have

1
for x # 0 and f(0) = 6 Then for = # 0 close

6x — a3

1
We note that by f(0) = & the 4-th order approximation also holds for z = 0. Then

by Theorem 2.6.1, we find that £ = 0 is a local minimum.
Alternatively, we may directly use the idea leading to Theorem 2.6.1. For x # 0
close to 0, we have

1 ( 3 (lﬁ)) _1+ *(1+ o(x))

-\ 76 T120 ) T T -2 1200

f(z)
z* (14 o(z))
(6 — 22) - 120
Therefore 0 is a (strict) local minimum.

= f(0).

| =

For small z # 0, we have > (0, which further implies f(z) >

Exercise 2.6.1. Find the local extrema by using quadratic approximations.

1. 23 -3z +1onR. 3. zlogx on (0,+00).

2. ze " on R. 4. (2% +1)e® on R,

Exercise 2.6.2. Find the local extrema for the function y = y(z) implicitly given by x3 +
3
y° = 6zy.
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Exercise 2.6.3. For p > 1, determine whether 0 is a local extreme for the function

1
22 4 |z|Psinasin —, if 2 # 0,
x

0, if z =0.

Exercise 2.6.4. Determine whether 0 is a local extreme.

1. 23 + 2% _ l 2\ oz
4. (1 T+ Q!x er.
2. sinx — xcoszx.
1, 1 4
3. tanx — sinz. 5. (1—$+2!$ —gaz )ez.

Exercise 2.6.5. Let f(0) = 1 and let f(z) be given by the following for x # 0. Determine
whether 0 is a local extreme.

sin x sin x sin x
x+ax?’ L ox 4 b T4 ax?+bxd’

1.

2.6.2 Convex Function

A function f is convex on an interval if for any x,y in the interval, the straight line
L, connecting points (x, f(x)) and (y, f(y)) lies above the part of the graph of f
over [z,y]. This means

fly) — f(z)

Ley(7) = flz) + B2 —

(z—x)> f(z) for any x < z < y.

The function is concave if L, , lies below the graph of f, which means changing
> f(z) above to < f(z). A function f is convex if and only if —f is concave.

PN

| |

| |

l l
Z Y

Figure 2.6.1: Convex function.

By the geometric intuition illustrated in Figure 2.6.2, the following are equivalent
convexity conditions, for any x < z < y,

L. Ly, (2) > f(2).
2. slope(Ly, ) < slope(Ly,).
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3. slope(L,,) > slope(Ly.,).
4. slope(L,,.) <slope(L,,).

Algebraically, it is not difficult to verify the equivalence.

Lz7y
Lx,z L-’Evy

Y

N - -

x
Figure 2.6.2: Convexity by comparing slopes.

If a convex function f is differentiable, then we may take y — x™ in the inequality
slope(L, ) < slope(L,,), and get f'(z) < slope(L,,). Similarly, we may take
z — y~ in the inequality slope(L,,) > slope(L,,), and get f'(y) > slope(Ly,).
Combining the two inequalities, we get

r<y = f'(z) < f(y).

It turns out that the converse is also true.

Theorem 2.6.2. A differentiable function f on an interval is convez if and only if
f" is increasing. If f has second order derivative, then this is equivalent to f” > 0.

Similarly, a function f is concave if and only if f’ is decreasing, and is also
equivalent to f” < 0 in case f” exists.

The converse of Theorem 2.6.2 is explained by Figure 2.6.2. If f’ is increasing,
then by the Mean Value Theorem (for the two equalities), we have

slope(Ly..) = f(¢) < f/(d) = slope(Ls.,).

A major application of the convexity is another interpretation of the convexity.
In the setup above, a number z between x and y means z = Ax + (1 — A)y for some
A € [0,1]. Then the linear function L, ,(z) = az + b preserves the linear relation

Lyy(z)=a(Az+(1—XNy)+b
= MNaz +b)+ (1 = X)(ay +b)
= ALgy(x) + (1 = A) Ly (y)
=Af(x) + (1 =N f(y)
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LZ?y

r ¢z d ?;
Figure 2.6.3: Increasing f’(x) implies convexity.

Therefore the convexity means
fAz+ (1 =Ny) <Af(z) + (1= A)f(y) forany 0 <A< 1.

The following generalizes the inequality.

Theorem 2.6.3 (Jensen's inequality). If f is convex, and
/\1+>\2++)\n:1; 03)\1,)\2,...,)\n§1,
then

JOuws + Xoza + -+ Xwy) < A f(21) + Mo f(22) + -+ A f ().

By reversing the direction of inequality, we also get Jensen’s inequality for con-
cave functions.

In all the discussions about convexity, we may also consider the strict inequalities.
So we have a concept of strict convexity, and a differentiable function is strictly
convex on an interval if and only if its derivative is strictly increasing. Jensen’s
inequality can also be extended to the strict case.

Example 2.6.5. By (27)” = p(p — 1)2P~2, we know z* is convex on (0, +0c0) when

p>1orp<0,and is concave when 0 < p < 1.
For p > 1, Jensen’s inequality means that

()\1[1)1 + )\21’2 —+ -+ )\nl‘n)p S )\11‘11) + )\Ql'g + -+ )\nl’ﬂ

1
In particular, if all \; = —, then we get
n

TL’ fOl"pZ 1,1’2‘ ZO

(x1+x2+---+xn)p<x§’+x§+---+x1’

n n

This means that the p-th power of the average is smaller than the average of the
p-th power.
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We note that (z7)” > 0 for p > 1. Therefore all the inequalities are strict,
provided some z; > 0 and 0 < \; < 1.

By replacing p with P and replacing x; with =], we get
q

n

(x‘{+$%+---—l—x%>‘1¥ - (a:’f+x§+---+xg
o n

1
p
) , forp>q > 0.

Figure 2.6.4: xP for various p.

1
Example 2.6.6. By (logx)” = —— < 0, the logarithmic function is concave. Then
x

Jensen’s inequality tells us that
log(A\1x1 + Aoxa + - -+ + Apap) > A logzy + Aglog e + - - - + Ay, log @,
This is the same as

A An
MT1 4 ATy + -+ Ay, > 27T T

1
For the special case \; = —, we get
n

371+£132+"'+.Tn
n

> Vr12o - Xy
In other words, the arithmetic mean is bigger than the geometric mean.

Exercise 2.6.6. Study the convexity.
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1. 2% +ax +b. 4. (2 +1)e”. 7. 1 ) 10. .
22 +1
5 g2 2 .
2. x+x3. 5. e . g r —1 11. z + 2sinz.
a4+ 1
3. z+aP. 6. vVa?+1. 9. log(z? +1). 12. zsin(logx).

Exercise 2.6.7. Find the condition on A and B so that the function

AzP, if x >0,
fz) = .
B(—z)4, ifz <0,

is convex. Is the function necessarily differentiable at 07

1 1
Exercise 2.6.8. Let p,q > 0 satisfy — + — = 1. Use the concavity of log x to prove Young’s
p q
inequality
1 1
P + ,yq > Y.
p q
Exercise 2.6.9. For the case A1 # 1, Find suitable puo, ..., u, satisfying
ATl 4+ Aoxo 4+ -+ + Ay, = A1 + (1 — /\1)(/1,2332 —+ -+ ,unxn).

Then prove Jensen’s inequality by induction.

Exercise 2.6.10. Use the concavity of logz to prove that, for z; > 0, we have

DY 2 2 DRI 2
z1logxy + x2logxe + - - + 2y log xy, <10gf’31+$27L + 5 <log(zi + o+ -+ ).

1+ rot -+, N Tyt T2+ + Ty

Exercise 2.6.11. Use Exercise 2.6.10 to show that f(p) = log(x’f + a:g + .+ g;ffl)% is
decreasing. Then explain

1 1
(] + a5+ +af)s = (@) +ap+- - +ap)r, forp>q>0.

Note that the similar inequality in Example 2.6.5 is in reverse direction.

Exercise 2.6.12. Verify the convexity of xlogx and then use the property to prove the
inequality (z + y)*t¥ < (22)%(2y)Y. Can you extend the inequality to more variables?

2.6.3 Sketch of Graph

We have learned the increasing and decreasing properties, and the convex and con-
cave properties. We may also pay attention to the symmetry properties such as even
or odd function, and the periodic property. Moreover, we should pay attention to
the following special points.
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1. Intercepts, where the graph of function intersects the axes.
2. Disruptions, where the functions are not continuous, or not differentiable.

3. Local extrema, which is often (but not restricted to) the places where the
function changes between increasing and decreasing.

4. Points of inflection, which is the place where the function changes between
convex and concave.

5. Infinity, including the finite places where the function tends to infinity, and
the behavior of the function at the infinity.

One infinity behavior is the asymptotes of a function. If a linear function a + bx
satisfies
lim (f(z) —a—bx) =0,

T—+00

then the linear function is an asymptote at +oo. If b = 0, then the line is a horizontal
asymptote. We also have similar asymptote at —oo (perhaps with different a and
b). Moreover, if lim,_,,, f(z) = oo at a finite z, then the line x = z¢ is a vertical
asymptote.

In subsequent examples, we sketch the graphs of functions and try to indicate
the characteristics listed above as much as possible.

Example 2.6.7. In Example 2.3.4, we determined the monotone property and the
local extrema of f(x) = 2% — 3z + 1. The second order derivative f”(z) = 6z also
tells us that f(z) is concave on (—oo, 0] and convex on [0, +00), which makes 0 into
a point of inflection. Moreover, the function has no asymptotes. The function is
also symmetric with respect to the point (0,1) (f(z) —1 is an odd function). Based
on these information, we may sketch the graph.

x (—o0,—1)| =1 | (=1,0)0| 0 | (0,1)| 1 | (1,400)
f=a%-3x+1 —00 3 0 —1 | = +o0
fr=3+DE-1 N max N min N
"no__ + 0 —
J' =6z N infl 7~

Example 2.6.8. In Example 2.3.6, we determined the monotone property of f(x) =

L. 2(bx — 1)
vVa2(x+1). The second order derivative f”(z) = ~———~2
(z+1) f"(x) 0ot

. 1 1 o1 .
is concave on (—00,0) and on | 0, =l convex on 5,+oo , with = as a point of

implies that the function

inflection. Moreover, we have lim, , o f(x) = —o0, lim, ,, f(z) = +00. The
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max

Figure 2.6.5: Graph of 2® — 3z + 1.
. . flz) _
function has no asymptote and no symmetry. We also note that lim,_,, =
x

z+1

o

lim,_,o = oco. Therefore the tangent of f(x) at 0 is vertical.

f —o00 < | 0.1518 0 0.1073 | — 400
f + 0 — no +
Ve max Ny min s
f - no - 0 +
7N\ 7N\ infl N
max infl
—0.14 mind.Q

Figure 2.6.6: Graph of v/z2(x + 1).

Example 2.6.9. In Example 2.3.15, we determined the monotone property of f(z) =
ze ®. From f"(z) = (x — 2)e™*, we also know the function is concave on (—o0, 2]
and convex on [2,+00), with f(2) = e™? as a point of inflection. Moreover, we
have lim, , o, f(z) = —o0, lim, ,, f(z) = 0, so that the z-axis is a horizontal
asymptote. The function has no symmetry.
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Figure 2.6.7: Graph of ze™™.

Example 2.6.10. In Example 2.3.7, we determined the monotone property and the
3
x

local extrema of f(z) = — T
l’ —

The function is not defined at +1, and has limits

lim f(z) =400, lim f(z)= Foo.

r—1* r——1%

These give vertical asymptotes at £1. Moreover, we have

lim (f(x) —x) =0.

T—00

Therefore y = x is a slant asymptote at oo.
_ 2z(x* +3)

—— 7 shows that the function is convex
(o2 = 1)

The second order derivative f”(z)

on (—1,0), (1,+00), and is concave at the other two intervals. Therefore 0 is a point
of inflection.

We also know the function is odd. So the graph is symmetric with respect to
the origin.

Exercise 2.6.13. Use the graph of 23 — 3z + 1 in Example 2.6.7 to sketch the graphs.

1. —a3 4322 - 1. 3. |o3 =3z +1). 5. 3 —bx, b > 0.

2. 23 — 3z +2. 4. 23 — 3z. 6. ax3 —bx + ¢, ab > 0.
Exercise 2.6.14. Use the graph of xe™® in Example 2.6.9 to sketch the graphs.

1. xe®. 3. (z+1)e”. 5. xa®.

2. we’?. 4. (ax + b)e”. 6. ]:U|e_|“”_1|.

Exercise 2.6.15. Sketch the graphs.
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3
T
Figure 2.6.8: Graph of — :
x p—
1. z —sinz. 3. x —cosz. 5. T+ cosz.
.
2. |x —sinz|. 4. z +sinz. 6. §+SIH$COSIL’.
Exercise 2.6.16. Sketch the graphs.
1 1 9 1 3 1 1
C o2 T4l a2 -1 it bzt
Exercise 2.6.17. Sketch the graphs.
1. (22 +1)P. 2. (2% - 1)P. 3. V1—2a2 4. Vaz? +bx +c.

b 1
Exercise 2.6.18. Sketch the graph of ar+b by using the graph of —.
cr+d x

Exercise 2.6.19. Sketch the graphs on the natural domains of definitions.

1

1. z* —22% + 1. 5. zvzx — 1. 10. e=.
2. ZL‘—|—1. 6. Vo2 +1— . 11. zlogz.
x

12. = —log(1l + x).

S 13. log(1 — 1
PN e . log(1 —logz).
14. log(1 + z*).
x3 1
4. 9

(z—1)% 1rer 15. e ®sinzx.
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16. xtanx. 17. 1 18. 2sinx + sin 2z.

1+sin?z
19. 2 — 4sinx + sin 2z.

2.7 Numerical Application

The linear approximation can be used to find approximate values of functions.

Example 2.7.1. The linear approximation of \/x at =4 is

L(z) = Vi + (Vo) |sma(z — 4) =2+ %l(x —4).

Therefore the value of the square root near 4 can be approximately computed
1 1
V3.96 ~ 2 + Z(—O.O4) =199, V4.05=2+ 1(0.05) = 2.0125.

Example 2.7.2. Assume some metal balls of radius r = 10 are selected to make a
ball bearing. If the radius is allowed to have 1% relative error, what is the maximal
relative error of the weight?
The weight of the ball is
4
W = —pnrr.

5P
where p is the density. The error AW of the weight caused by the error Ar of the
radius is

aw
AW ~ —Ar = 4pmr?Ar.
dr
Therefore the relative error is
AW 3Ar
W
. . . Ar
Given the relative error of the radius is no more than 1%, we have |—| < 1%, so
r

that the relative error of the weight is

AW
W) < 3%.

Example 2.7.3. In Example 2.2.11, we computed the derivatives of the functions
y = y(z) and z = 2(x) given by the equations 22 + y*> + 2> =2 and v +y + 2z = 0,
which is really a circle in R3. The point P = (1,0, —1) lies on the circle, where we
have

C1-(-1) 10

= —(_1) 5= -2, (1) = D = = 1.
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Therefore

y(1.01) ~ 0 —2-0.01 = —0.02, 2(1.01) = —1+1-0.01 = —0.99,
y(0.98) ~ 0 —2-(—0.02) = 0.04,  2(0.98) ~ —1+1-(—0.02) = —1.02.

In other words, the points (1.01, —0.01, —0.99) and (0.98,0.04, —1.02) are near (1,0, —1)
and almost on the circle.

Exercise 2.7.1. For a > 0 and small x, derive

var+x ~a-+ .
na”1
Then find the approximate values.
1. V15. 2. \/46. 3. Vv/39. 4. v/121.

/L
Exercise 2.7.2. The period of a pendulum is T = 2w,/ —, where L the length of the

g
pendulum and g is the gravitational constant. If the length of the pendulum is increased
by 0.4%, what is the change in the period?

2.7.1 Remainder Formula

We may get more accurate values by using high order approximations. On the other
hand, we have more confidence on the estimated values if we also know what the
error is. The following result gives a formula for the error.

Theorem 2.7.1 (Lagrange Form of the Remainder). If f(z) has (n + 1)-st order
derivative on (a,x), then the remainder of the n-th order Taylor expansion of f(x)

at a 1s
S (e)

Bu() = (n+1)!

_ ,\n+l
, ).
(x —a)"™" for some c € (a,x)

We only illustrate the argument for the case n = 2. We know that the remainder
satisfies R(a) = R'(a) = R"(a) = 0. Therefore by Cauchy’s Means Value Theorem
(Theorem 2.4.5), we have

Ry(w)  Ro(w) — Ro(a) Ry(ar) e
g A ey oy s (@< <)
_ Ry(a) —Ry(a) O Ry(e) R
"3l -0 (a—af] 3 2o T2
_ Rj(e2) — Ry(a) _ Ry(cs) _ ["(c3)
= 3.2(02_a) _321— 3 (a<03<02)

In the last step, we use Ry = f” because the f — R, is a quadratic function and
has vanishing third order derivative.
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A slight modification of the proof above actually gives a proof that the Taylor
expansion is high order approximation (Theorem 2.5.2).

Example 2.7.4. The error for the linear approximation in Example 2.7.1 can be esti-
mated by

1
— )
Ri(z) = —%Amj = " Az?,

For both approximate values, we have

IRy| < 0.05% = 0.0000390625 < 4 x 1075

8. 45

If we use the quadratic approximation at 4

1 1
2+ (v —4)— —(x—4)?
VIR 2+ (o —4) = (=47,
then we get better estimated values
1 1
3.96 ~ 2+ —(—0.04) — —(—0.04)* = 1.989975,
4 64
1 1
4.05 ~ 2 + Z(O'O5> — @(0'05)2 = 2.0124609375.
The error can be estimated by
3
8¢2 A3 1 3
R = 2= Ag® = Az,
2(7) 3 162 !

For both computations, we have

1

~0.05° = 0.00000025 = 2.5 x 107".
6-42

|Ro| <

The true values are v/3.96 = 1.989974874213 - - - and v/4.05 = 2.01246117975 - - -.

Example 2.7.5. The Taylor expansion of e” tells us

1 1 1
_ 1 - - -
6—6—1+1!+2!+ —l—n!—i-Rn(l).

By

ec
R,(1)]| = ——1""1 < ., 0O<e<1,
[ (1) (n+1)! = (n+ 1) ¢
we know

|R13(1)] < 0.000000000035 = 3.5 x 107
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On the other hand,
1+ ! + ! + + L_ 2.718281828447
1 2 131 7 ’
Therefore e = 2.7182818284 - - - .

Exercise 2.7.3. Find approximate values by using Taylor expansions and estimate the er-

rors.
1. sin1, 3rd order approximation. 3. e~ !, 5th order approximation.
2. log 2, 5th order approximation. 4. arctan 2, 3rd order approximation.

Exercise 2.7.4. Find approximate values accurate up to the 10-th digit.

1. sinl. 2. 1/4.05. 3. e L. 4. tan46°.

Exercise 2.7.5. Find the approximate value of tan 1 accurate up to the 10-th digit by using
the Taylor expansions of sinx and cos .

Exercise 2.7.6. If we use the Taylor expansion to calculate e accurate up to the 100-th
digit, what is the order of the Taylor expansion we should use?

2.7.2 Newton’s Method

The linear approximation can also be used to find approximate solutions of equa-
tions. To solve f(z) = 0, we start with a rough estimation x, and consider the linear
approximation at zg

Lo(z) = f(xo) + f'(z0)(z — 20).

We expect the solution of the linear equation Lo(z) = 0 to be very close to the
solution of f(z) = 0. The solution of the linear equation is easy to find

Although x; is not the exact solution of f(x) = 0, chances are it is an improvement
of the initial estimation xg.

To get an even better approximate solution, we repeat the process and consider
the linear approximation at x;

Ly(x) = f(x1) + f'(21)(x — 21)
The solution of the linear equation L;(z) =0

f(331)

Ty =1T] —

f'(z1)
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solution

Ly Ly Ly Ls

Figure 2.7.1: Newton’s method.

is an even better estimation than z;. The idea leads to an inductively constructed
sequence

n

We expect the sequence to rapidly converge to the exact solution of f(z) = 0.

The scheme above for finding the approximate solution is called the Newton’s
method. The method may fail for various reasons. However, if the function is rea-
sonably good and the initial estimation z is sufficiently close to the exact solution,
then the method indeed produces a sequence that rapidly converges to the exact
solution. In fact, the error between z,, and the exact solution c satisfies

|Tny1 — c| < M|z, — c|?
for some constant M that depends only on the function.

Example 2.7.6. By Example 1.7.5, the equation 2> —3x+1 = 0 should have a solution
on (0.3,0.4). By Example 1.7.6, the equation should also have a second solution > 1
and a third solution < 0. More precisely, by f(-2) = —1, f(=1) =3, f(1) = —1,
f(2) = 3, the second solution is on (—2,—1) and the third solution is on (1,2).
Taking —2, 0.3, 2 as initial estimations, we apply Newton’s method and compute
the sequence

xf’L—an—kl 2 n 2z, — 1
—_ = —I,+—
3(x2 —1) 3 3(x2 —1)

Tnt1 = Tp —
We find the three solutions

—1.87938524157182--- ,  0.347296355333861 - - - ,  1.53208888623796 - - - .
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$0:—2 1'0:03 1‘022
-1.88888888888889 | 0.346520146520147 | 1.66666666666667
-1.87945156695157 | 0.347296117887934 | 1.54861111111111
-1.87938524483667 | 0.347296355333838 | 1.53239016186538
-1.87938524157182 | 0.347296355333861 | 1.53208898939722
-1.87938524157182 | 0.347296355333861 | 1.53208888623797
1.53208888623796
1.53208888623796

O Utk w3

Note that the initial estimation cannot be 1 or —1, because the derivative van-
ishes at the points. Moreover, if we start from 0.88,0.89,0.90, we get very different
sequences that respectively converge to the three sequences. We see that Newton’s
method can be very sensitive to the initial estimation, especially when the estimation
is close to where the derivative vanishes.

n ro = 0.88 zo = 0.89 zo = 0.90
1] -0.5362647754137 | -0.657267917268 | -0.80350877192983
2| 0.6122033746535 | 0.920119732577 | 1.91655789116111
3| 0.2884916149262 | -1.212642459862 | 1.63097998546252
4| 0.3461342508923 | -3.235117846394 | 1.54150263235725
5| 0.3472958236620 | -2.419800571908 | 1.53218794505509
6 | 0.3472963553337 | -2.014098301161 | 1.53208889739446
71 0.3472963553339 | -1.891076746708 | 1.53208888623796
8 -1.879485375060

9 -1.879385249013

10 -1.879385241572

Example 2.7.7. We solve the equation sin x4+ cos x = 0 by starting with the estima-
tion o = 1. After five steps, we find the exact solution should be 0.325639452727856 - - -

T
1.000000000000000
0.471924667505487
0.330968826345873
0.325645312076542
0.325639452734876
0.325639452727856
0.325639452727856

DO WO

Exercise 2.7.7. Applying Newton’s method to solve 2% —x — 1 = 0 with the initial estima-
tions 1, 0.6 and 0.57. What lesson can you draw from the conclusion?

Exercise 2.7.8. Use Newton’s method to find the unique positive root of f(x) = e* —z —2.
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Exercise 2.7.9. Use Newton’s method to find all the solutions of z2 — cosz = 0.

Exercise 2.7.10. Use Newton’s method to find the approximate values of v/4.05 and e™!
accurate up to the 10-th digit.

Exercise 2.7.11. Use Newton’s method to find all solutions accurate up to the 6-th digit.
1. 24 =2 +3. 2. e =3 —2zx. 3. cos?x = x. 4. x4+ tanx = 1.

Note that one may rewrite the equation into another equivalent form and derive a
simpler recursive relation.

Exercise 2.7.12. The ancient Babylonians used the recursive relation

1 a
xn-l-l:i mn""a

to get more an more accurate approximate values of /a. Explain the scheme by Newton’s
method.

Exercise 2.7.13. What approximate values does the recursive relation z,4+1 = 2x, — a:v%
give you? Explain by Newton’s method.

Exercise 2.7.14. Explain why Newton’s method does not work if we try to solve 2° —3z+1 =
0 by starting at the estimation 1.

Exercise 2.7.15. Newton’s method fails to solve the following equations by starting at any
xo 7é 0. Why?

1. Jx=0. 2. sign(z)/|z| = 0.
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Chapter 3

Integration

3.1 Area and Definite Integral

3.1.1 Area below Non-negative Function

Let f(z) be a non-negative function on [a, b]. We wish to find the area of the region

Gy (f) ={(z,y):a <z <b, 0<y < fz)}

between the graph of the function and the z-axis.

G[a,b] (f)

Figure 3.1.1: The region between the function and the z-axis.

Our strategy is the following. For any = € [a, b], let A(z) be the area of G, 4(f),
which is part of the region over [a,z]. We will find how the function A(x) changes
and recover A(z) from its change. The area we wish to find is then the value A(b).
The subsequent argument assumes that f(z) is continuous.

Consider an interval [z, x 4+ h| C [a, b], which implicitly assumes h > 0. Then the
change A(z+h)—A(x) is the area of G|, z45)(f). Note that G, 1n)(f) is sandwiched
between two rectangles

[z, 2+ h] x [0,m] C Glzarn(f) C [z, 24+ h] x [0, M],

171
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where
m = min f, M = max f.
[,2-+h] ! [w7x+)f(l] d

Since bigger region should have bigger area, we have
mh < A(z + h) — A(zx) < Mh.
By h > 0, this is the same as

A —A
m <A@ h]z @) < (3.1.1)
Since the (right) continuity of f(z) implies

li = = lim M
wog =) = g M

by the sandwich rule, we further get the right derivative

A () = tim A@EN =A@ ey (3.1.2)

h—0t h

N

G[z,z+h](f)

Figure 3.1.2: Estimate the change of area.

The argument above assumes h > 0. For h < 0, we consider [z + h,z] C [a,b].
Then the change A(x + h) — A(x) is the negative of the area of G444 (f), and the
interval [x + h, 2| has length —h. By the same reason as before, we get

m(—h) < —(A(x + h) — A(z)) < M(=h).

By —h > 0, we still get the inequality (3.1.1), and further application of the sandwich
rule gives the left derivative

by e Al h) — Alx)
A(2) = s h

= [(x).
We conclude that, for non-negative and continuous f(z), we have

Al(z) = f(x). (3.1.3)
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Example 3.1.1. To find the area of the region below f(z) = ¢ over [a,b], by (3.1.3),
we have A’(x) = ¢ = (cx)’. Then by Theorem 2.4.3, we get A(x) = cx + C. Further
by A(a) = 0, we get C' = —ca and A(z) = ¢(x —a). Therefore the area of the region
is A(b) = c(b—a).

The region G4 (c) is actually a rectangle of base b — a and height c¢. The
computation of the area is consistent with the common sense.

Example 3.1.2. To find the area of the region below f(z) = z over [0,a], we start
1.\ 1
with A'(x) =z = (5952) . This implies A(z) = §x2 + C. By A(0) =0, we further

1 1
get C =0and A(z) = §x2. Therefore the region has area A(a) = §a2.

The region is actually a triangle, more precisely half of the square of side length
a. The computation of the area is consistent with the common sense.

The pattern we see from the examples above is that, to find the area below a non-
negative function and over an interval [a, b], we first find a function F'(x) satisfying
f(z) = F'(z). Then by Theorem 2.4.3, A'(x) = F'(x) implies A(x) = F(z) + C.
Further, by A(a) = 0, we get C' = —F(a). Therefore A(x) = F(z) — F(a), and the
area we wish to find is

Area(Glay(f)) = F(b) — F(a).

This is the Newton-Leibniz formula. The function F is naturally called an an-
tiderivative of f.

Example 3.1.3. To find the area of the region below z? and over [0,a], we use

1Y 1. 1 1
<§9€3) = 22. The area is ga?’ — 503 = §a3.

/
More generally, for any p # —1 and 0 < a < b, by ( wp) = 2P, the area of

p+1
the region below 2 and over [a, b] is

%(prrl — ath.
D

For example, the area of the region below /z and over [1,2] is

(27 —12) = %(2\/5— 1).

Exercise 3.1.1. Find the area of the region below the function over the given interval.
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NZ3

1 2

2
Figure 3.1.3: Area below parabola is 5(2\/5 —1).

1. 2P on [0,1], p > 0. 3. € on [0,a]. 5. vV1+zon[1,2].
1
2. sinz on [0, g] 4. 7 on [1,al. 6. logz on [1,a].

Exercise 3.1.2. Find the area of the region bounded by 1 — 22 and the z-axis.

3.1.2 Definite Integral of Continuous Function

What do we get if we apply the Newton-Leibniz formula to general continuous
functions, which might become negative somewhere? The answer is the signed area.
This means that we count the region between the non-negative part of f and the
x-axis as having positive area and count the region between the non-positive part
of f and the z-axis as having negative area. See Figure 3.1.4.

Figure 3.1.4: Computation by the Newton-Leibniz formula gives signed area.

To justify our claim, let A(z) be the signed area for f(x) over [a,z]. What we
are really concerned with is the change of A(x) where f is negative. So we consider
[z, 2+ h] C [a,b], with A > 0 and f < 0 on [z,2 + h|. The change A(z + h) — A(z)
is the negative of the positive, “unsigned” area of the region

between f and the z-axis along the interval [z, x 4+ h]. We have the similar inclusion
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(see Figure 3.1.5, and note that [M,0] C [m, 0] because 0 > M > m)

(@, 2 + h] x [M,0] C Gzgaqn(f) C z,2 4+ h] x [m,0], m= [mir}l] fiM = [ma}}i] f
T, x+ T, r+

The heights of the rectangles are respectively —M and —m, and we get (beware of
the signs)
(=M)h < =(A(z + h) = A(x)) < (=m)h.

Again we get the inequality (3.1.1) and subsequently the limit (3.1.2).
The discussion for the case h < 0 is similar, and we conclude that A'(z) = f(x).

a Tz x+ h

G(f)

EIS

Figure 3.1.5: Estimate the change of negative area.

b
The signed area is the definite integral of f(x) and is denoted / f(z)dz. The

function f(z) is called the integrand and the ends a,b of the inferval are called
the upper limit and lower limit. The argument above and the explanation before
Example 3.1.3 show that the definite integral can be computed by the Newton-
Leibniz formula

b
/ f(x)dz = F(b) — F(a), where F'(z) = f(x).

1 /
Example 3.1.4. By (z) = 1 and (51’2) = x, we get

b b 1
/ de =0b—a, / xdxzi(bQ—aQ).

In general, for any integer n # —1, we have

’ 1
/ "dr = —— (" — o™,
a n+1

However, for n < 0, a and b need to have the same sign. The reason is that we
derived the Newton-Leibniz formula under the assumption that the integrand is
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continuous. If a and b have different sign, then 0 € [a,b], and 2" is not continuous
on [a,b] for n < 0.

On the other hand, for any p, x? is defined for > 0. Then for b > a > 0, we
have

b
1
Py = bp+1_ p+1_
/all’ ! p+1< @)

We note that 2P is also defined at 0 for p > 0, and the formula above holds for
p>0and b > a > 0. The reason is that x? is right continuous at 0, and we derived
Newton-Leibniz formula by one-sided derivatives.

1
Example 3.1.5. By (e*) = e and (logz)’' = —, we get
x

b b
d b
/ e“dr = e’ — e, / —leogb—loga:log—.
“ e T a
Note that the second integral requires b > a > 0.

Example 3.1.6. By (sinz)’ = cosz and (cosz)’ = —sinz, we get

b b
/ cosxdr = sinb — sin a, / sin xdx = cosa — cosb.
a a
For example, we have

0
/ sin xdr = cos(—m) — cos 0 = —2.

—T

Example 3.1.7. From the derivatives of arcsinx and arctan z, we get

dx

52 = arctan b — arctan a.
T

/b dx - . /b
—————— = arcsin b — arcsin a,
a V ]- - lz a

Of course, we need |al, |b| < 1 in the first equality because the integrand is defined

only on the open interval (—1, 1). In particular, the area of the region below T2
x

and over [0, 1] is

U de T
—arctan1l — arctan (0 = —.
0 1 + .1'2 4

We also note that

) b da ) . T T

lim = lim arctanb— lim arctana=——(—=) =m.
a——oo J. 1+ 22 b—+o00 a——00 2 2
b—+00

1
So the area of the unbounded region between 172 and the z-axis is .
x

Exercise 3.1.3. Use the area meaning of definite integral to directly find the value.
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1 3 b
L. / V11— x2dx. 2. / (x — 2)dz. 3. / |z — 1|dx.
-1 0 a

Exercise 3.1.4. Compute and compare

2 2 2 2 2
/ w3dx, / 2odz, / 423de, / 62°dz, / (423 + 62°)dz.
0 0 0 0 0

What can you observe about the relation between
b b b b
[ t@ide. [g@e. [ et [ (5@ +gla)a

Exercise 3.1.5. Compute definite integral.

2 8 b
1. / (2% — 3z — 4)dx. 4. / V3z + ldx. 7. / e,
-1 0 0
2 1 1
2. / (3z + I)de. 5. / (3 + zv/z)dw. 8. / (e™" + sin7w)dz.
0 0 0
3. / (3x 4+ 1)(z — 3)dz. 6. / (x + x) dx. 9. / sec z tan xdx.
0 1 0

Exercise 3.1.6. For non-negative integers m and n, prove that

2
/ cos mz sin nxdx = 0;
0

5 0, ifm#n,
™
/ cosmxcosnrdr = m, ifm=mn#0,
0 .
27, ifm=n=0;

/2”. ) 0, fm#norm=n=0,
sin maz sin nxdx =
0 m, ifm=mn#0.

b b
1
Exercise 3.1.7. Compute / Jxdr and / —~=dz. Explain for what range of a,b are the
x
a a

7

formulae valid.
Exercise 3.1.8. What is wrong with the equality?

™
=9, 2. / sec? zdz = tanm — tan 0 = 0.
0

Exercise 3.1.9. What is the area of the unbounded region between and the z-axis,

1 — 22

over the interval (—1,1)?
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3.1.3 Property of Area and Definite Integral

Since the definite integral is the signed area, the usual properties of area is reflected
as properties of the definite integral. An important property of area is the additivity.
Specifically, if X NY has zero area, then the area of X UY should be the area of X
plus the area of Y. Translated to definite integral, this means

[ = [ @i [ s (3.14)

The equality can be used to calculate the definite integral of “piecewise continuous”
functions.

Example 3.1.8. The definite integral of the function (which is not continuous at 0)

fz) =

—2z, if —1<x<0,
e’, if0<z <1,

on [—1,1] is

/_llf(x)dm:/jf(a:)da:—i—/Olf(x)dgg:/_i(_2$>d$+/olezdx

= -2’2 +efp =

Figure 3.1.6: Definite integral of a piecewise continuous function.

0
We note that the computation of [ f(z)dx actually reassigns the value f(0) =0
1

to make the function continuous on [—1,0]. The modification happens inside the
vertical line x = 0. Since the vertical line has zero area, this does not affect the
whole integral.

In general, changing the value of the integrand at finitely many places does not
affect the integral.
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b
Presumably, the definite integral / f(x)dx is defined only for the case a < b,

and the equality (3.1.4) implicitly assumes a < b < ¢. However, by

/a ) =0,

and by taking ¢ = a in (3.1.4), we get

/baf(x)dx __ /abf(x)dx.

This extends the definite integral to the case the upper limit is smaller than the lower
limit. With such extension, the equality (3.1.4) holds for any combination of a, b, c.
Moreover, the extended definite integral is still computed by the antiderivative as
before.

Another important property of area is positivity. Translated into definite inte-
gral, this means

b
>0 = / f(x)dz > 0,for a < b. (3.1.5)

b
Note that if a > b, then / f(x)dx < 0. The positivity is further extended to

monotonicity in Example 3.5.5.
If we shift the graph under f(x) over [a,b] by d, we get the graph under f(z —d)
over [a + d, b+ d]. Since the area is not changed by shifting, we get
b+d b
flx —d)dx = / f(z)dz. (3.1.6)

a+d

See Exercise for more examples of properties of area implying properties of definite
integral.

In Section 3.5, we will introduce more properties from the the viewpoint of
computation (i.e., Newton-Leibniz formula). Some of these properties cannot be
easily explained by properties of area.

2 4 0 4
Exercise 3.1.10. Suppose/ f(z)dz =3, / f(z)dz =2, / f(z)dz = 0. Find/ f(z)dx.
0 5 5 2
Exercise 3.1.11. Use area to explain the equalities.

—a b
1. . f(—a;)d:z::/a f(z)dx.

5 /abcf(x)dx _ c/abf(x)dx.
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b cb
3. / f(c:n)dm:c_l/ f(x)dx.

b
Then express / f(Az + B)dx as some multiple of the definite integral of f(x) over some
a

interval.

Exercise 3.1.12. Compute the integrals.

b 2 2
1. / a®dz. 4. / x2sign(z)dz. 7. / |z? — 3z + 2|dz.
0 -1 0
b 2 2T
2. / (14 2z)"dx. 5. / |z|dx. 8. / | sin z|dz.
a -1 0
2 -1 0
3. / sign(z)dzx. 6. / |z|dx. 9. | sin z|dz.
-1 2 2

Exercise 3.1.13. Compute the integrals.

2 22, ifz<l1,
1. /0 f(@)de, f(z) = {xg

, if x> 2.

lz| 4
5 /2 (@), f(z) = {62 , i |z < 1,
2

e if x| > 1.

3 /Oﬂf(:v)dx, o) = {sinm, if x

<
cosx, if x>

ISERVIE]

Y

sinz, if [z| < F,

1 " fayde, fl2) = {

cosz, if|z|> 7.

3.2 Rigorous Definition of Integral

3.2.1 What is Area?

The definite integral is defined as the signed area. Therefore the rigorous definition
of integral relies on the rigorous definition of area. Any reasonable definition of area
should have the following three properties (the area of a subset X C R? is denoted

p(X)):

1. Bigger subsets have bigger area: X C Y implies pu(X) < u(Y).

2. Areas can be added: If (X NY) =0, then (X UY) = pu(X) + u(Y).

3. Rectangles have the usual area: u({a,b) x {¢,d)) = (b—a)(d — ¢).



3.2. RIGOROUS DEFINITION OF INTEGRAL 181

Here (a,b) can mean any of [a,b], (a,b), (a,b], or [a,b). A carefully review of the
argument in Section 3.1 shows that nothing beyond the three properties are used.
Suppose a plane region A C R? is a union of finitely many rectangles, A = U, I,
such that the intersections between I; are at most lines. Since lines have zero area
by the third property, we may use the second property to further define pu(A) =
> w(l;). We give such a plane region the temporary name “good region”, since
we have definite idea about the area of a good region. (Strictly speaking, we still
need to argue that Y, p(1;) is independent of the decomposition A = U}, I;.)

]

I

Figure 3.2.1: Good region.

For any (bounded) subset X C R? we may try to approximate X by good
regions, from inside as well as from outside. In other words, we consider good
regions A and B satisfying A C X C B. Then by the first property of area, we must
have

n(A) C p(X) C u(B).

Note that p(A) and p(B) have been defined, and p(X) is yet to be defined. So we
introduce the inner area (the maximum should really be the supremum)

(X)) =max{u(A): AC X, Ais a good region},

as the lower bound for p(X), and the outer area (the minimum should really be the
infimum)

(X)) =min{p(B): B D X, B is a good region},

as the upper bound for u(X). We say that the subset X has area (or Jordan
measurable) if . (X) = p*(X), and the common value is the area p(X) of X. If
px(X) # p*(X), then we say X has no area.

The subset X has area if and only if for any € > 0, there are good regions A
and B, such that A C X C B and u(B) — u(A) < e. In other words, we can
find good inner and outer approximations, such that the difference between the
approximations can be arbitrarily small.
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Figure 3.2.2: Approximation by good regions.

Example 3.2.1. A point can be considered as a reduced rectangle and has area 0. If X
consists of finitely many points, then we can take B = X be the union of all “point
rectangles” in X. Since p(B) = 0, we get p*(X) = 0. By 0 < p(X) < p*(X), we
also have . (X) = 0. Therefore finitely many points has area 0.

Example 3.2.2. Consider the triangle with vertices (0,0), (1,0) and (1,1). We parti-
tion the interval [0, 1] into n parts of equal length

0,1] = U™, {i_l,i}.

n n

Correspondingly, we have the inner and outer approximations of the triangle

An = U?Zl |:Z ’1:| X |:07 l :| ’ Bn — U?:1 |:Z ,l:| X |:O’ 1:| .
n n n n n n

They have area

n n

1i—-1 1 14 1
n(An) = - = ——

= —(n—1 B,) = = —(n+1).

1
By taking sufficiently big n, the difference u(B,,) — u(A,) = — can be arbitrarily
n
small. Therefore the triangle has area, and the area is given by lim,, . u(A,) =

1
limy, 00 (By) = 7 This justifies the conclusion of Example 3.1.2 for the case a = 1.

Example 3.2.3. For an example of subsets without area, i.e., satisfying p,(X) #
p*(X), let us consider the subset X = (Q N [0,1])? of all rational pairs in the unit
square.
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1 1
inner approx. outer approx.

Figure 3.2.3: Approximating triangle.

Since the only rectangles contained in X are single points, any good region
A C X must be finitely many points. Therefore p(A) = 0 for any good region
A C X, and pu (X) =0.

On the other hand, if B is a good region containing X, then B must almost
contain the whole square [0, 1]?, with the only exception of finitely many horizontal
or vertical (irrational) line segments. Therefore we have p(B) > u([0,1]*) = 1. This
implies p*(X) > 1 (show that p*(X) = 1!).

Exercise 3.2.1. Use inner and outer approximations to explain that any rectangle has area
given by the multiplication of two sides. This justifies Example 3.1.1.

Exercise 3.2.2. Explain that a (not necessarily horizontal or vertical) straight line segment
has area 0.

Exercise 3.2.3. Explain that the region between y = = and the z-axis over [0, a] has area

1
§a2. This fully justifies the computation in Example 3.1.2.

Exercise 3.2.4. Explain that the subset X = (QN[0,1]) x [0, 1] of all vertical rational lines
in the unit square has no area.

Exercise 3.2.5. Show that if X C Y, then p.(X) < p(Y) and p*(X) < p*(Y). In
particular, we have u(X) < u(Y') in case both X and Y have areas. The property is used
in deriving (3.1.1).

3.2.2 Darboux Sum

After the rigorous definition of area, we can give the rigorous definition of definite
integral.

Definition 3.2.1. A function f(x) is Riemann integrable if the region

Gy (f) ={(z,y): a <z <b, yis between 0 and f(x)}
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has area. Moreover, the Riemann integral is

b
/ F(@)dz = 1 (Cray (F) N H) — 1 (Gra (f) N ),

where
H+:{($,y>y20}, H_Z{(x,y)yg()}
are the upper and lower half planes.

Suppose f > 0 on [a,b]. As indicated by Figure 3.2.4, for any inner approxima-
tion of G 3 (f), we can always choose “full vertical strips” to get a better approxima-
tion for Ga(f). Here better means closer to the expected value of j1(Ga(f)). The
outer approximations have similar improvements by full vertical strips. Therefore
we only need to consider the approximations by full vertical strips.

Figure 3.2.4: Better inner approximations by vertical strips.

An approximation by full vertical strips is determined by a partition of the in-
terval
Pia=xg<o1 <<z, =0.
On the i-th interval [x;_1, 2;], the inner strip has height m; = miny, | ,,) f (the mini-
mum should really be the infimum), and the outer strip has height M; = max(,, | ., f
(the maximum should really be the supremum). Therefore the inner and outer ap-
proximations are

Ap = U?Zl[l'i_l,l'i] X [O,mz) CXCBp= U?Zl[l'i_l,I‘i] X [O,Ml]

The areas of the two approximations are the lower and upper Darbouzr sums

L(P, f) = u(Ap) = Zmz(% — Ti-1),
i=1
U(Pa f) = N(BP) = Z Mz(% - l‘z‘—1)-
i=1
The Riemann integrability of f means that G, (f) has area, which further
means that the difference between inner and outer approximations can be arbitrarily
small. Therefore we get the following criterion for the integrability.
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Theorem 3.2.2 (Riemann Criterion). A bounded function f on [a,b] is Riemann
integrable, if and only if for any € > 0, there is a partition P, such that

n

U(P,f)— L(P, f) = Z ( max f— min f) (z; — 1) < €

[mi—l ,$i] [aji—lyxi}

The quantity

Wiy, f = max f— min f
’ [@i—1,2i] [i—1,2]

measures how much the value of f fluctuates on [z;_1, ;] and is called the oscillation
of the function on the interval. Since the continuity of a function can imply that such
oscillations are uniformly small, continuous functions are always Riemann integrable.
The criterion also implies that monotone functions are Riemann integrable. On the
other hand, there are functions that are not Riemann integrable.

Example 3.2.4. Consider the Dirichlet function D(x) on [0,1]. We always have

min D=0, max D=1.

[i—1,24] [i—1,24]

Therefore U(P, f) — L(P, f) = 1 cannot be arbitrarily small. We conclude that the
Dirichlet function is not Riemann integrable.
The example is closely related to Example 3.2.3. See Exercise 3.2.4.

We note that U(P, f) — L(P, f) is the area of the good subset Bp — Ap =
U (i1, 2] X [my, M;]. If we consider all the partitions P, the all such good subsets
are essentially all the outer approximations of the graph {(z, f(z)): a <z < b} of
f (a curve, not including the part below f). Therefore Theorem 3.2.2 basically says
that a function is Riemann integrable if and only if the graph curve of the function
has zero area.

The graph curve is part of the boundary of G(f). In this viewpoint, Theorem
3.2.2 is a special case of the following.

Theorem 3.2.3. A bounded subset X C R? has area if and only if its boundary 0X

has zero area.

We remark that the theory of area can be easily extended to the theory of
volume for subsets in R™. We may then get the rigorous definition of multivariable
Riemann integrals on subsets of Euclidean spaces, where the subsets should have
volume themselves. The high dimensional versions of Theorems 3.2.2 and 3.2.3 are
still valid.

Further extension of the area theory introduces countably many in place of
finitely many. The result is the modern theory of Lebesgue measure and Lebesgue
integral.
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3.2.3 Riemann Sum

Suppose f is Riemann integrable. When the partition gets more and more refined,
the upper and lower Darboux sums, as the areas of the outer and inner approxima-

b
tions, will become closer to the integral / f(z)dz. Now choose ¢; satisfying

m; < ¢; < M.

Then we get the Riemann sum
S(P,f) =) dilw; — xi 1)
i=1

sandwiched between the two Darboux sums

L(P, f) < S(P, f) <UL, f).
b
We conclude that S(P, f) will also become closer to the integral / f(z)dz.

a
A wuseful case of the Riemann sum is obtained by taking ¢; = f(z}) to be the
values of some sample points in the partition intervals

S(Pf) =) f@i)(wi— i), @} € [mio, wl.
i=1
This is what is usually called the Riemann sum in most textbooks.
Theorem 3.2.4. Suppose [ is Riemann integrable on |a,b]. Then for any ¢ > 0,
there is a partition Py of [a,b], such that for any partition P obtained by adding

more partition points to Py (we say P is a refinement of Py), we have

< €.

\S(P, n-J[ ()

The statement above is very similar to the limit of sequences and functions, and
we may write

b
/ f(x)dx = ligl S(P, f).

The subtlety here is that refinement of partitions replaces n > N or |z —a| < 0.

3.3 Numerical Calculation of Integral

3.3.1 Left and Right Rule

Although Riemann integrals can be computed by the Newton-Leibniz formula, it
is often impossible to find the exact formula of a function F satisfying F' = f.
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Moreover, even if we can find a formula for F', it might be too complicated to
evaluate. For many practical applications, it is sufficient to find an approximate
value of the integration. Many efficient numerical schemes have been invented for
this purpose.

All the schemes are the extensions of the Riemann sum in Section 3.2.3. Usually
one starts with a partition that evenly divides the interval

P.a=xy<xri=a+h<---<x;=0a+ih<---<z,=b=a+nh,

where
b—a

h

n
is the step size of the partition. By taking all the sample points to be the left of the
partition intervals, we get x7 = x;_1 = a + (i — 1)h and the left rule

Ly = h(f(xo) + fx1) + -+ f(zn-a)).

By taking all the sample points to be the right of the partition interval, we get
x; = x; = a + ih and the right rule

Ry = h(f(21) + f(w2) + -+ f(zn)).

Figure 3.3.1: Left and right rules.

Example 3.3.1. For f(z) = x on [0, 1], we have

1 /0 1 n—1
L,=—(—-—4+—+ +
n\n n n
1 11 n—1
1 /1 2 n
R,=—|—-—4+—+ -~+—)
n\n n n
1 n+1
:ﬁ(1+2+ +n)=—=znn+1)= 5

1 1
Both converge to 5= / xdxr as n — oo.
0
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Example 3.3.2. To compute the integral of f(x) = on [0, 1], we take n = 4.

1+ a2
The partition is

P:0<025<05<0.75<1, h=0.25.

The values of f(x) at the five partition points are
1.000000, 0.941176, 0.800000, 0.640000, 0.500000.

dz
14+ 22

1
Then we get the following approximate values of /
0

L, =0.25 x (1.000000 4 0.941176 + 0.800000 + 0.640000) ~ 0.845294,
Ry = 0.25 x (0.941176 + 0.800000 + 0.640000 + 0.500000) ~ 0.720294.

By Example 3.1.7, the actual value is % = 0.7853981634 - - - .

Exercise 3.3.1. Find L, and R, and confirm the value of related integral.

1. f(z) =z on [a,b]. 3. f(x) =2% on [0,1].

2. f(x) =22 on [0,1]. 4. f(x) =a" on [0,1].

Exercise 3.3.2. Explain the identity.

, 12 n—1 !
1. hmnﬁ\oo(Q—}—Q—{—---—l— 3 ):/xd:v
n n n 0
2. i ! + ! +- 4 ! /1 da
. lim —_— e+ — ) = .
T \n4+1 " n+2 2n o 1+=z
bod
3. lim,_, LT I L :/ e
TR 12 n2 422 n? + n? o 1+a2

1 2 —1 !
4. limy—o0 — (Sin il + sin il + -+ +sin M) = / sin Txdx.
n 0

n n n

Exercise 3.3.3. Interpret the limit as integration.

1P4+2P ... 4P
npt1 ’

1. limy, oo

1 b—a
2. limy—soo — > 7 k .
im,,_, n2k1f<a—|— - )

. 2 1.,/(2n)
Exercise 3.3.4. By interpreting / log zdz, find lim,_,c — —
1 n n:
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3.3.2 Midpoint Rule and Trapezoidal Rule

The left and right rules are quite primitive approximations of the integral. A better
choice is the middle points

_ Ti_1+ x; 21— 1
T 5 a + 5

and the corresponding Riemann sum

My = h(f(z1) + f(Z2) + -+ + f(T0)).
Another choice is the average of the Riemann sums using the left and right points.

 L,+R, h

T, —77—~f5#@@+af@n+2f@@+-~+2ﬂ%Fn+f@0)

The two approximation schemes are the midpoint rule and the trapezoidal rule.

Figure 3.3.2: Midpoint and trapezoidal rules.

Example 3.3.3. For f(z) = x on [0, 1], we have

1/1 3 M — 1
A@:56—+—+~4- )

2n  2n 2n
1

1 1
= — (1 +3+--- m—1) = —n2 ==
2nQ( +34+--+(2n—-1)) 53" 5

1 /n—1 n+1 1
T, == + = —.
2 2n 2n 2

1 1
Both happen to be equal to 3= / rdz.
0
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Example 3.3.4. For f(x) = 22 on [0, 1], we have

1/12 32 (2n — 1)2
M,y==(—4+ . gp "
n (4712 * 4n? LA 4n? )

L2422 4 20D — 221242 1 +n2)]

T n?
1 /1 1 4n? —1
1 /02 12 22 (n—1)% n?
T, =—|—=+2—=+2—5+---+2 —
2n (n2 * n? * n? e n? * n2>
1
= ﬁ[2(12+22+~~+n2) —n?]
1 1 9 2n? + 1
by, 1 1 1
Compared with the actual value / x“dx = —, the errors are and —.
0 3 12n? 6n?
U dx
Example 3.3.5. We apply the midpoint and trapezoidal rules to / L For
0 x

n = 4, we have

M, =0.25 x (0.984615 + 0.876712 + 0.719101 4 0.566372) ~ 0.786700,
0.25
T, = 5 X (1.000000 + 2 x 0.941176 + 2 x 0.800000 + 2 x 0.640000 + 0.500000)

~ 0.782794.

For n = 8, we have h = 0.125 and the following values.

. I - T
T 12 | Y | 1w
0 | 1.000000

0.125 | 0.984615 | 0.0625 | 0.996109
0.25 | 0.941176 | 0.1875 | 0.966038
0.325 | 0.876712 | 0.3125 | 0.911032
0.5 | 0.800000 | 0.4375 | 0.839344
0.625 | 0.719101 | 0.5625 | 0.759644
0.75 | 0.640000 | 0.6875 | 0.679045
0.875 | 0.566372 | 0.8125 | 0.602353
1 0.500000 | 0.9375 | 0.532225

OO =W N~ O

Then we get the approximations

Mg ~ 0.785721, T~ 0.784747.
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1
d
Compared with the actual value / . Jf 5= % = (.7853981634 - - -, the follow-
0 x
ing are the errors of various schemes.

error n=4 n=3~8

|R, — I| | 0.065104 | 0.031901

|L, — 1] | 0.059896 | 0.030599

|M,, — 1| | 0.001302 | 0.000323

|T,, — I| | 0.002604 | 0.000651

We observe that the midpoint and trapezoidal rules are much more accurate,
and the error for the midpoint rule is about half of the error for the trapezoidal rule.
Moreover, doubling the number of partition points improves the error by a factor of
4 for the two rules. The following gives an estimation of the errors.

Theorem 3.3.1. Suppose f"(z) is continuous and bounded by Ko on [a,b], then

< KQ(b — a)3

b Ky(b—a)?
/Gf(x)dx—Mn < SYPrR <M

b
/a flz)dx — T, | < 22

The estimations are derived in Exercises 3.5.9 and 3.5.17.

b
Exercise 3.3.5. To compute the integral / x2dz, for any partition of [a, b], we take xf =
a

1
\/3 (%2—1 4+ xii1x; + CL‘ZQ) € [xi—1,x;]. Show that the Riemann sum is exactly the value of

b
the integral. How can you generalize this to / z"dz?
a

b

Exercise 3.3.6. For the integral z?dx, we take any partition of [a,b], in which the

a
intervals may not have the same length. Estimate the error of the various schemes in
terms of the size § = max]" ,(x; — x;—1) of the partition.

Exercise 3.3.7. Apply the midpoint and trapezoidal rules to the integral and compare with
the actual value.

2
1./)Mﬂn=6J2
1 X

Exercise 3.3.8. Apply the midpoint and trapezoidal rules to the integral. Moreover, esti-
mate the number of partition points needed for the approximation to be accurate up to
1076,

™
2. / sinxdx, n = 4,12.
0



192 CHAPTER 3. INTEGRATION

™ 1
1. / cos z2dz, n = 5, 10. 4. / ex2dx, n = 10.
0 0
™ o3 2
2. / ST e n = 5.10. 5. / etdz, n = 10,
o T 1
2 2
1 log x
3. dx, n = 5,10. 6. / dx, n = 10.
/0 V1+ 23 1 L+

1
Exercise 3.3.9. Show that T5,, = E(Mn +T),).

b
Exercise 3.3.10. Prove that if f is a concave positive function, then T, < / f(z)dx < M,
a

3.3.3 Simpson’s Rule

The midpoint rule is based on the constant approximation, and the trapezoidal rule
is based on linear approximation (actually not quite, as average of two constant
approximations). We may expect better approximation by using quadratic curves.

Since a quadratic curve is determined by three points, we try to approximate f(z)
on the interval [x;_1, z;;1] by the quadratic function Q(z) = A(x—x;)*+B(z—x;)+C
satisfying

(xi—l) = Ah2 — Bh + C,
f(l'i+1> = Q($i+1) = Ah2 + Bh + C.

Tit1
Then / f(z)dz is approximated by (the first equality uses (3.1.6))

/%” Q(z)dz = %Ahg +2Ch = g(f(xi—l) +4f (@) + f(wi)).

Suppose n is even. Then we may apply the quadratic approximations to [zg, zs],
[xo, 4], . ., [Xn_2, T,]. Adding such approximations together, we get an approxima-

tion of/ f(z)dx
on = g(f(xo)+4f(x1)+2f(xz)+4f(x3)+2f(fc4)+' C 2 (@) 4T (1) (20)-

1
This is Simpson’s rule. Observe that S,, = §(2T n + M=) is the weighted average of

the trapezoidal (with step size h) and midpoint (with step size 2h) rules.
The errors in Simpson’s rule can be estimated by the bound on the fourth order
derivative.
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Theorem 3.3.2. Suppose fP(z) is continuous and bounded by Ky on [a,b], then

< K4(b — a)5 '

b
/af(“r)dx_s" = T 180n4

A consequence of the theorem is that doubling the partition improves the error
by a factor of 16!

1
Example 3.3.6. Applying Simpson’s rule to / for n = 4, we use the same
0

14 a2
data from Example 3.3.1 to get

02

Si X (1.000000 4 4 x 0.941176 + 2 x 0.800000 + 4 x 0.640000 -+ 0.500000)

~ 0.785392.

The error |S,, — I| = 0.000540 is comparable to the midpoint and trepezoidal rule
for n = 8.

How many partition points are needed in order to get the approximate value
accurate up to the 6-th digit? To answer the question, we compute the derivatives

24(52* — 102* + 1)
A+22p

240z (2* = 3)(32* — 1)

f(5)(x) = 15 22)0

fO () =

1
From f©®)(z), the extrema of f*(x) on [0,1] can only be at 0, —= or 1. By

V3
1 81

o=z |19 () =5 romr=s

we get K, = 24. Then the question becomes

24

—6
180n4 <107

Therefore we need n > 19.1. Since n should be an even integer, this means n > 20.
We may carry out the similar estimation for the midpoint and trapezoidal rules.
We find Ky = |f”(0)| = 2, so that the estimations become

108, 2 <10
24n2 — T 12n2 — ‘

The answers are respectively n > 289 and n > 409.

Exercise 3.3.11. Repeat Exercise 3.3.7 for the Simpson’s rule.

Exercise 3.3.12. Repeat Exercise 3.3.8 for the Simpson’s rule.
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1
dx
Exercise 3.3.13. If we apply Simpson’s rule to / T3 22 to get an approximate value for
0 T

7 accurate up to 1076, how many partition points do we need?

Exercise 3.3.14. Simpson’s 3/8 rule is obtained by using cubic instead of quadratic approx-
imation. Derive the formula for this rule.

3.4 Indefinite Integral

3.4.1 Fundamental Theorem of Calculus

The Newton-Leibniz formula is derived from A'(z) = f(x), where A(x / f(t)

is the signed area over [a, z|. The equality is summarized below.

Theorem 3.4.1 (Fundamental Theorem of Calculus). If f(x) is continuous at x, then

: / " Fn)dt = ().

Note that the continuity was used critically in our argument for A'(z) = f(z).

2

Example 3.4.1. Let f(x) be a continuous function. To find the derivative of/ f(t)de,

we note that the integral is a composition

/x f(t)dt = A(x?), A(x):/zf(t)dt

By the chain rule and the Fundamental Theorem of Calculus, we have

. / f(t)dt = d/g;2) = (2?2 = 20 ().

The Fundamental Theorem also implies the following derivatives

= " pR)de = f(),
/ F(t)dt = f(x)?,
% (l 1) ) 1 [ 10
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Example 3.4.2. The function f(z) = / e’ dt cannot be expressed as combinations
0

of the usual elementary functions. Still, we know f'(z) = ¢*". We also have

d 3’32 d 1'2 xT
T et dt = T </ et dt — / etht> — e — %,
T Jg T 0 0

Example 3.4.3. For the sign function

1, if x >0,
sign(z) =<0, ifax=0,
-1, ifx <0,
we have
. 1, if z >0,
Alz) = / sign(z)dr = |z|, A'(x) ={no, ifz=0,
0

-1, ifx<0.

We note that A(z) is not differentiable at 0, exactly the place where the sign function
is not continuous. The example shows that the continuity assumption cannot be
dropped from the Fundamental Theorem.

Example 3.4.4. The sine integral function is
x : t
Si(z) = / ST,
o U
Since the integrand can be made continuous by assigning value 1 at 0, we know

sin x

Sll<l’> _ T ’ if 7é 07
1, if v =0.

Therefore the function Si(x) is strictly increasing on the following intervals
oy |[=bm,—4r], [-3m, —2x|, [—m, 7], [27,37], [47, 57, ...,

and is strictly decreasing on the following intervals

ooy |[=4m, =3n), [-27, —m], [7,2x], [3m,4x], ... .
This implies that Si(x) has local maxima at ..., —6m, —47, =27, m, 37, 57, ..., and
has local minima at ..., —bm, =37, —m, 27, 47, 67, .... Moreover, we can also calcu-

late the second order derivative

TCOST —sInx

, ifax#0,
0, if x =0,

and find the convexity property of Si(z).
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Example 3.4.5. Suppose f is a continuous function satisfying

2/02 tf(t)dtzx/:f(t)dt.

Then by taking derivative on both sides, we get
20f(0) =2 () + | St
0

Let F(z) = / f(t)dt. Then the equation is the same as zF’(x) = F(x). This
0

implies

=0.
x 2

(F(a:))’ _ xF'(z) — F(x)
Therefore / f(t)dt = F(xz) = Cxzx for a constant C, and we further find that

0
f(z) = C is a constant.

Exercise 3.4.1. Find the derivative of function.

3 3

T 3 12 x T
L. / tde. 2./ t3dt. 3./ t2dt. 4./ t2dt.
0 0 0 x?

Exercise 3.4.2. Find the derivative of function.

X dt vy s
1. / 3 3. / cos t2dt. 5. / arctan tdt.
1 1 +t x tan x

2

T 1 cotx
2./ log(1 + t*)dt. 4. / mdt. 6./ (1+t2)2dt.
1 x2 t

anx

Exercise 3.4.3. Let f(x) be a continuous function. Find the derivative.

b T b (z)
1. / f(t)dt. 3. / f(#*)dt. 5. / f(sint)dt. 7. /f f(t)dt.
22 a T 0

2. /jf(t)dt. 4. /a e’ 6. /Scoswf(t)dt. 8. /Ofl(x)f(t)dt.

in x

In the 7-th problem, f is differentiable. In the 8-th problem, f is invertible and
differentiable.

Exercise 3.4.4. Study the monotone and convex properties, including the extrema and the
points of inflection.
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z dt z T2 2 r 2
1. . - 3. — —dt.
A 1+t+ t2 2. /0 sin 5 dt. ﬁ/o €

Exercise 3.4.5. Find continuous functions f(z) satisfying the equality.
T 1

1. /0 F(t)dt = /x F(t)dt on [0,1].

2. A/O tf(t)dt:x/o F(t)dt on (0, +o00).

3. (f(z)? = Z/wf(t)dt on (—00, 4+00).

0
/ f(t) 2z — 1) + /x et f(t)dt on (—oo, +00).
0

Exercise 3.4.6. Find the limit.

sin t
1. lim,_o — /

2. limg,_yo 3/ sin t2dt.
0

i ) df)
IS

Exercise 3.4.7. Prove that for a positive continuous function f(x) on (0, 4+00), the function

s
/O F(t)dt

is strictly increasing on (0, +00).

X
Exercise 3.4.8. Discuss where f(x) is not continuous and where / f(t)dt is not differen-
0

tiable.
z, ifx#0 9 . 1>/ .

1. =< . xésin— | , if z #0,
/(@) {1, if r =0, 3. f(x) = ( T 70
0, if z =0

x, if x>0,

2. f(z) = .

/(@) {1, if x <0,

3.4.2 Indefinite Integral

A function F'is an antiderivative of f if F' = f. By Theorem 2.4.3, the antiderivative
is unique up to adding constants. Therefore we denote all the antiderivatives of f
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by
/f(x)dac = F(z) + C, for some F(z) satisfying F'(z) = f(x).
This is the indefinite integral of f.

The Newton-Leibniz formula says that the definite integral of a continuous func-
tion can be calculated from the antiderivative

/ f(z)dz = F(b) — F(a).

The Fundamental Theorem of Calculus says that the signed area gives one an-
tiderivative, and can be used as F(x) above

/f@Mx_/mﬂﬂﬁ+C.
Example 3.4.6. By
@) = (p+ 0%, (loglal) = 2, () ="

we get
P+l

C, f -1
/ﬂm: pr1 G forp7 ’/&m:&+o
log|z|+ C, for p=—1,

More generally, we have

(ax + b)PT!

————+C, forp# -1, x
/(ax—i-b)pdx (p+1)a /awdlea +C
alog|ax+b|+0, for p=—1; ogad

Example 3.4.7. The antiderivative of the logarithmic function is more complicated
/log |z|dz = zlog |x| — z + C.
The equality can be verified by taking the derivative

1
(xlog|z| — z) =log|z| + z— — 1 = log |z|.
T

Example 3.5.9 gives the systematic way of deriving / log |z|dx.
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Example 3.4.8. The derivatives of the trigonometric functions give us
/cosxdx—sin:v—i—C, /sina:dw——cosm+0,
/sec2 xdr =tanx + C| /secxtanxdw =secx + C.

The antiderivatives of tanz and secx are more complicated, and are given in Ex-
ample 3.5.27.

Example 3.4.9. The derivative of the inverse sine function gives

+C a > 0.

dx
= arcsinz + C, = arcsm
/ V1—22 / va? — 2

Similarly, the derivative of the inverse tangent function gives

dx dx 1 x
= arctanx + C, ———— = —arctan — + C.
2+ 1 24+a2 a a

d d
The similar integrals / rmcﬁ and / \/x2—xﬂ are given in Exercise 3.4.10 and
Examples 3.5.2, 3.5.31, 3.5.32.

Exercise 3.4.9. Compute the integrals.

1. /\4/1—xda:. 3. /axdx. 5. /cscaccotwdx.
1 dzx
2. —dux. 4. 2 rdz. 6.
/\3/2a:+1 . /CSC var /cost

Exercise 3.4.10. Verify the antiderivatives.
1 1
1. /og\x!dx = i(log lz))? +C
x

2. /eax cos bxdr = ﬁ(acos bx + bsinbzx) + C.
a

1
3. /cos(ax + b)dx = —sin(az +b) + C.

a

2
1
4. /\/aQ—xQd:U:aQarcsinx+2x\/a2—m2+C,a>0.
a
dx 1 r—a
5. —— = —log|—— |+ C.
/562—612 2a 8 x+a‘+
6 /dxlo ‘x+\/m2+a‘+0
") Va+a s '
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7. /Mdfc: %x m2+a+%log’x+ \/x2—|—a‘ +C.

Exercise 3.4.11. If /f(x)da: = F(z) + C, then what is /f(ax + b)dz? Apply your

conclusion to compute the integrals.

1. /log|a—|—bx|dm. 3. /se02(3x—1)dx. 5. /d:z
vVl —x)

dx d
- T e | __dz
2. /sm(am + b)dz. —(z-1)7 6. / o a
Exercise 3.4.12. Find the antiderivative of 2(az? + b)?. Then compute the integrals.

dx xdr
1. [ /22 + 3da. 2./ rar 3./ :
/x T T 2 g

Exercise 3.4.13. Compute the integrals.

1. /wsin(ax2 + b)dx. 2. /xe”2+bdx. 3. /xQ(ax?’—i—b)pdx.

One should not just mindlessly compute the antiderivative. Sometimes we need
to consider the meaning of antiderivative and question whether the answer makes
sense.

Example 3.4.10. Without much thinking, we may write

1
5932 +C, ifz>0,
/|x|dac: 1, '

—5% +C, ifx<0.

However, the constant C' in the two cases cannot be independently chosen because
the antiderivative must be differentiable and is therefore continuous at 0. The more
sensible answer is

1952, ifz>0
+ C.

/|x|dx: 21
5:1:2, if x <0

In other words, the constant C' is two cases must be equal.
For another example, instead of

et ifx >0, e +C, ifx>0,
pr— - d —
/() {1, if v <0, /f(:r) ’ {x +C, ifx<0,

e’ ifx>0
dr = ’ - +C
/f(x)x {:c—l—l, ifx <0

we should have
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Exercise 3.4.14. Compute indefinite integral.

22, ifz <0, 1— a2, if 2| <1,
1. 2.

sinz, if x> 0. sin(1 — |z]), if |#| > 1.

Exercise 3.4.15. Does the sign function

1, if x >0,
sign(z) =10, ifz=0,
-1, ifz <0,

have antiderivative? Does the function have definite integral? What do you learn from
the example?
3.5 Properties of Integration

Computationally, integration is the reverse of differentiation. Therefore properties
of differentiation have corresponding properties of integration.

3.5.1 Linear Property

Suppose F'(x) and G(x) are antiderivatives of f(x) and g(z). Then the linear prop-
erty of the derivative

(F(z) +G(z)) = F'(z) + G'(z) = f(x) + g(z), (cF(x)) = cF'(x) = cf(x),

implies the linear property of the antiderivative

/(f(x)+g($))d$ = /f(x)da:+/g(x)dx, /cf(x)dx = c/f(as)dx.

By the Newton-Leibniz formula, we get the linear property for the definite integral
[ 0@+ gtanie = (F6) + 60) - (Fla) + 60
— ()~ F@) + ©0) - Gy = [yt [ ot
/ab cf(x)dx = cF(b) — cF(a) = c¢(F(b) — F(a)) = c bf(x)dx.

Example 3.5.1. We have

/x(l +z)2dr = /(3: +22° + 2%)dr = /a:dx + Q/xzdx + /x3d3:

1 2 1
= §$2+ §$3+ Z—lx4+C.
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This furthers gives the definite integral

! 1 2 1 17
1 2de = (12 = 0H 4+ (1> = 0*) + - (1* — 0*) = —.
/Ox( +a)ide = o )+ 35( )+ ) =13

On the other hand, it would be very complicated to compute / z(z + 1'%z by

the binomial expansion of (1 + z)!°. The following is much simpler

/x(x + 1)z = /((:c +1) = 1)(z + 1)z = /(x + 1)Hdr — /(:c +1)%dx

1 1 1
=—(@z+1)? - =@+ +C= 11z — 1)(z+ 1) + C.
)" =@+l TR )(z+1)
Exercise 3.5.1. Compute the integrals.
2
1. /x\/ac—i—lda:. 5. /(:r—l)(ac—i—l)pdx. 9. / <x1) dz.
T
2 z(ax + b)Pdx 6. /xdac. r -1\’
. . (l’ + 1)10 10. 22 dx.
2 —x+1 z—1\2
3. [ 2? b)Pdz. 7. /d :
4 rz—1 (x — 1)2
— 3 : . 12.
4. /(x 1)(x +1)3dx. 8 / Tz dx /(m+1)4
Exercise 3.5.2. Find A, B satisfying
ar +b B
=A .
cx +d + cx+d
b b\>
Then compute the antiderivatives of ar + and ar + .
cr+d cr+d
Exercise 3.5.3. Compute the integrals.
rz+1 _ qx—1
1. /(ew — e ")2dx. 2. /(2”” + 3%)%da. 3. /2613d$
S 1
Example 3.5.2. To find the antiderivative of ————, we use
e —a
1 B 1 1 1 1
2—a? (r—a)(zrd+a) 2a\z—0a x+a
to get
dx 1 1 1 r—a
B L T R =1 C.
/q:z—az 5 oglz —al 5 oglz +al + 5, 108 P +
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This furthers gives the definite integral

— 1
e

1.3
—— | ==log-.
2 2+1 2 "2

2—1‘

As noted in Example 3.1.4, we should not blindly use the Newton-Leibniz formula
in competing the definite integral. For example, we cannot get

21
dr = =1
/0x2—1 2Og

because the interval [0,2] contains 1, where the integrand approaches infinity.

1
= —5 lOg?),

2—1‘ 1

=
211 Og‘

0-1
2

0+1

Example 3.5.3. The idea in Example 3.5.2 can be extended

/x(x+f)x(x—|—2)_/i<x—1k1_x—1k2>dx_/<x(xl+l)_x(x1—|—2)>dx
:/Ké_xiJ—%(é_aziQ)}dx

1 1
= 5 log |o| = log|a + 1| + 5 log|a +2| + C
z(x+2)
—log | ————=
St 1)y

/ @—12 /( x+1)2dm

2
1
P
1
4
1 1 2 ;
_Z/(w—1 a:—|—1)2_(x—|—1)(:1c—1)) ‘
1
4
1
4

+C,

- /{x—l x—il) _(wil_x}r1>]dx

z+1
= log | —— C
( 1Jrog _1)+
1 r+1
S S | C.
T o(a? —1)+40g 1’+

Exercise 3.5.4. Compute the integrals.

xdx (2z + 1)dx r2dx
(I 4, [ 2T (A
xc—1 2+ 3z +2 22+ 1
22dx U2z + 1)dx dx
2. . 5. - 8. 5 5 .
2 -1 0o T2+ 3x+2 (2 +1)(x? +4)

5 dx 6 22dz 9 / x2dz
'/x2+3x+2' '/x2+3x+2' C ) (@24 1) (22 +4)
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Exercise 3.5.5. Compute the integrals.

dx xdx dx
L /(a:—ka)(w—kb)' 2 /(:c—i—a)(:z:—i—b)' 3 /(a?+a)(at+b)(:1:+c)'

Example 3.5.4. By trigonometric formula, we have

/ sin? xdr = / —(1 = cos2x)dx = = / xdx — = / cos 2zdx
0 0 2 2 Jo 2 Jo

1 1 1
= —(7'r2 — 02) _ Z_1(811127T . sinO) _ 1_171_2.

4

Similar idea gives

1 1 1
/sin2 xdr = B /(1 — cos2x)dx = 5%~ Z—lsin2:c +C,

1 1 1
/sinxcos 2xdx = 3 /(sin3x —sinz)dr = o cos 3z + 5 oS T +C,

/tan2 xdr = /(sec2 x— 1)dx =tanz —x + C.

Exercise 3.5.6. Compute the integrals.

1. /cos:csinxdx. 4. /sin3xdac. 7. /QSinxCOSQQ;dm
0
2. / sin?  cos zdz. 5. /cosxsiandw. 8,/ | sin x cos 2x|dx.
0 0
3. /coszcdx. 6. /cothdx. 9./ |sinz — cos x|dx.
0

Example 3.5.5. For f > g and a < b, by the inequality (3.1.5) and the linearity of
definite integral, we have

/abf(a:)dx — /abg(x)dm = /ab(f(x) — g(x))dz > 0.

Therefore we have

b b
f>9g = / f(z)dx 2/ g(x)dz, for a < b.

The inequality corresponds to Theorem 2.3.3 that uses the derivatives to compare
functions. However, it is more direct to get the inequality by using the non-negativity
of area.

If we apply the inequality to —|f| < f < |f], then we get

/ab f(z)dx

, for a < b.

INCCE
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1 b
Example 3.5.6 (Average). The average of a function f on [a,b] is 5 / f(z)dz.
If m < f <M on [a,b], then

m(b—a):/abmdxg/abf(:v)dajg/abde:M(b—a).

This implies that the average of f lies between m and M, which is consistent with
our intuition.

For continuous f, we may take m and M to be the minimum and maximum of
f on [a,b]. By the Intermediate Value Theorem, any value between m and M can
be reached by the function. Therefore the average

1
b—a

b
/ f(z)dz = f(c), for some ¢ € (a,b).
This conclusion is the Integral Mean Value Theorem.

T sin t2

Example 3.5.7. Consider the function F(x) = / dt. The 4-th order Taylor

0
3

expansion T'(z) = z — % of sinx means that, for any ¢ > 0, there is 6 > 0, such
that
lz| <6 = |sinae —T(z)| < e|x|*.

Then for ¢ between 0 and x, we have

2] < V6 = [t} <0 = |sint® — T(t?})] < €|t]*,

w0 that sin t2 o sint? 1
7| < V6 = — = = —;T(tz) < et
Therefore
2 af

2| < Vo = 'F(:c)————

? (sint? t° v
/ T D) a < e/ t7dt = <|al®.
o Ut 6 ; 8

This means exactly the 7-th order approximation of F'(x)

1 1
F(z) = 53:2 + %xG + o(x®).

Example 3.5.8. Suppose f(z) has second order derivative on [a,b]. We may take the

. . : . . +b
linear approximation at the middle point ¢ = QT. By the Lagrange form of the

remainder (Theorem 2.7.1), we get

F@) = 1)+ FQ)a— )+ D @ o,
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where Z depends on x and lies between x and ¢. Then we have

/ab %(x—)(x —¢)%dx

By the linear property of the integral, we have the left side

b
[ @) = 10~ e - | -

/ab<f(x) — fle) = fl(e)(x —¢))dx = /abf(x)dx — f(e) /ab dr — f'(c) /ab(q; —¢)dx
-/ " f(a)dr — F(E)(b—a).

Let K5 be the bound for the second order derivative. In other words, |f”| < K on

[a,b]. Then the right side
|f” 2 Ky /b 2 K,
< —= _ —_
/ —c¢)°dx 5 a(x c)*dx = 24(b a)’.

[ LD - e

We conclude the inequality

< B _gp

[tz = s -a)| < 3

Exercise 3.5.7. Show that the integration of n-th order approximation is (n + 1)-st order
approximation. Specifically, find high order approximation of function at 0.

T t—1 0 t _
1. / cos dt, order 5. 3. € 1dt order 5.
0 t .2t ’
X

Ve  log(1 +1t
2. / smtt dt, order 4. 4. / Og(t—”dt, order 7.
0

—X

Exercise 3.5.8. Derive an estimation for in terms of the bound

K, of f on [a,b].

b
/ f(x)dz — f(a)(b— a)

Exercise 3.5.9. Apply the estimation in Example 3.5.8 to each interval of a partition and
derive the error formula for the midpoint rule in Theorem 3.3.1.

3.5.2 Integration by Parts

The Leibniz rule says that, if F'(x) and G(z) are antiderivatives of f(x) and g(z),
then

(F(2)G(2)) = F'(2)G(z) + F(2)G'(x) = f(2)G(z) + F(x)g(x).
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In other words, F'(x)G(x) is an antiderivative of f(x)G(x) + F(z)g(z), or

F(x)G(z)+C = /f(x)G(:v)d:E + /F(x)g(:v)d:v
If we use the differential notation
dF(z) = F'(z)dx = f(x)dz, dG(z)= G'(x)dx = g(x)dz,

then the equality becomes
/ F(2)dG(z) = F(2)G(x) — / G(2)dF (z).

The equality can be used in the following way. To compute an integral / h(z)dz,
we separate the integrand into a product h(z) = F'(z)g(z) of two parts and integrate
the second part to get /g(x)dx = G(z) + C. Then /h(w)dm = /F(x)dG(x),
which by the equality above is converted into the computation of another integral

G(z)dF(z) that exchanges F'(x) and G(x). This method of computing the integral

is called the integration by parts.
By Newton-Leibniz formula, the integration by parts for indefinite integral im-
plies the method for definite integral

b b
/ F(2)dG(x) = FB)G(b) — F(a)Gla) — / G()dF ().

The use of Newton-Leibniz formula requires that f = F’ and ¢ = G’ to be con-

tinuous. Then it is not hard to extend the equality to the case that F' and G are

continuous on [a, b] and have continuous derivatives at all but finitely many points

on [a,b].

Example 3.5.9. The antiderivative of the logarithmic function in Example 3.4.7 may
be derived by using the integration by parts (taking F'(z) = log|z| and G(x) = x)

/log z|dz = 7 log |z] — /xdlog 2] = 2 log || — /x(log 2])/da
= zlog |x| — /dx =zlogl|z| —z + C.
The antiderivative x log |x| — x just obtained can be further used
/a:log |z|de = /:cd(:clog |z| — x) = z(xlog |x| — ) — /(x log |z| — z)dx

1
=2%logzr — 2% — /xlog |z|dz + 5952.
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Solving the equation, we get

1 1
/xlog |z|de = 52:2 logz — 1352 +C.

The following is an alternative way of applying the integration by parts to the same
integral

1 1 1
/mlog|x|dw =3 /log\x|d(x2) = 5952 - §/x2d(log |z])
1 1 1 1 1
= Exg log |z| — 5 /mQde = §x2 log |z| — Zx2 +C.

We may compute / xPlog xdx by the similar idea.

Example 3.5.10. The integral in Example 3.5.1 can also be computed by using the
integration by parts

1
/x(aj + 1)z = T /xd(:c +1)H (integrate (z + 1)* part)
1 1
= ﬁx(:c + 1M - 0 /(1: +1)Hdx (exchange two parts)
1
_ i 1)12 '
Hx(x—i— ) 12‘11($—|— ) +C

Example 3.5.11. Using integration by parts, we have

/x2exdx = — /a:2dex = g% 4 Z/Iexdx
= —p%e " — Q/xde_f” = —x%e" — e + Z/e_xda:
= —(2* + 22 +2)e " + C.

In general, we have the recursive formula

1
/z”axdx = z"a® — n /x”_laxdx.
log a log a

Exercise 3.5.10. Compute the integral.

1. /:L‘(ax—l—b)pdx. 2. /I‘Q(G.Ii—l—b)pdl‘. 3. /(x— 1)(x + 1)Pdzx.

Exercise 3.5.11. Compute the integral.
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1. /(1‘2 —1)a*dz. 2. /(x + a*)?dx. 3. /m

Exercise 3.5.12. Compute the integral.

1. /x2 log |z|dz. 3. /(log |2])?dz. 5. /xlog(z—kl)dm.
1
2. /:cplogxd:n. 4. /:rp(log|x])2d:r. 6. /wlog li—zdaz.

Exercise 3.5.13. Derive the recursive formula for /(log |z|)"dz. How about / xP(log z)"dx?

1
Exercise 3.5.14. Compute/ z"a*dzx.
0

1 In!
Exercise 3.5.15. For natural numbers m,n, show that / 2™ (1 —z)"dx = S

Exercise 3.5.16. Compute the integral.

x
2
1. /log(\/ar +a++z —a)dz. N log(z + V1 4 22)dz.
2. [logvaT e~ va=w)e [t VT,
Vita
log(z +a) log(x +b) 2
3/< PR + s ta dx. 6./<log(x+ 1+$)> dz.

Exercise 3.5.17. Let f have second order derivative on [a, b].

1. Show that for any constants A and B, we have

b

[ e = (@ 050 - Yo+ 47+ B )

a

1 b
5 [ @+ 224 B) )
2. By choosing suitable A and B in the first part, show that

b
/f )2f( )( a)+/a((x+A)2+2B)f”(x)d:c,
and

b
1
/ |(x + A)? + 2B|dx = e a).

3. Use the second part to derive the error formula for the trapezoidal rule in Theorem
3.3.1.



210 CHAPTER 3. INTEGRATION
Example 3.5.12. Using the integration by parts, we have
/xcosxdx = /xdsinx =qxsinx — /sina:da: =zsinz + cosz + C.

The idea can be extended to product of x", sin ax and cos bx for various a and b

1 1 1
/xsinxsin2xdm = §/x(cos 3z — cosz)dr = §/xd (§ sin 3v — sinx)

1 1
= gx(sin 3z — 3sinx) — 6 /(sin 3z — 3sinx)dx

— Lrsindz — szsing + — cos3z — = cosz + C
= 6[L’Sln Zz 21’SID$ 18 COS o COS T .

An example of the definite integral is

3 3 2 3
/ 22 sinxdr = —/ 22dcost = — (E> cos T +0%cos0 + / 2x cos xdx
0 0 2 2 0

5 T T 5
= 2/ zdsing =2—sin— —2-0sin0 — 2/ sin xdx
0 22 0
= 7r+2cosg —2cos0=m—2.
Example 3.5.13. Let
Iy = /e“"’” cosbxdx, Jy= /ec“D sin bxdx.
We have

Iy=a"! /cos brde™ = a e cosbr — a™ /e‘”dcos bx

= a e cosbr 4+ a"'bJy,

Jo=at /sin brde™ = a tesinbr —a~! /e‘”d sin bx
_ =1 _ax ,: -1
=a e“sinbxr —a "bly.

Solving the system for Iy and Jy, we get

ax

ax _ € .

/e cos brdr = 25 (acosbx + bsinbx) + C,
o _ e ]

/e sin brdr = aQ——i—bQ(_b cosbx + asinbzx) + C.

Let
= /xe”” cosxdr, J; = /xe”” sin xdzx.
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Using the earlier computation of I, and Jy, we have

L = /xcosxdex = ze® cosx — /(cosx — xsinx)e®dx

1
= xe” cosx — éem(cosx +sinz) + J;.

Similarly, we have

1
Ji = ze"sinz — §ex(— cosx +sinz) — 1.

Solving the two equations, we get
x 1 x : T 3
xe’ cosxdr = —xe®(cosx +sinz) — e sinz + C,

1
/xex sin xdx = 5.%63”(— cosx + sinz) + e” cosx + C.

Example 3.5.14. Let

)

J— /cosmxsin” xdx.

If n # 0, then we may integrate a copy of sinx to get

)

— —/cosm:vsin”1 rdcoszx

1

lresin® e

= —cos™

+ /(—m cos™ P asin”x + (n — 1) cos™ ! xsin" 2 x) cos wdx

1

lrsin®

= —cos™
+ /(—m cos™ zsin™ x + (n — 1) cos™ z(1 — sin® z) sin"? z)dx
=—cos" M zsin" e — (m+n—1)l,,— (n—1) o
Therefore (the formula can be directly verified for n = 0)

1 n—1
Ipm = — cos™ M rsin™ 1t +

m-+n m-+n

I, m+n#0.

The formula reduces the power of sine by 2. If we first integrate a copy of cosz,
then we get another recursive relation that reduces the power of cosine by 2

1 . m—1
I, = cos™ L rsin™t x +

’ m-—+n m—+n

Iyo,, m+mn#0.
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On the other hand, we can also express I,,,,—2 and I,,_s, in terms of I, ,. After
substituting n by n + 2, we get recursive relations that increase the power by 2

1 m-+n+ 2
m—+1 oon+1
mn = coS rsin" " x+ ——Lnppio, NnF —1,
1 m-+n-+2
m+1 son+1
= — cos rsin"" x4+ —— I 409,, m# —1.
m+ 1 m+1 " 7

Here is a concrete example of using the recursive relation

1 6—1
/0054 zsin® zdr = Iy6 = 176 cos ™ rsin®tx + ypn 6[4’672
1
= T cos® xsin® z + 1—0I44
1 1 3
=7 cos® xsin® x + 0 (_§ cos® z sin® x + §I4,2)
5 1 5 3
= —cos"x | — sin® z + sm” x
10 10 -8

1
(——COS rsinz + 6]40)

cos® 1 1 + 5 . 4 n 5-3 .
= — —sin’x sinx + ————sinx
10 0-8 10-8-6
-1 3
+ G (— cos® rsinx + 4[2 0)
= —cos® i si 5 sin3x+5;38inx
N 10 0-8 10-8-6
-11 ++5-3-13 1 . —i—lf
—cos®rsinx ——— | =coszxsinx + =
10-8-64 10-8-64 \2 20
cos® L + > sin® z + 53 si
=— —sin’ x inr+ ———sinx
10 10-8 10-8-6
5-3-1 cos3 +3-100 g ++5-3-13-1 LC
— - T+ ——cosx |sinx —_——7 )
10-8-6 \ 4 4-2 10-8-64-2
Here is another example that requires increasing the power
.2
sin“ x 1 C4tl 241 —44+2+2
/cos4:z;d$:I_4’2:_—4+1COS x sin ZB+—_4+1 I 4409
_1sin3x
~ 3cosdz

Applying the recursive relation to the definite integral, we have
3 ER O n—1 [3

+ / sin" 2 xdr = / sin" 2 xdx.
0 nJo nJo

2
sin” zdr = —= cosxsin" ! x
0 n
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Then we get
. - (n—1)!x £
2 n—1n—3 2 ——F———, 1 niseven,
/ sin” zdx = 5 / sin® o' ! pdy = (n ﬁ!!l)” 2
0 nens 0 ~— if n is odd.
n!!
Here sin® ! z takes power 0 for even n and takes power 1 for odd n. Moreover, we

used the double factorial

2h(2k — 2)(2k — 4) -4 2, if n = 2k,

n!!:n(n—Q)(n—4)---={(2k+1>(2k_1)(2]{_3)...3.1, if n=2k+1.

Exercise 3.5.18. Find the recursive relations for / 2P cos axdzr and / 2P sin axdx. Then

compute the integral.

i
1. /l’COSQZ‘d:L'. 3. /:L’COSQJ'SiDZ’L‘dZL'. 5. / 2% cos xdz.
0

%
2. / 2> cos® zdz. 4, /:U?’ cos? x sin 2zdx. 6. / 2° sin 2zdz.
0

Exercise 3.5.19. Find the recursive relations for / zPe™ cos bxdxr and / 2Pe™ sin bxdz.

Then compute the integral.
1. /xze_x sin 3zdzx. 2. /:1:229C cos zdx. 3. /w3ex cos® xdz.

Exercise 3.5.20. Compute the integral.

d
1. /sin6 zdx. 4. /(3os3$sin2 zdzx. 7. /i
cosb z
2. /C088 xdz. 5. /cos3xsin5 xdz. 8. /dm
sin? z cos? z
3. /cosgacsin6 xdr. 6. /cos_Qacsin2 zdx.
3 2m)!(2n)!
Exercise 3.5.21. Show that / sin®™ z cos®™ xdx = 5 2( Tln)( n) for natural
0 22m+2n+ImiInl(m + n)!

™

2
numbers m,n. Can you find / sin™ x cos™ xdx?
0

Exercise 3.5.22. Use (tanz) = sec’x = tan?z + 1 to derive the recursive formula for

™

/ sec™ x tan” xdx similar to Example 3.5.14 and then find the value of / ) tan®” zdz.
0
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Example 3.5.15. Let
I, = /(ax2 + bz +c)Pdr, a#0, b* # dac.
We have
I, = z(ax® + bz + c)? — /azzd(cwc2 + bx + ¢)f
= z(az® + br + )P — /px(an + b)(ax® + bx + )P dw.

We try to express px(2ax +b) as a combination of (ax? + bz +¢) and (az?* +bx +c)’,
up to adding a constant

2paz? + pbx = A(az® + bz + ¢) + Blaz® + bz +¢)' + C.

b b2 —4
We get A =2p, B= —p—, C= u. Then
2a 2a

I, = x(az® + bx + c)? — A/(ax2 + bx + c)Pdx
- B /(ax2 + bz + )P Hax® + bx + ¢)'dv — C’/(ax2 + bz + )P dx
B
= x(az® + bx + c)? — Al, — E(a:zc2 +bx+c)P — CI,;.

This gives us the recursive relation

p(b? — dac)

2 b 24 P
(2ax + b)(az® + bx + ¢) RS

1
I, =——— ——.
P (2p+1)2a LoPF 2
On the other hand, we may also express I,_; in terms of I,. After substituting p by
p+1, we get
1

I, = 2ax + b)(az® + b P
» (p+1)(62—4ac)( ax +b)(azx” +bx + c)

(2p+3)2a
(p+ 1)(? — 4ac) "

p# -1

For the special case

I, = /(owc2 +b)Pdx, a,b#0,

the recursive relations become

1 2pb |
I = 24 pyp I _ .
» 2p+1x(ax+)+2p+1p1, p# 5
1 2p+3
= a(a®+ b L 1.
T G R T s T



3.5. PROPERTIES OF INTEGRATION 215

1
For the special cases of p = —5 —1, I, is given by Exercise 3.4.10 (and will be

derived in Examples 3.5.30, 3.5.31, 3.5.32)

.
=arcsin—+C, a >0,

/ dx

Va2 — 2 a
d

/VQ—%zlog‘m—F\/xQ—kaM—C,
2+ a

/ dz 1l T —a
— = —10
22 —a?2  2a ga:+a

dx 1 T
- = —arctan — + C.
T+ a a a

+C,

Then the recursive relations can be used to compute [, when p is an integer or a
half integer. For example, we have

1 2.1@2
/\/az—xde:L = l—m(a2—x2)%+1—2ll_l
2 25"‘1 25-'-1 2
1 a? x
= QSL’\/ a? — 1% + 5 arcsin — + C,
a
32
2 _ oy =y = — 3 2 23, 2500
/(CL —$)2dI—Ig—ml‘(a {E)2+2%+1]%_1
1 3a? (1 2
:—90(@2—:162)%—1—i “eva? — 22+ “aresin = | + C
4 4 \2 2 a
1 9 N /5 5 3at . T
:—gx(Zx —ba*)Va? -z +?arcsma+(§’,
dx 1 2(—=2)+3
L 2 2y-241 I
/(:c2+a2)2 2= et T el
x

+ L actan 4 0
= ————— + — arctan — :
2a%(x2 4+ a?)  2a® a

Exercise 3.5.23. Compute the integral.
2dx dx
1. /x2\/a2—x2dx. 4. /m 7. /
Va2 — 22 (a2 — 22)3
dx
2. [ zva? — x2dx. 5. /3- 8. dix
(a2 - 22)3

zdx xdx
. [erorvar =, / (@-a2) ey

Exercise 3.5.24. Compute the integral.
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dx dx
1. [ 2*V22 + ada. 4./ = 7./.
[V ate VZta (@2 + a2)?
2. /1:\/$2+ad:v. 5. /(m2+a)gdx. 8. /%
3 2dx 6./ dx _ 9 / r?dx
) ViEta (22 +a)? ) @ e

Exercise 3.5.25. Combine the ideas of Exercise 3.4.11 and Example 3.5.15 to compute the
integral.

1 /m 3. /dem 5. /md:r.
Y C e Y feret

3.5.3 Change of Variable

The chain rule says that, if /f(y)dy = F(y) + C is the indefinite integral of f(y),
and ¢(x) is a differentiable function, then

F(p(x)) = Fl(o(x))¢'(x) = f(d(x))¢' ().
In other words, F(¢(x)) is the antiderivative of f(¢(z))¢'(x), or

/f P@@»+C=/ﬂw@_m)

If we use the differential notation d¢(z) = ¢'(x)dx, then the equality becomes

[ retandots) = [ sy

The right side means computing the antiderivative of the function of y first, and
then substituting y = ¢(z) into the antiderivative. This is the change of variable
formula. By Newton-Leibniz formula, we further get the change of variable formula
for definite integral

b b ()
/ﬁwmwmm:/fwmwwz F(y)dy
a a ¢>(a)

Example 3.5.16. If /f(y)dy = F(y) + C, then by letting y = ax + b, we have

y=(z)

/f (ax 4+ b)d /f ax+b)d(ax+b):1F(ax+b) C.
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For example,

1 yP Tt (22 4 1)P*t
2 1 p — P e — = -

1 1 1
/sm(Sm —2)dr =y—3,-2 = 3 /sinydy = —3 o8y +C = —3 cos(3x —2) + C,
/ dz B / dz B / dz
24+2r+2 ) (w+12+1 ) 241
= arctany + C' = arctan(z + 1) + C.
Example 3.5.17. The following is a simple change of variable

1 1 1
/xe“’de =y=s? 5 /eydy = §ey +C = 56””2 +C.

The idea is a “mini-integration” of zdx that can be expressed more clearly by writing

1 1
/:U@’““de = /ex2§d(x2) = 565”2 +C.

After the mini-integration, we view 22 as the new variable.
The following are more examples following the mini-integration idea

/mlogx :/logx (?) :/logx (log z) = log|log x| + C,
dx / d / d(z) 1 .

- - 5 = —arctan — + C,
/I'2+a2 a2 ((§)2+1> <( )2+ ) 0 a

2

2
/ xdx _1/#:Larctanm—+c
a?

vt +at 2 x2)?2 +at  2a?

Example 3.5.18. The integral in Example 3.5.1 was computed in Example 3.5.10
again by using the integration by parts. The integral can also be computed by

change of variable.
Let y =x + 1. Then

1 1
/x(w +1)"dx = /(y — 1)y'dy = /(y10 —y"Ndy = ﬁy“ — Ey” +C.

Substituting y = x + 1 back, we get

/m(x 1)1y — %(w - e n2ie
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By the same change, we have

z—1\" (y — 2)4
/(x+1> dx:”“/ I

= /(1 — 42 162272 — 4 2%y 1 2% N dy

=x+1—8log|z + 1
16
—24(x+ 1) +16(z+1)7% - 3(1: +1)7?+C

8(9z* + 12z + 5)
= — — 81 1|+ C.
T EESE ogle+ 1|+

Note that the second C' is the first C' plus 1.
Compare the above with the computation of definite integral

Ve —1\* 2 (y —2)*
dr =,—, d
/(; (I+1) X y= +1[ y4 y

2
= / (1—4-2y ' 4+6-2%y 2 —4-2%7 4 2% Hdy
1

16 2
= (y —8logy — 24y’1 + 16@/’2 — —y3>

3 1
1 1 16 /1
=1—-8log2—-24(-—-1 6l-—1)]——(=—-1
ez (y=1) o (51) -5 ()
1
zg—SlogZ

Note that the evaluation is done by using the new variable y instead of the old x.

Example 3.5.19. The integrals of inverse trigonometric functions can also be com-
puted by combining integration by parts and change of variable

/ : . / xdx , 1 [d(l—2?%
arcsin zdr = x arcsin z — = varcsing + 5

V1-—a? V1—a?
=garcsinz +v1—22+C.

Alternatively, we may simply introduce the trigonometric function as the new vari-
able. For example, by y = arcsinz, x = siny, we have

/arcsinxdx = /yd(siny) = ysiny — /Sinydy
=ysiny + cosy + C = rarcsinz + V1 — 22 + C.

Note that cosy = v/1 — 22 is non-negative because x € [~1,1] and y € [-7, J]. The
integration by parts used in both computations are essentially the same.
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The idea for integrating arcsin x can also be used to compute / 2™ (arcsin x)"dx

and / ™ (arctan x)"dx.

d
Example 3.5.20. To compute /—m, we introduce

Vo Ta
y=+ver+a, y*=e"4a, 2ydy=e"dz.

[ g
et +a y:—a

By Examples 3.4.9 and 3.5.2, we have

Then

1 /__ x —_
logy = — ¢t +C, ifa>0,
/—: \/_ \/—_a \/_ \/m+\/_
Ver +a 2 Y )
arctan +C— arctan ———1+C ifa <0.
vV—a V- e a

Example 3.5.21. To compute
[ / rsinw dx
o 1+cos?x
we introduce y = m — x. Then
O (7 —y)siny T siny T ysiny
I=— | ————=dy=mn —dy — ——dy
. 14cos?y o 1+ cos?y o 1+ cos?y

T siny
= ———dy — I.
7T/O 1+ cos?y Y

]:z/ﬂ'ﬂdy:_z/Cosﬂ— 1 dz
2 Jo 1+cos?y 2 Jeoso 1422

1 2
d
= g/_l N +Zzz = g(arctanl —arctan(—1)) = WZ

Therefore

Note that the computation of the definite integral makes use of the new variable z
only. There is no need to go back to the original variable x.

Exercise 3.5.26. Compute the integral.
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L. /(3:2 + 1)(2z — 1)'%dz. 4. /cos(Zx —1)dz.
2. /log (22 — 1)d 5. /63’” cos(2z — 1)dx.
3. /xlog (2z —1)d 6. /sin(Zx + 1) cos(2z — 1)dx.

Exercise 3.5.27. Compute the integral.

3. /(xdx . /a:S\/xQ—i—lda;.

1.
z2 4+ 1)p

ot

ba:—l—c

[ =
| wvi

2 . 2\p r
2. :L‘2+a2 4. /m(x + a*)Pdx. 6./\3/m.
Exercise 3.5.28. Compute the integral.
1
L. /smxsm cosx)dz. 5. /tan(log:r)dx. 9. /sin2x\/a+cos2 zdz.
x
Vasin(1 + 3)da. 6. [ sin(logz)d 10 cos wdv
2 . . . _—
/ xsin(l + x2) /sm ogx)dx Jatools
inzd sin x cos xdx
3. [ ot [ [
a+ cos?x Va2sin?z + b2 cos? x
4. /xtanxzdm. 8. /sin2:cd2x . 12. /.SiIi:ECOS:EdCC .
a+ cos?x sin z + cos? x

Exercise 3.5.29. Compute the integral.

1. /arccosxd:v. 9. /(arccosx)de.

5 / dx
' V1 — 22 arccosz

arcsin .’Ed.I $3 arccos T
2. _—. 6. T . 10. r arctan xdzx.
V1—a? V1—a? !

¢ 2
3. /\/1—x2arcsina:dx. 7. /;(,'Qarccosg;dx_ 11. /(arcan:v)dx'

14 22

arcsin x dzx
L 1.2 . ' _ ) 12. .
/xmar031n xdx 8 / 72 dx / (1 + 22) arctan x

Exercise 3.5.30. Compute the integral.

1. 23e% da. e VT 5. e % sin zdzx.
3. dx.
V

zq
9. /eﬁdx. 4. /\/Eeﬁd:c. 6. / car
1+e”
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7./ du . 8. /dz 9. /\/em+adaj.

1+ e® er +e 7

Exercise 3.5.31. Find a recursive relation for / (e 4+ a)Pdz. Then compute / (e” + a)%dx

and/dx.
(ex+a)3

Exercise 3.5.32. Compute the integral.

1 /dx 3 / ! lo x+1dx

") xy/T+Tloga B R R et

5 / dx . n /log(aj+ 1) _Ingda:.
xlog z log(log ) z(x+1)

Exercise 3.5.33. Compute the integral.

@) f'@) .. @) () e
1./ o 2 | e 3. /2 f(x)d

Exercise 3.5.34. Prove the equalties

us s ™ ™
1. /2 f(sinx)dx = /2 f(coszx)dx. 2. /0 zf(sinz)dr = 2/0 f(sinz)dz.
0 0
1
Exercise 3.5.35. Explain why we cannot use the change of variable y = — to compute the
x

int 1/1 dx
integra —_— .
& 711‘{‘172

Exercise 3.5.36. Suppose f is continuous on an open interval containing [a,b]. Find the

d b
derivative / f(z+t)dz.
dt J,
Exercise 3.5.37. Explain the equalities in Exercise 3.1.11 by change of variable.

Exercise 3.5.38. Prove that flz)de = 2 / f(z)dz for even function f. Prove that
- 0

f(z)dz = 0 for odd function f.

Example 3.5.22. To compute / we simply let y = v — 1. Then z =

y? + 1, dx = 2ydy, and

/1+\/a:T /12’% /(1—%3/)@

=2y —2log(l+y)+C =2Vr—1—-2log(1+vVz—1)+C

dx
14++x—1
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Example 3.5.23. By taking y = 2% we get rid of the square root and cube root at
the same time.

/ dz / 6y°dy 6/ y3dy
Q= =6 —_—_— =
vV + Jx v Y3 + 12 y+1

(y°+1) — 1dy /<2 1 )
— 6 6 [ (poyr1-—t)a
/ y+1 vy 1+y Y
= 2y® — 3y* 4+ 6y — 6log(1 +y) + C

= 2w — 3z +6Yx — 6log(1 + /x) + C.

dx
Example 3.5.24. To compute / , we introduce
P P Ve+1+yz+1
y=vVzr+1++x.
Then ] ] ]
and )
1 1 1 1
=—|y—— dr=—-y— — | dy.

x4<y y)’ x2( y3)y

Therefore

e e ) S L
()
1

1 1
=-(y-1 — 4+ —)+cC
5 (y og [y| y+2y2> +

:—%log(\/$—+1+\/5)+\/5+%(\/x—+1+\/5)2+0.

Example 3.5.25. The change of variable in Example 3.5.24 can be used for in-
tegrating other functions involving y/x +a and vz 4+ b. For example, to com-

/ 1
pute / T 1dx, which makes sense for x > 1 or x < —1, we introduce y =
x R

vV +1++x—1for x> 1. Then

2 2 2
“=Vr+l-Vr-1, y+-=2Vax+1, y—-=2Vx—1,
Y Yy Y

1 2\ ? 1 4
—(y-Z 1, de==(1-==")ydy.
! 4(y y)+’ ! 2( y4)yy

and
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Therefore by x > 1, we have

y+ 1 4 1 4 4
- — Jydy =5 y+-—+—|dy
y—- Y 2 vy oy

1 1 2 2
y +210g|y|—y—+(]—210g|y|+ (y+§) (y—§)+(]

:B+1
r—1

x_

T4

:;llog(\/x+1+\/x—1)+\/x2—1+6’.

For x < —1, we may introduce y = v/—x +1 — v/—x — 1. Then we have

1 4 4 1 2 2
/\/gj+ dfc— y+ o+ Jdy=2logly[+ - {y+—){y——)+C

:Z—llog(\/ r—1—vV—z+1)—va2—-1+C.

X

dx is comparable to the integral in Example

Example 3.5.26. The integral/
-

3.5.25. Yet the similar change of variable does not work, due to the requirement
0 <z < 1. So we introduce

2
2

———d
1—2’ 1+ y?’ (1+y?)? v

and get

/F / :2/(1jy2_(1+1y2)2>d$
1+y - x(l—x)+arctan\/g+c_

The last computation in Example 3.5.15 is used here.
Note that the idea here can also be applied to the integral in Example 3.5.25, by

1
Tt T The advantage of the approach is that we do not need to

introducing y =

distinguish x > 1 and x < 1.

Exercise 3.5.39. Compute the integrals in Example 3.5.24 and 3.5.25 by using change of
variable similar to Example 3.5.26.

Exercise 3.5.40. Compute the integral.
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L. /(1+\/5)”d:c. 3. /(\/:E+ NCESY /mdm
T
1+x dx
Yz )P A , [ _dr
> /(H\@d” /1+%dx 0 /xm
Example 3.5.27. We can use (cosx)’ = —sinz, (sinz)’ = cosz and cos? z+sinz = 1

to calculate the antiderivative of cos™ z sin” x, in which either m or n is odd.

/sin3 xdr = —/sin2 zdcosx = /(008295— 1)dcosx
L3
= —cos’x —cosx + C,

3
/(:0(543(:sin5 xdr = —/cos4a:sin4 xdcosr = — /COS4SC(1 — cos®z)?d cos T

= — /(0054 x — 2cos® x + cos® x)d cos

1 2 1
:—gCOSS$+?COS7QS—§COSQZU+O,
i d
/tanazdmz/smxdazz—/ S~ = —log|cosz|+ C,
Cos T Cos T
/ / dx /dsinx / dsinx
sec xdr = = — = ————
COS T COS* T 1 —sin“z
1 1 i 1 1 i 2 1 i
_ L isine o Ly Usial? o 1 rsine
2 T 1-—sinx 2 1 —sin“zx | cos z|

= log |secx + tanz| + C.

Example 3.5.28. Similar to Example 3.5.27, we can also use (tanx)’ = sec? z, (secz) =
secxtanz and sec?z = 1 + tan? x to calculate the antiderivative of sec™ z tan™ z.

1
/secxtanSxd:U:/taandsecx:/(sech— l)dsecx = §S€CS£L‘—SGC$—|—C,
1
/sec4xdx:/(tan2x+1)dtanx: gtan3x+tanx+0,
/tan4xdm: /(SGCQZE— 1)%dx = /(sec4x—25ec2x—|—1)dx
L3
= gtan r+tanz | —2tanx + v+ C

1
:gtanga;—tan:c—iranC,

The following is computed in Example 3.5.14 by more complicated method

cos* x

.9
sin” x 1
/ dr = /sechtan2 rdr = /tan2 rzdtanx = gtan3x+0.
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Example 3.5.29. The method of Example 3.5.28 cannot be directly applied to the
antiderivatives of sec” x and tan™ x for odd n. Instead, the idea of Example 3.5.27
can be used.

Using the integration by parts, we have

/sechdx = /Seczdtan:v :secxtan:v—/tanxdsecx
=secxtanx — /tanZ:csec rdr = secrtanx — /(SGCQZ' — 1) sec xdx

=secrtanz — /sec3 xdxr + /sec zdzx.
Then with the help of Example 3.5.27, we get

1 1
/8603 rdr = 3 secxrtanx + §/sec xdx

1
= §Secmtanx+ 510g|secx+tanx| +C.

In fact, the integral /8603 xdx is I_3 in Example 3.5.14, and the expression above

in terms of /sec xdz is the expression of I_3( in terms of I_ .

Example 3.5.27 also gives

/tan3 rdr = /tanx(sech— 1)dz = /tanxdtanx — /tanxdx

1
= §tan2:v+log|008$| +C.

Exercise 3.5.41. Compute the integral.

) dx dx
1. cos® z sin? zdz. 3. = 5. _
cosb x sinx cos
dx _ .
2. /cos x sin® zdz. 4. /22 6. cos > x sin® zdzx.
sin“ x cos? x

Exercise 3.5.42. Compute the integral.

1. cscxdx. 4. tan™ x sec? xdzx. 7. tan® z sec xdx.

tan® x sec” zdzx.

3. tan® x sec* zdzx. 6. tan? z sec xdzr. 9. tan® x cos? xdz.

—_— — — — —

2. /tan zdx. 5. /cot6xcsc zdx. 8.
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10. /Cothsin4wda:. 11. /Csc4xcot6:rd3:. 12. /xtan:rsecxdx.

Exercise 3.5.43. Compute the integral.

d
1. /w3e_z2 cos z2dz. 6. / 11. / —5 v
asmx+bcosx asin®z + bcos? x
1 Asi B
2. /:psin(logaz)dm. 7. / i sma: 12. / SH;"T T ocosw dzx.
l—i—cosx asin®z + bcos? x
3. sin z)? cos® zdz. 8. / 13. / .
/( ) 14coszx V2 +sinz + cosx
n / .C(2)S 2xdx . 9. / 14 sin xdx .
sin® x cos? x a+tanzx’ V2 +sinz + cosz

5 /asmx—kbcosxdx' 10 /Asma:%—Bcos:cdx. 15, / xdx .

sin 2 asinz + bcosx cos? x

Exercise 3.5.44. Show that there are constants A, By, C,, such that

/ dx _ Apsinz + By cosx n / dx
(asinx +bcosx)"”  (asinx + bcosx)n—! "] (asinz + beosx)n—2"

Exercise 3.5.45. For |a| # |b|, show that there are constants A,,, B, C,,, such that

/ dzx B Asinzx +B/ dzx —|—C’/ dz
a+bcosz)® (a—+bcosz) a-+bcosx)— a+bcosx)n—2’
b b 1 b 1 b 2

Asinz + Beosz + C)dx,,
(asinz +bcosz +c)»

Exercise 3.5.46. How to calculate / (

dz
cos(z + a) cos(x + b)

Exercise 3.5.47. Compute / by using

sin(a — b)

tan(z + a) — tan(z + ) = cos(z + a)cos(z +b)

Use the similar idea to compute the following integral.

dx dz
sin(z + a) cos(x + b) sinz —sina
d
2. /tan(m + a) tan(z + b)dz. 4. /a:
cosT + cosa

Example 3.5.30. To integrate a function of v/a? — z2, with a > 0, we may introduce

r = asiny, dr = acosydy. Note that the function makes sense only for |z| < a.
. . X ™ T . .

Correspondingly, we take y = arcsin — € [—— —]. This implies cosy > 0, and

a

272
Vva? —x? =acosy.
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The following example is also computed in Example 3.5.15.
2
/\/ a? — x2dx = a2/0082 ydy = % /(1 + cos 2y)dy

11 ?
— g2 (§y+ Zsmzy) +C = %(y—|—sinycosy) +C

a z 1
=3 arcsin — + 533\/ a?—x2+C.
a

We may also use x = acosy instead of z = asiny.

/ dx _/ a sin ydy _/ siny(1 — siny)dy
a+va2—z2 ) a+asiny ) (1+siny)(1—siny)

. )
:/(smy _ y)dy:/(secytany—seCQy+1)dy

cos?y  cos?y

a a x? x
:secy—tany—ky—l—C:E—E 1—¥+arccosa+0.

The following is an example of definite integral.

1 0 2
/ (1 —2*)Pdx = —/ (1 = cos? y)P sinydy = / sin” ! ydy.
0

z 0
2
By Example 3.5.15, we know the specific value when 2p + 1 is a natural number.

' 2\n (271)” 1 vy 1 (2n . 1)”7‘(‘

Example 3.5.31. To integrate a function of vx2 + a2, with a > 0, we may introduce
r = atany, dv = asec® ydy. We have y = arctan = € [—E, z] and Va2 4 a? =
asecy. @ 22

With the help of Example 3.5.27, we have

de [ asec?ydy p
vz + a? N asecy - ) eV

=log |secy + tany| + C = log(Va? + a? + z) + C.

With the help of Example 3.5.29, we have

2 CL2

a
/\/:E2+a233da::/a28ecgydy:Esecytany%—Elog|secy—l—tany|+0

1 2
= ix\/ﬁ +a?+ % log(Va? +a? + ) + C.

One may verify that the two integrals satisfy the recursive relation in Example
3.5.15.
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Example 3.5.32. To integrate a function of v/x? — a?, with a > 0, we may introduce
x

r = asecy, dr = asecytanydy. We have y = arcsec— = arccos — € [0, 7] and
a x

Va2 — a? = tatany, where the sign depends on whether x > a or x < —a.
With the help of Example 3.5.28, we have

asecytanydy /secydy

dz
/\/902—a2 _/ +atany

:ilog|secy+tany|+C:j:log’xi\/x2—a2
zlog’x—k\/x?—aQ‘—kC,
/\/952 — a?dx = /(iatany)asecytanydy: iaQ/(sec?’y—secy)dy

a? a?
= i; secy tany F 310g|secy+tany| +C

1
= §x\/x2 — a? —log’m+\/x2 —aQ‘ + C.

Combing with Example 3.5.31, for positive as well as negative a, we have

d
/VZ—%:log‘x-f— v$2+a
i a
1
/\/:1:’2+ad:c:§x\/:c2+b+%log‘:c+\/x2+a‘+C.

+C

+C,

Example 3.5.33. By completing the square, a quadratic function az? + bz + ¢ can be
dac — b?

o For example, if b? < 4ac,
a

b

changed to a(y*+d), where y = x + %0 and d =
a

then

/ dr = / dy _ arctan g +C
ax? +bxr +c a(y? + (\/3)2) av/d Vd
2

Using the recursive relation in Example 3.5.15, we further get

/ dz 2ax +b 4a arcta 2ax + b L C
= — - arctan —— :
(az® +bx+c)?  (dac—b?*)(az® +br+c)  (dac — b?)2 Vdac — b?

If b2 > 4ac, then by the similar idea, we may get

/ dx _/ dy 1 o 'y—\/—d Lo
ar?+br+c ) a(y?—(vV—=d)?) 2av—d & y++v—d
2ax + b — /b? — dac

+ C.
2ax + b+ Vb? — 4ac

= ————arctan
b? — 4dac
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In fact, the quadratic function has two real roots, and it is more direct to calculate
the integral by using

—b+ Vb2 -4
az® +br +c=alr — 1) (v —33), T1,79 = 5 ac’
a

and the idea of Examples 3.5.2 and 3.5.3.

Example 3.5.34. We further use the idea of Example 3.5.33 to convert the antideriva-
tives of functions of vax? 4+ bx + ¢ to the computations in Examples 3.5.30, 3.5.31
and 3.5.32. For example, by

1 11 1 1\* 1 )
x(l—x)—ﬁ—( 2295—1—22)—?—(1'—5) zﬁ(l—@x—l)),

we let y = 2x — 1 and get

dx dy . .
= = arcsiny + C' = arcsin(2z — 1) + C.
/\/x(l—a:) /\/1—y2 ! ( )

Moreover, for 0 < x < 1, we get

[ [ / - [ Gy [d0-y) [ dy
\/ T 1—x 1 — 1?2 44/1 — 92 24/1 — 42

1 1
—y>+ 5 arcsiny + C = z(1—x)+ 5 arcsin(2z — 1) + C.

T4 2

The reader is left to verify that the result is the same as the one in Example 3.5.26.

Exercise 3.5.48. Compute the integral.

xdx dx
1. —_. 6. z°4+a sda. 11. /
/\/1—372 /( ) 1—+v1—a?
5 /(ax2+bx—|—c)d:c 7 / dx 1 da
' Vi-z2 z(22 +a2) B ARV R
3. / /L 8 /gggdx 13 rar
21—z (@2 +a?)? V1Ita? +v1—a?
4 / 22dx dx
@ 0. /( (x +1))}da. 14. /a+ s
dx d
5. / 2 T s [ wde
x(az—x2)% 10. /m 1 —z2dz. D. /a—|— T

Exercise 3.5.49. Compute the integral.
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1. /sinxlogtanmdm. 3. /Wd:p.
sin® x
2 arctan \/zdz 4 / e ( cos® x + = dx
' ' ' cos? '

Exercise 3.5.50. Derive the formula

1 2ax + b
—1 — — ++Vazr?+b Cc, if 0
/ de _ \/(Ilog< \/62+ba:r+x+c>+ , 1a>0,
Var? +bx +c arcsin —22F — ~
+ C, if a < 0.
v—a b2 — 4dac

1
Exercise 3.5.51. Use the change of variable y = x & — to compute the integral.
x

211 / dz
- 3. ———dx.
1./x4+1d:1:. A

2 2 1
9 x _ldm 4. / 14+2— = etz dr.
: x4_|_1 : 1 X

2

3.6 Integration of Rational Function

A rational function is the quotient of two polynomials. Examples 3.5.2, 3.5.3, 3.5.18,
3.5.33 are some typical examples of integrating rational functions. In this section,
we systematically study how to integrate rational functions and how to convert some
integrations into the integration of rational functions.

3.6.1 Rational Function

Example 3.6.1. The idea in Example 3.5.2 can be extended to the integral of rational
functions whose denominator is a product of linear functions. For example, to
2
- —=2x+3

z(z+1)(z+2)

integrate , we postulate

22 —2x+3 A B C

r(x+1)(z +2) ;+x+1+x+2'

The equality is the same as
v =20+ 3=A(x+1)(x+2) + Br(r +2) + Cx(z + 1).
Taking x = 0, —1, —2, we get

3=24, 6=-B, 11=-2C.
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Therefore
r? —2r+3 3 6 11
dr = — — = dx
x(z+1)(z+2) 20 x+1 2(x+2)

3 11
:§log\:r;|—610g]x+1]—?10g]a;+2]—|—0.

Example 3.6.2. If some real root of the denominator has multiplicity, then we need
2?2 —2x+ 3

Ca(r 137
> -2r+3 A B C D
m:;+x+l+(9€+l)2+(m+l)3'

This is the same as

v —2x+3=A(x+1)*+ Ba(x +1)* + Cx(z + 1) + Da.

more sophisticated postulation. For example, to integrate we postulate

Taking various values, we get

r=0:3=A, r=-1:6=-D,
d
(coefficient of) z*: 0 = A + B, — :—4=D-C.
dr|,_ 4
Therefore A = 3, B = -3, C = =2, D = —6, and (C below means the general
constant, and is different from the coefficient C' = —2 above)
r? —2r+3 3 3 2 6
z(r +1)° r z4+1 (z+1)?2 (x+1)3
2 3
=31 C
©8 x+1’+m+1+(a7—|—1)2+
T 20+ 5
=31 C.
o8 x+1‘+ EEEE

Example 3.6.3. In Examples 3.5.2, 3.6.1, 3.6.2, the numerator has lower degree than
the denominator. In general, we need to divide polynomials for this to happen.
5

we first divide 2° by (z 4+ 1)%(x — 1) =

For example, to integrate @+ 1;@ 1y

4 —x—1.

2 —x42

x3+$2—x—1) xd
—2® =2t 423 422
— gt —|—x3 —|—x2

A v B

23 -z
— 223 — 222 + 20 + 2
— 222 42 +2
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Then
z° > o —22* +x+2
=a"—x
(x+1)%(x—1) (x+1)%(z—1)
P42 LA S —
=x"—x —
4(zr+1) 2x+1)2 4x-1)
and
x° 2 a2? 9 1 1
der = — — — +2x — -1 |- ——+-1 —1|+C.
/(:E+1)2(x—1) v=g — g togleslet - grmy  plosle 1+
Exercise 3.6.1. Compute the integral.
1 /:UQda: 4/ zodx 7/ dx
: 1+ 24 x—2 ) z(l+x)(2+2)
2
2‘/ de 5_/(2 z)*dx 8'/ de '
22+ x—2 2 —x? 2?2(1+x)
3/ xdx 6 /a:4dx 9/ dx
) 242 ) 1 —a? ") (x4 a)?(z+b)?

The examples above illustrate how to integrate rational functions of the form
by @™ + by 2™ o by + by
(x —a))™(x —ag)"2 - (x — ag)™
denominator are real. In general, however, a real polynomial may have complex
roots, and a conjugate pair of complex roots corresponds to a real quadratic factor.

This means exactly that all the roots of the

1
Example 3.6.4. To integrate o Ve note that 2* = (x — 1)(2? + = + 1), where
x J—

22 + 2 + 1 has a conjugate pair of complex roots. We postulate

1 A Bx +C

3 —1 x—1+x2+x+1'
This means 1 = A(z? +z+ 1) + (Bx + C)(z — 1) and gives

r=0:1=A4A-C; z=1:1=34; 2°:0=A+B.
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1 2
,B:—g,C:—g,and

/ dx :l/ dx +1/ —xr—2 dr
»w—-1 3) -1 3) 224zx+1
_lloglx—ll—l/—d(x2+x+1)+1/—dx
3 6 24+ax+1 2) 224+ x+1

Therefore A =

Wl =

1 1 1 d
:§log]x—1|—élog(:c2+:c+1)——/ ‘
(v +3)

eyt (8)

1 (x —1)2 11 T+ 3

= ElongQ—i-x—i-l —Egarctan \/73 +C
1 (x —1)2 1 2r + 1

= —log———+— — —arctan +C.
6 &2 +z+1 /3 V3

2
Example 3.6.5. To integrate ————, we postulate
@i =1y
x? x?
@ =12~ G- Do+ 171 1)
A1 AQ Bl BQ leL' + D1 Cgl’ + D2

x—1+(x—1)2+x+1+(x+1)2+ 2 +1 - (22 +1)%°

Since changing x to —x does not change the left side, we see that A; = —By,
Ay = By, ¢y = (5 =0, and the equality becomes

113'2 i 2A1 —|—2A 23'2—|—1 + D1 + DQ
@ —12 21 @1 21 @rle

1 1

It is then easy to find A; = ——, Ay = —,
16 16

help of Example 3.5.15,

/ ﬁd -/ (‘ TR ey

+ ! + ! ! d
— T
16(x+1) 16(x+1)2  4(2?+1)2

1
D=0, Dy = T Therefore with the

11 r+1 1

= — 10 —

16 %z —1| 16(z—1)
1 T

- - ~ = arct C
6z +1) 8241 gactanrd
AN L E tanaz + C

= — — 10 — —arctanx .
Azt —1) 16 Pl —1
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(@ 1
degree of the numerator is higher. Therefore we divide (z? + 1)* by (23 — 1)%.

Example 3.6.6. To integrate the rational function we first notice that the

2 +4

af =203 +1) 2%+ 4af + 62 +4z% +1
— 28 + 22° —z?

428 4 225 + 62* + 322 +1

— 426 + 823 —4

22° + 62 + 822 + 322 -3
This means that

(2 + 1) 22° + 6x* + 82° + 32 — 3
= =24+ :
(@~ 1)2 (2~ 1)2

Since 23 — 1 = (z — 1)(2® + = + 1), we postulate

2$5+6$4+8$3+3[L’2—3: Al i A2 4 B1$+Cl + BQlL‘—f—CQ
(23 —1)2 r—1 (r—12 224+z+1 (224+ax+1)*

This can be interpreted as an expression for 22° 4 6x* + 823 4+ 322 — 3, which gives

r=0: —3=—-A1+ Ay +C; +Cy,
z=1:16 = 9A,,
r=—-1: —4=-2A1+ Ay + 4(—B;, + C}) + 4(—Bs + (%),
z°: 2= A, + By,
' 6=A,+ Ay — By + O,
d

dz|,_,

r=

Solving the system, we get
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Then
@+ 1, / 32 / 16
M T gr= a4 4 % g 2 4
/(x3—1)2x 37 T 5™ T ) =™

14z + 8 1
— | =——————dz — dx
(22 +x+1) (22 +x+1)2

1, 32 16
— L et Lhlr -1 -
3¢ Hdrd g infe =1 = 5o

_/7d(x2+x+1)_/ dx _/ dx
922 +x+1) 922 +x+1) 3(z2+x+1)2
1 16

32 7
= 23 44+ 22 - — ] 2 1
57 + 4z + 5 oglz — 1 of 9 og(z® +x+1)

_/ dx _/ dx
922+ x4+ 1) 3(x2+x+1)%

2
1\?2 V3 r+i 241
2 _ - - 2 _

and Example 3.5.15, we have

d 2 2 1
/—x:—arctan x; + C,

and
1
dz Y 1 20 +1
/(ZC2+.T+1)2: 5 + 3arctan7+0
2(%5) (22 +x+1) 2(‘/75)
20 +1 n 4 ; 2z +1 e
= arctan .
3(x2+x+1) 33 V3
Combining everything together, we get
(22 +1)* 1, 622 +5x+5 13 7 3
T gr =t dr— — T2 g — 1 — -1 1
/(x3—1)2$ g0t ey Ty losle — = glogle 1]
2 2v +1
— ——=arctan +C.
3v/3 V3

In general, the numerator of a rational function is a product of (z 4+ a)™ and
(22 + bz + ¢)", where b* < 4c so that the factor x? + bz + ¢ has no real root. After
dividing the numerator by the denominator, we can make sure the numerator has
lower degree than the denominator. When the numerator has lower degree, the
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rational function can then be expressed as a sum: For each factor (x + a)™ of the
denominator, we have terms

Ay N Ay T A
r+a (x+a)? (x +a)™’

and for each factor (22 + bx + ¢)" of the denominator, we have terms

Bl,ilﬁ + Cl n BQ.CE + Cg X i an + Cn
2+br+c (224 br+c)? (22 4+ bx + )"’

The computation is then reduced to the integration of the terms.
We have

A ! +C, iftm>1

- , ifm>1,
/—mde (m—1)(z+a)m!

(z +a) log|z +a|+ C, if m=1.

The quadratic term can be split into two parts

/ Bx +C __/ 2?2 + bx + ¢) n C—E / dx
(22 4 bx + )" 22 + bx + )" 2 (22 + bz + )"’

The first part is easy to compute

1 .
/d(x2+bm+c): _(n—l)(:):2—|—bx+c)”—1+c’ if n > 1,
2 n
(% + bz + ) log |22 + bz + ¢| + C, ifn=1.

The second part can be computed by the recursive relation in Example 3.5.15

/ dz
(22 4 bz + )"

1 20 +b dx
T (=) (n—1) ((:U2 + bx 4 )"t +2(2n-3) / (22 4 bx + c)"—l) '

For n = 1,2, we have

dx 2 x+b
/x2+b$+c:mamtan\/?
dx 2c +0b 4 2z +b
/ (2% + bx + ¢)? - (4e = ?) (22 4+ br + ¢) * (4c — 12)3 arctan Ve — 12 e

Exercise 3.6.2. Compute the integral.
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1 / (14 z)%dzx 10 / 2dx
' 1+22 C ) (22 +4x+6)%
2
9. /(2m—|—3)dx 11. / dz )
3+ a2 -2 zt—1
dx r?dx
) [ e o [ 2
3
4 /@*¢%h_ B./tm.
z3+1 (z = 1)
dz dz
D. . -
/Yx+nmﬁ+w T
d
6. / 2 . 15. /dx.
x4+ 1) (22 +x+1) 4+ a2+1
7. / e . 16. / dr
(x+1)(22+1)(x3+1) 26 +1
3 / dz 17 / xdx
© ) @t a®) (@ + 02 ) (e —=1)2(a2 4224 2)
/ z3dx 18 / (2 + 423 + 422 + 42 + 4)dx
(22 +1)2° z(x + 2)(a? + 2z + 2)?

3.6.2 Rational Function of {/ ax +b
cr +d

Using suitable changes of variables, some integrals can be changed to integrals of
rational functions.

x
Example 3.6.7. To integrate ey we introduce
x

T — 2 y? —2 d 2y
xr = xrT = —-
’ y? =1 (y* — 1)

y= z—1

Then for x > 2, we have

//x—Qd_/ _/1 (S SRR SR
r—1 y-—l?y 2\y—1 y+1 (—12 (y+17

y—1 Yy
=21 C
2Og‘y+1 o1
x—2
—ll ‘\/x—Q—\/x—l' -1 Lc

Vr—2++vVr—1 1
=log(Vr —1 -V —2)++/(z — 1)(z — 2) + C.
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For z < 1, the answer is log(v2 — 2 —v1—2) — /(2 —2)(1 —2) + C.
The same substituting can be used to compute that, for x > 2,

lx — 2
/l’\/x2 3r + 2 /x\/x—l T —2) / 513—195515—2
=R =
r—1lz(x—2) y?—2

1 1 2x — 2 -2
= log y+ V2 +C = log\/jlj Ve +C.
22 y— 2 2V2 TV2x—2—+x =2
1 2—2 2 —
For the case x < 1, the answer is — log\/ rhV2oe +C.
22 TN2—2z—2-x

1 1
Example 3.6.8. For y = ¢ ‘ , we have — =1+ — and
r+1 Y3 x

Therefore by Example 3.6.4, we have

/d_fc:/lg,/idx:/(l_i)y — W :/3@
3/x3+x2 T $+1 y3 _(1_L>2 y3_1
3

1 (y—1)2 2y +1
= ~log —=——— — V/3arctan +C
2 Byl V3
1, (y—1)» 2y +1
=—1 — V3 arct C
2og P 1 \/_arcan \/§ +

3 3 3 1 3 T
= §log(\/x+ - \/5)—\/§éjh1"(:’caun\/g (21/x+1 +1> +C.

can be integrated by introducing

In general, a function involving ¢

cr +d
b dy™ — b n—1
y=1 ar , x:y—, dx:n(ad—bc)y—dy.
cx +d —cy" +a (cy™ — a)?

Exercise 3.6.3. Compute the integral.

8 /Hdgi/i > /\/:T:gxm 5 /xajl—\/?/QT—i—i:z:
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3 1 ,/1—=x /
4. [ ———dx. 10. | = ¢ . 16. | /(x —a)(x — b)dz.
/ VaZ +1 v 0 /xQ 1 xdx

> /ﬁdfﬁdx 1. /zﬁ+j%+ U (Ve ae o

12. dz

dx
6. /43_1, |
Va2 Vatatvotbte o /x (z —a)(b — )dz.

\/J:-i-l-f—\/x—ldw 13, /1+\/x+a
Ve+1l—+vz—1 1++vVx+b

lz —a
— — 19. /x —dx.
/\/1 xd:n. 14. /”w ada? r—b
14z z—>b
1 /1—=z T —a zdx
| =4/ . 15. [ 4/ . 20-/ :
) /x2 1+md:c g / b—:(:daC V(z —a)(z—b)

Exercise 3.6.4. Compute the integral.

®

T dz
1. [ V1+erda. 2. / .3 /
/ VIter +1—e? va* +b

Exercise 3.6.5. Suppose R is a rational function. Suppose 7, s are rational numbers such
that r+ s is an integer. Find a suitable change of variable, such that /R(x, (az+b)" (cx+

d)®)dx is changed into the antiderivative of a rational function.

Exercise 3.6.6. Suppose r, s, t are rational numbers. For each of the following cases, find
a suitable change of variable, such that / 2" (a + bx®)'dz is changed into the integral of a

rational function.

1. t is an integer.

is an integer.

3. r+1

+ 1 is an integer.

A theorem by Chebyshev! says that these are the only cases that the antiderivative can
be changed to the integral of a rational function.

!Pafnuty Lvovich Chebyshev, born 1821 in Okatovo (Russia), died 1894 in St Petersburg (Rus-
sia). Chebyshev’s work touches many fields of mathematics, including analysis, probability, number
theory and mechanics. Chebyshev introduced his famous polynomials in 1854 and later generalized
to the concept of orthogonal polynomials.
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3.6.3 Rational Function of sinxz and cosz

A rational function of sinx and cosx can be integrated by introducing

Example 3.6.9. For a # 0, we have

/ dx _/ 2dy _/ 2dy
a+sinz < )(1+y2)_ ay? + 2y +a

1+y
If |a| > 1, then
/ dz ; 2 ; atan%—l—l_i_c

= arctan ———2— arctan ——=——+C.

CL—|—Sln£L‘ / / Slgn 1/a2_1 ,/a2_1
If |a| < 1, then
1 1
d 1 yta— a1
/ T log +C

i 1
a—+sinx a a%_l y+—+ /a%_l

B 1 o atan g +1—+/1 — a? Lo
 sign(a)v1 — @ o8 atan g +1++/1—a?
If |a| = 1, then
d -2 -2
[ e s R i
a+sinx  ay+1 atan 3 + 1
dx
The example can be extended to - . We have
a+bsinz 4+ ccosx
bsinx + ccosx = Vb? + 2 sin(z + 0),
b
where 6 is any fixed angle satisfying sin = ——— and cosf = — % Then

b% + c? Vb2 + 2

dz d
_ = 0.
/a+bsinx+ccosx /a+\/b2+cgsiny’ yoet

Example 3.6.10. Rational functions of sin x and cos x can be integrated by a simpler

substitution if it has additional property. For example, to integrate the function
sin

— , we introduce

SInx + cosT

y=tanz, « =arctany, dxr =
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Here we use the tangent of the full angle x, instead of half the angle in Example
3.6.9. Then

d,

sin xdx tan xdx yyz_yH 1 v+ 1 1
/sinx—l—cosx /tan:c—i—l /y+1 4og<y+1)2+2arc any +

1 1

= 5T §log\sinx +cosz|+ C.

The key point here is that the integrand is a rational function R(sinz,cosz) that
satisfies R(—u, —v) = R(u,v). In this case, the integrad can always be written as a
rational function of tanx, and the change of variable can be applied.

COS T . )
of sinz and coszx is

Example 3.6.11. Note that rational function - —
cosxrsinx +sin” x
odd in the sin x variable. This is comparable to the function cos™ x sin™ x for the case
n is odd. We may introduce the same change of variable y = cosz, dy = — sinxdx

like the earlier example and get

/ cos xdx B / cos x sin zdx B / —ydy
coswsinz +sin®z ) coswsin®x + (sin?x)? ) y(l—y?) + (1 —y?)?

1 145
= —log LA 1_2\/5
V5 by=—=—

1 2cosz —1—+/5

=—1lo
\/5 8 2cosa:—1+\/§

Similarly, a rational function of sinz and cosx that is odd in the cosx variable
can be integrated by introducing x = siny. If R(—u,—v) = R(u,v), then we may

1 1 —cosz
+§log—

1+ coszx

introduce y = tanz to compute [ R(sinz,cosx)dz.

Exercise 3.6.7. Compute the integral.

1—1r2
1. d < 1.
/1—2rcosx+r2 z Ir|

251113: +sin 2z

sin? x
7.

a — cos2x’ 1 + sin? x

3.

cosx + tanx 1+0082 2—|—sm z)’

10. —|— sin x)dz

| w

e [ v

[ : / ET)
4/_ o |

| v IEetes

smx—ktanaf' sinz(1+ cosx)’
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d d
1. / - 14, / . -
(a+ cosz)sinz a?sin® x + b2 cos? x
12 / .(smx.—k cosx)dx . 15, /1—tana:dx
sin z(sinx — cos x) 1+tanx
dx
13. / PR 16. | Vtanzdz.
(a + cos? z)sinx

3.7 Improper Integral

The definition of Riemann integral requires both the function and the interval to
be bounded. If either the function or the interval is unbounded, then the integral
is improper. We may still make sense of an improper integral if it can be viewed as
the limit of usual integral of bounded function on bounded interval.

3.7.1 Definition and Property
Example 3.7.1. The function e~* is bounded on the unbounded interval [0, +00). To

+oo
make sense of the improper integral / e “dx, we consider the integral on any
0

b
/ e Cdr=1—¢c°.
0

As the bounded interval approaches [0, 400), we get

bounded interval

b

lim e dr = lim (1 —e?) =1.
b—+o0 J b—+o0
+oo
Therefore the improper integral e “dx has value 1. Geometrically, this means

0
that the area of the unbounded region under the graph of the function e=* and over
the interval [0, +00) is 1.

Example 3.7.2. The function log x is unbounded on the bounded interval (0, 1]. Since

1
the integral / log xdx is improper at 07, we consider the integral over [e, 1] for € > 0
0

=1
=—1—cloge+e.

=€

1
/ log zdxr = (xlogx — x)

Since the right side converges to —1 as € — 07, the improper integral converges and
has value

e—0t

1 1
/ log xdx = lim log xdx = —1.
0

€
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log

Figure 3.7.1: The unbounded region has area 1.

The unbounded region measured by this improper integral is actually the same as
the one in Example 3.7.1, up to a rotation.

+oo
Example 3.7.3. Consider the improper integral / —f, where a > 0. We have
e T

pl-p _ gl-p
/bda: T T p £,
= 1—p

r logh —loga, ifp=1.

As b — 400, we get
1-p

/+°°dx_ ¢ - ifp> L,

v diverge, if p < —1.

1
d
Example 3.7.4. The integral / —f is improper at 0" for p > 0. For € > 0, we have
0 T

1—¢€lp

/1dx —, ifp#1,
€ —loge, if p=1.

As e — 01, we get

1
/1 dx —, ifp<1,
0 diverge, ifp > 1.
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b
By the same argument, for a < b, the improper integrals / (x — a)Pdzr and
b a
/ (b — x)Pdx converge if and only if p > —1.

—+00

Example 3.7.5. The integral / is improper at +00 and —oco. The integral

—00

2+ 1
on a bounded interval is

b dx
= arctan b — arctana.
a

2+ 1
Then we get
/+°° da . b dx . b . T ( 7r>
= 1m = l1mm arctano— I11im arctana = ——\{(——=] =T.
Ceo B2HL a0 Jooa? 41 botoo a=—00 2 2

b—~+oo

Example 3.7.6. Since
b
/ cosxdr =sinb
0

+00
diverges as b — +o0, the improper integral / cos xdx diverges.
0

In general, an integral may be improper at several places. We may divide the
interval into several parts, such that each part contains exactly one improperness.
If an integral has one improperness at +00 or —oo, then we study the limit of the
integral on bounded intervals. If an integral has one improperness at a* or a~, then
we study the limit of the integral on intervals [a + €, 0] or [b,a — €].

Example 3.7.7. A naive application of the Newton-Leibniz formula would tell us

[ = toglan|

A . . 1. .
However, the computation is wrong since the integrand — is not continuous on
x

1
d

[—1,1]. In fact, the integral / s improper on both sides of 0, and we need
-1 X

zlogl—loglzo.

0
both improper integrals / — and — to converge and then get

1
/ d:c / dx dx
1



3.7. IMPROPER INTEGRAL 245

Since . .
dx . dx .
— = lim — = lim —loge =+00
0 e e—0Tt € X e—0t

1

1
dx dx

diverges, the improper integral / — diverges, so that / — also diverges.
0 R

0
Example 3.7.8. To compute the improper integral / xe®dx, we start with integra-

—00

tion by parts on a bounded interval

0 0 0
/ zetdy = / rde® = —be? — / e“dr = —be® — 1 + ¢,
b b b

Taking b — —oo on both sides, we get

0
/ zetdr = —1.

The example shows that the integration by parts can be extended to improper
integrals, simply by taking the limit of the integration by parts formula for the usual
proper integrals.

400 d
Example 3.7.9. For a > 1, consider the improper integral / (_x We have
o T

log x)P
/b dv /b d(logz) /bgb@
a a:(logac)p a a (log:U)P a loga yp'

Taking b — 400 on both sides, we get

/+<>o dax _/+ood_y
a I(log@p B loga /yp'

The equality means that the improper integral on the left converges if and only if
the improper integral on the right converges, and the two values are the same. By

teo dx
Example 3.7.3, we see that the improper integral / 0
x
a

og )P

converges if and

only if p < 1, and

= — , ifp < 1.
log x)P p+1 b
The example shows that the change of variable can also be extended to improper
integrals, simply by taking the limit of the change of variable formula for the usual
proper intervals.

/+°° dx (log a)P™!
o

Exercise 3.7.1. Determine the convergence of improper integrals and evaluate the conver-
gent ones.
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“+o0 0 1 d
1./ 2Pdz. 4./ a®dz. 7./ @
0 oo ~1V1—22

™

2 /ldx 5 /1 da ;
" Jo z(—logz)P’ S =2 8-/0 tan zdz.

—+o00 400 d s
3. / a®dzx. 6. / 7332 9. / sec zdx.
0 2 l—x 0

Exercise 3.7.2. Determine the convergence of improper integrals and evaluate the conver-
gent ones.

+oo d +o0 d +o0 1
1. / T 7. - 13. / %82 .
1 T+l o Vz(l+a) 1 T
“+oo d 9 1 1
2. / S 8. / dr 14. | g,
o 1 1 VT —9 0 VT
“+o0 d —+o0 “+00 t
3. / 3 x . 9. / zetdx. 15. / de.
1 r+1 0 0 (1+22)
“+o0o 2d —+o00 +oo
4. / % 10. / ze~ dz. 16. / e % cos bxdzx.
0 €z 0 0
“+o0 2d —+o00 +oo
5. / ﬁ 11. / e Vedy. 17. / e sinbxdx.
0 0 0
“+oo dx 1 +oo
6. / .12, / zlog zdz. 18. / e *|sinz|dx.
o z(@+1)(r+2) 0 0

Exercise 3.7.3. Prove that

1 1 2 !
lim <log+log+---+logn> :/ log xdzx.
n n n 0

n—oo n

Note that the left side is a “Riemann sum” for the right side. However, since the integral is
improper, we cannot directly use the fact that the Riemann sum converges to the integral.

Y
L . n! B
Moreover, the limit is the same as lim;,_ oo —— = e 1.
n

3.7.2 Comparison Test

The improper integral is defined by taking limit. Therefore there is always the

problem of convergence.
“+00
The convergence of the improper integral (x)dr means the convergence
a

b
of the function 7(b) = / f(z)dx as b — +00. The Cauchy criterion for the conver-
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gence is that, for any € > 0, there is N, such that

/bcf(x)dx

The Cauchy criterion for the convergence of other types of improper integrals is
b

similar. For example, if the integral f(x)dz is improper at at, then the integral

bc>N = |I(c) —I(b)| = <e.

converges if and only if for any € > O,athere is 0 > 0, such that

/cdf(:c)d:z:

The Cauchy criterion shows that the convergence of an improper integral depends
only on the behavior of the function near the improper place. Moreover, the Cauchy
criterion also implies the following test for convergence.

¢, d € (a,a+0) = < €.

b
Theorem 3.7.1 (Comparison Test). If|f(x)| < g(z) on (a,b) and the mtegml/ g(x)dx

b
converges, then/ f(z)dz also converges.

Note that if |f| < g, then | |f|| < g. Therefore whenever we use the comparison

b
test, we may always conclude that / | f(x)|dx also converges.

b b
We say that / f(z)dx absolutely converges if/ |f(x)|dz converges. The com-

a a
parison test tells us that absolute convergence implies convergence.
+oo

Here we justify the comparison test for the integral (x)dz that is improper

+o00
at +00. The convergence of / g(z)dz implies that for any € > 0, there is N,

such that .
c>b>N = / g(z)dr < e.
b

The assumption |f(z)| < g(x) further implies that for ¢ > b,

/ fa)d)| < / @)l < / " g(x)da.

Combining the two implications, we get
< / g(x)dx < e.
b

/bcf(x)d:v

This verifies the Cauchy criterion for the convergence of f(z)dz.

c>b>N —
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+oo
Example 3.7.10. We know < 273 for x > 1. Since / 2 2dr converges,
1

T dx
1 \ 3 +1

converges too because only the behavior of the function for big x

1
Va3 +1
by the comparison test, we know

oo dr

0 \/$3—|—1

(i.e., near +00) is involved.

also converges. We note that

+0o0
Example 3.7.11. To determine the convergence of / e_Ide, we use 0 < e <
0 o
e " for x > 1. By Example 3.7.1 and the comparison test, we know / e “dx
1

1 +o0
: a2 . 2
converges. Since / e " dz is a proper integral, we know / e " dx also con-
0 0

verges.

T logx
P

Example 3.7.12. To determine the convergence of / dx, p > 0, we use the

1

, log = 1 , oo
comparison > — > 0 for x > e. For p < 1, the divergence of —dx
xP xP 1 P

T log

implies the divergence of / dx.

1 xP
—+o0o
For p > 1, although we also know the convergence of / —pdx, the comparison
1 T

T Jog x

above cannot be used to conclude the convergence of / dx. Instead, we
1

xP
choose ¢ satisfying p > ¢ > 1. Then by

log
log z
lim ﬁp = lim 8% _ ,
T—+00 4 r—+oo P—4
x4
log 1 T dx
we have |2 < — for sufficiently large . By the convergence of / —,
P x4 1 x4
T logx
therefore, we know the converges of dx.
1

TP
T log x

We conclude that /

. dz converges if and only if p > 1.
1 x

Example 3.7.13. The integral is improper at 0T and 1~. By applying
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the idea of Example 3.7.12 to

1 1
1 1
i VEOZD) gy, vel=n)
z—0t 1 r—1— 1

NG 1—x

1
dx
we know that / — con-
0

and the convergence of / 1 d_x and / 1 d—x
0 VT o V1i—a’ Vva(l—x)

verges.

+o0 +o0
Exercise 3.7.4. Compare the integrals I = / f(z)dr and J = / g(x)dx that are

improper at +oo.

f(z)
g(z)

converges, then I also converges.

1. Prove that if limg, 4 converges, g(x) > 0 for sufficiently large =, and J

x
E) converges to a nonzero number, and g(z) > 0 for
g(x

sufficiently large z, then I converges if and only if J converges.

2. Prove that if limg,_ 4o

“+o00
Exercise 3.7.5. Suppose f > 0, prove that the improper integral / f(z)dz converges if
a

b b
and only if/ f(z)dx, for all b € [a,4+00), is bounded. What about the integral / f(z)dx

a
that is improper at a™.

+oo +oo +oo
Exercise 3.7.6. Suppose / f?dz and / g*dx converge. Prove that / fgdx and
a a a

“+oo
/ (f + g)?dx converge.

Exercise 3.7.7. Determine convergence.

“+o00 —+o00 1
1./ _dr 5./ _dr 9. / a®dz, a > 0.
o aP(logz)t o P+ (logx) 0
2 T Pl
dz 6 / +0o0
2. —_— : : 1 Pa®d
/1 w9 (log z)i o l4ad 0. /1 x z, a > 0.
1 pd
U e 7./H,q>0. +o0
3. / _. o V9I—ua1 11. / P log(1+x%)dx.
o ologals 1 1
g / dx ¢ >
1 . —_— Y, 1
dx 2P(1 — 29)"
4./ _— 0 12. /wplo (14 2%)dx.
« el Tlogl 0 , & sl + o)
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Exercise 3.7.8. Determine convergence.

1 oo xdx 3 /JFOO x sin zdx
o Vit — 2224+ 1 2 D —222+1
5 /1 xdx 4 /1 x sin xdx
“Jo Vb =222+ 1 “Jo Vb =222+ 1
Exercise 3.7.9. Determine convergence.
+oo 1
z+1
1. ———dx. 4. 1—2x)?|1 adx.
/1 3254300 /0( z)"|log z*dx

10 d 2
2. - . 5. / _dz
0 |2 —4x+ 3] 1 Bz —2—2a2)p

[T [

1 P41 0 1+ 29
Exercise 3.7.10. Determine convergence.

1/ dr_ 6./2,“.
o cosPx o |sinz — cosx|P

2, /2 _dr 7. /2 A
o zPsin?x z (1 —sinz)P

3 /Z dx 2 o

) SPrcosiz 8. /0 (—logsinz)Pdx.
3 2

4. / tan® xdx. 9. / 2P log sin zdx.
0 0

5. /3 tan® xlog? xdz. 10. /2 | log tan z|Pdzx.
0 0

1

5 /+oo x arctan xdx
e Vb — 2241
6 / L g arctan zdz
“Jo Vb —222+1
1
d
7./ v .
O \z+Vz+z
g /+oo dax
Loz + Ve + Ve
9

oo dx
| /o Jievitvz

“+o0

11./ e cos bxdzx.
0
“+o0

12./ e V% cos balda.
0

13, /m LT o
1

T4 —sinx
" /+°° log(;c + cos x)dx.
1 2 —sinx

T Jogx + cosz
15. ——dx.
/1 22 —sinz 0

a

+oo
Exercise 3.7.11. Find a constant a, such that / (
0

Moreover, evaluate the integral for this a.

3.7.3 Conditional Convergence

+
z24+1 z+1

) dx converges.

Although the comparison test is very effective, some improper integrals needs to be

modified before the comparison test can be applied.
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sinx

+oo
Example 3.7.14. By the comparison test, we know / . dx converges for p > 1.
1 x

T ginx

However, the argument fails for the case p = 1. We will show that dx
x

1
still converges. We will also show that, after taking the absolute value, the integral

/+°° sin z
1

+o0o
directly applied to /
1

dx actually diverges. This means that the comparison test cannot be
x

sin x

dz.
x

Using integration by parts, we have

b b b

1 b
/Smxdx:—/ —dcosx:—&—l—cosl—/ Cosxdx.
. 1T b ;a2

COS T
xr2

+00
By the comparison test, the improper integral / dx converges. Therefore
1

sin x

+oo
the right side converges as b — +o00, and we conclude that / dx converges.
1

x
On the other hand, we have

[l
1 ™

n km

1
dxzzg/( | sin z|dz
k=2

k—1)m

sin x

i e

sin x

+oo
By Example 1.3.8, the right side diverges to +00. Therefore / dx diverges.
1

X

Example 3.7.15. By a change of variable, we have

+oo +o0 +00
sinaszx:/ sinyd(/y :/ Smydy.
/ it = [T

The integral on the right is proper at 0™ and improper at +oo. It converges by an

+00
argument similar to Example 3.7.14. Therefore the integral / sin #?dx converges.

0
We first used the change of variable, then used the integration by parts, and

+oo
finally used the comparison test to conclude the convergence of / sin 2%dz.
0

+o0
The reader can further use the idea of Example 3.7.14 to show that / | sin 2%|dx
0

diverges.
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Example 3.7.14 shows that it is possible for an improper integral / f(z)dx to
b a
converge but the corresponding absolute improper integral / |f(z)|dz to diverge.

In this case, the integral converges but not absolutely, and we say / f(z)dz con-

ditionally converges.
The idea in Example 3.7.14 can be elaborated to get the following useful tests.

b
Theorem 3.7.2 (Dirichlet Test). Suppose / f(z)dx is bounded for all b € [a,+00).

+oo
Suppose g(x) is monotonic and lim, o g(x) = 0. Then f(z)g(z)dx con-

verges.
+oo
Theorem 3.7.3 (Abel Test). Suppose f(z)dx converges. Suppose g(x) is mono-

L
tonic and bounded on [a,+0o0). Then f(z)g(x)dz converges.

1
The tests basically replaces sinx and — in the example by f(z) and g(z). In case

x
f(z) is continuous and g(x) is continuously differentiable, we can justify the tests
by repeating the argument in the example. Let F(x / f(t)dt. Then F(a) =0,

and
[ sy = [ g@irw =o0ro) - [ @

Under the assumption of the Dirichlet test, we have lim, o g(b)F(b) = 0, and
|F(z)] < M for some constant M and all > a. Assume the monotonic function
g(x) is increasing. Then ¢'(z) > 0, and

|F(z)g'(z)| < Mg'(2).
Since

400 b
[ g@ds= tin_ [ gy = lim (9(b) - g(a)) = ~g(a)

b——+o0 b—+o0

converges, by the comparison test, the improper integral

b—~+o00

+oo b
/ F(x)d' (z)dx = lim F(:B)g'(x)dx

+oo
converges. Therefore f(z)g(x)dx = hm / f(z)g(z)dz also converges. The

proof for decreasing g(z) is similar.
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Under the assumption of the Abel test, we know both F(b) and ¢(b) converge
as b — +00. Therefore F(z) is bounded, and we may apply the comparison test
as before. Moreover, the convergence of limy ., g(b) implies the convergence of

+00 +oo
/ g'(x)dz. We conclude again that / f(z)g(z)dx converges.

Exercise 3.7.12. Determine convergence. Is the convergence absolute or conditional?

+00 _: q 1 400 1.2
sin x 1 1 sin“ x
1. / dx. 4. / — sin —dx. 7. / dz.
0 xP o xP x 0 x
+o00 q +o00 +00 (13
COS T
2. / dz. 5. / cos ax dzx. 8. / S xda:.
0 P 0 1+ P 0 x
1 1 P t
3. / —sin —dx. 6. / L suar dr. 9. / sirarclan® an:):dx‘
0 xr X 0 1 —+ x4 1 xP

+00

Exercise 3.7.13. Construct a function f(z) such that |[f(x)] = 1 and / f(x)dx con-
0

verges.

Finally, we show some examples of using the integration by parts and change of
variable to compute improper integrals. We note that the convergence needs to be
verified before applying the properties of integration.

+oo
Example 3.7.16. In Example 3.7.11, we know the convergence of/ e " da. By the
0

pe_ajz

+oo
C. . . . — 72
similar idea, especially lim,,_, , o, = 0, we know that / xPe™" dx converges
0

+00 )
I, = / e dx.
0

Then we may apply the integration by parts to get

1 [T
1, = ——/ "t de™"
0

for any p > 0.
Let

2
1 r=+00 -1 +o0 -1

= — g le + n / 220 gy = & I, _s.
2 =0 2 J 2

It is known (by using integration of two variable function, for example) that
+oo
T
Iy = / e dy = £
0

We can also apply the change of variable to get

+o0 1 +oo 1
I, = / re " dy = —/ e Pdr = .
0 2o 2
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Then we can use the recursive relation to compute I,, for all natural number n.

us

)
Example 3.7.17. The integral / log sin xzdx is improper at 0. By L’Hospital’s rule,
0

we have

CosS T
log sin x : T CoSx
lim ————~ = lim SWL — Jj;m =1.
z—0t+  logx z—0+ =0+ sinx
x

1 1
By the convergence of / |log z|dx = — / log xdzx in Example 3.7.2 and the com-
0 0

E]

2
parison test, we see that / log sin zdx converges.

0
The value of the improper integral can be computed as follows
g . % . % .
/ log sin zdx = / log sin zdx + / log sin xdx
0 0 z

us 0
4
:/ logsinxdx—/ log cos xdx

0 1

T T 1
= / (logsin x + log cos x)dx = / log <§ sin 295) dx
0 0

% ) s 1 (2 ) s
= / log sin 2xdxr — —log2 = —/ log sin xdx — — log 2.
0 4 2 Jo 4

Note that all the deductions are legitimate because all the improper integrals in-

volved converge. Therefore we conclude that

2 ™
/ log sin xdr = ——log 2.
0 2

Exercise 3.7.14. Compute improper integral.

1 /1(1 )'d 3 /m d 5 /gl d
. ogx)"dx. ) —_— . og cos xdz.
0 0 (1+ x2>n 0 8
+oo L gndy
2. e Tdzx. 4. / .
/0 0o V1—x2

Exercise 3.7.15. The Gamma function is

1. Show that the function is defined for x > 0.
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2. Show the other formulae for the Gamma function
o0 9 o0
I'(z) = 2/ 2l gt = am/ t*Ltematqs,
0 0

3. Show that I'(z + 1) = zI'(z) and I'(n) = (n — 1)!.

3.8 Application to Geometry

3.8.1 Length of Curve

Curves in a Euclidean space are often presented by parametrization. For example,
the unit circle centered at the origin of R? may be parametrized by the angle

r=cosf, y=sinf, 0<60<2m.

The heliz in R?

h
r=rcosf, y=rsinf, z=—0 0<60<2n,
27
moves along the circle of radius r from the viewpoint of the (x,y)-coordinates, and
moves up in the z-direction in constant speed, such that each round moves up by
height h.

In general, a parametrized curve in R? is given by
v=a(t), y=yt), a<t<b,

The initial point of the curve is (z(a),y(a)), and the end point is (x(b),y(b)). To
compute the length of the curve between the two points, we consider the length s(t)
from the initial point (z(a),y(a)) to the point (z(t),y(t)). We find the change s'(t)
and then integrate the change to get s(¢). The length of the whole curve is s(b).

Similar to the argument for the area of the region G, (f), we need to be careful
about the sign. In the subsequent discussion, we pretend everything is positive
(which at least gives you the right derivative), and further argument about the
negative case is omitted. Moreover, we restrict the argument to the case z(t) and y(¢)
are nice. In fact, we will assume the two functions are continuously differentiable.
In general, we may break the curve into finitely many continuously differentiable
pieces and add the lengths of the pieces together.

As the parameter t is changed by At, the change As = s(t + At) — s(t) of the
length is the length of the curve segment from (x(t),y(t)) to (z(t + At),y(t + At)).
The curve segment is approximated by the straight line connecting the two points.
Therefore the length of the curve is approximated by the length of the straight line

As = +/(z(t + At) — z())2 + (y(t + At) — y(1))2 = /(Az)2 4+ (Ay)2.
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(x(t + At),y(t + At))

t=a

Figure 3.8.1: Length of curve.

Dividing the change At of parameter, we get

As o [ranyagy?
At~ At At )

The approximation gets more refined as At — 0. By taking the limit as At — 0,
the approximation becomes an equality

, As Az\? Ay’ ———
$() = AIEB@—AHBO\/(E) +(Kt> RRAACAREAUE

Therefore the length function s(t) is the antiderivative of \/a/(t)? + y/(t)2, or

= Va'(t)? +y'(t)%dt,

and we have

b
length of curve = s(b) = / V' (t)? + y'(t)3dt.
Example 3.8.1. The length of the unit circle is

2m 2m
/ V(= sin#)2 + (cos 0)2df = / df = 2.
0 0

2

More generally, an ellipse x— + = Y _ 1 can be parametrized as

b2
T = acos@, y=>bsinf, 0<60<2nm.

The length of the ellipse is the so called elliptic integral

2T b2
\/ —asin®)? + (bcosh)?dh = a V1+ Kcos?0df, K =— —1.

0 0 a?

The integral cannot be computed as an elementary expression if a # b.
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Example 3.8.2. The graph of a function f(z) on [a,b] is a curve
r=t, y=f(t), tEela,bl.
The length of the graph is

[V s

where the variable ¢ is substituted to the more familiar x.
For example, the parabola y = 22 is cut by the diagonal y = x. With the help
of Example 3.5.31, the finite segment corresponding to z € [0, 1] has length

1 1 2
/ \/1+(2x)2dx:§/ V1+ 22dx
0 0
1 2 1 1
=1 <m\/1 + 2?2 4+ log(V'1 + 22 +x)>0 = éx/gqt Zlog(\/g—l— 2).

AN

Figure 3.8.2: Parabola 22 cut by the diagonal.

Example 3.8.3. The astroid x5+ yg = 1 can be parametrized as
r=cos’t, y=sin®t, te]0,2n]

Note that the range [0, 2] for ¢ corresponds to moving around the astroid exactly
once. Therefore the perimeter is

2 2m
/ \/(—3 cos? tsint)? + (3asin?t cost)2dt = / 3| sint cost|dt = 6.
0 0

Example 3.8.4. The argument about the length of curves also applies to curves in
R? and leads to

b
length of curve = / V()2 4y (62 + 2/(t)2dt.
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Figure 3.8.3: Astroid.

For example, the length of one round of the helix is

/OQW \/(—rsin9)2 + (rcos)? + (%)Qde _ /0277 mde

B2
= 2wy (72 + (2—) =/ (27r)? + h2.
T

The result has a simple geometrical interpretation: By cutting along a vertical line,
the cylinder can be “flattened” into a plane. Then the helix becomes the hypotenuse
of a right triangle with horizontal length 277 and vertical length h.

Example 3.8.5. When a circle rolls along a straight line, the track of one point on
the circle is the cycloid. Let r be the radius of the circle, and assume the point is
at the bottom at the beginning. After rotating angle ¢, the center of the circle is at
(rt,7), and the point is at (rt,r) +7(—cos(t — 5),sin(t — 7)). Therefore the cycloid
is parameterized by

r=rt—rsint, y =1 —rcost.

As the circle makes one complete rotation, we get one period of the cycloid,
corresponding to ¢ € [0, 27]. The length of this one period is

27 2m 2m
t
/ V(r —rcost)? + (rsint)2dt = 7“/ V2(1 — cost)dt = 7“/ 2 siné‘ dt = 8r.
0 0 0
Exercise 3.8.1. Compute length.
1. 4?2 =2z, x<c]0,a] 3. y=¢€*, z€0,a]

2. 22 =2py, x € [0, a. 4. y=logzx, x € [1,a].
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Figure 3.8.4: Cycloid.

5. y=log(4—2?%), x € [-1,1]. 9. y> =123 2 €10,al.
6. y=logcosz, r € [0, %} 10. y* =a?, 2 € [0,d].
e +1
7. y=logsecx, x € [O,Z]. 11. y = log ex_1733€ [1,2].
er 1 e ¥ r
8. y:T’xE[—a’a] 12. y:/(; \/t3—1dt,x6[1,4]

Exercise 3.8.2. Compute length.
L Ve+yy=129>0.

2. x=t,y=1logt, t €[1,2].
3.x=¢e —t,y=e+t te€l0,1].
4. x = elcost, y = elsint, t € [0,7].
5. x = cos’t, y = costsint, t € [0,7].
6. x =3cost — cos3t, y =3sint —sin 3¢, ¢t € [0, 7).
7. x :cost—l—logtanf, y =sint, t € [E,E}.
2 4’2

8. x =cost+tsint, y =sint —tcost, z =2, t € [0, 27].
9. x=a’e, y=b’et, 2 =+ 2abt, t €[0,1].

Exercise 3.8.3. Compute the length of Cornu’s spiral

t 2 t 2
U U
:c:/ cos —du, y:/ sin —du.
0 2 0 2

Exercise 3.8.4. Think of the rolling circle that produces the cycloid as a disk. What is the
track of a point on the disk that is not necessarily on the circle (i.e., the boundary of the
disk)? Find the formula for computing the length of this track.

Exercise 3.8.5. Suppose a line is wrapped around a circle. When the line is unwrapped
from the circle, the track of one point on the line is the involute of the circle. Let r be the
radius of the circle and let ¢ be the unwrapped angle.



260 CHAPTER 3. INTEGRATION

1. Find the parameterized formula for the involute.

2. Find the length of the involute as the line is unwrapped by half of the circle.

N
/

Figure 3.8.5: Involute of circle.

3.8.2 Area of Region

Being defined as area, the integration is naturally adapted to the computation of
area. We start with the area of region bounded by two functions.

Example 3.8.6. The curve y = 2% and the straight line y = z enclose a region over
0 <z < 1. The area of the region is the area below x subtracting the area below

22, which is
1 1 1 1
/ :pdx—/ r2dx :/ (x — 2% dx = .
0 0 0 6

Figure 3.8.6: Region between x and z2.
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Example 3.8.7. To compute the area of the region bounded by y = 22 —2z and y = x.
We denote the (positive) areas of the four indicated regions by A;, Ay, Az, A4. Then

2 2 3 3
/ xdx = Ay, / (22 —2z)dx = —As, / xdx = Az+ Ay, / (22 —2z)dx = Ay,
0 0 2 2

The area we are interested in is

Aj+As+ A3 = Ay — (—A2) + (A3 + Ay) — Ay
3 3
:/ :vd:p—/ r? — 21) da:—l—/ xdx—/(xQ—Qx)dm
0 0 2 2
3 3 3 9
:/ xd:c—/ x? —2x)d /[x—(:c2—23:)]dx:—.
0 0 0 2
T
2 -2z
A3 3
Aq 3 A4i
Ay 2 3

Figure 3.8.7: Region between x and 2% — 2z.

The examples suggest that, if f(x) > g(x) on [a,b], then the area of the region
between f and g over [a,b] is

/ab f(x)dx — /ab g(x)dx = /ab(f(x) — g(z))dz.

In general, we can divide [a, b] into some intervals, such that on each interval, one of
the following happens: f(z) >0 > g(z), f(z) > g(x) > 0,0 > f(z) > g(x). Then
an argument similar to Example 3.8.7 shows that the total area is indeed given by
the formula above.

Example 3.8.8. The functions sinx and cosz intersect at many places and enclose

many regions. One such region is over the interval {— ], on which we have

44
sinx > cosz. The area of the region is
5

/ ' (sinz — cosz)dx = 2v/2.

™
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o
L G
<

Figure 3.8.9: Region between sinz and cos x.

Example 3.8.9. The region between the parabola > — z = 1 and the straight line
x +y =1 1is between the functions

ﬂ@:{wf_iif—1gxgm o(&) = —VETT.

l—2, if0<ux<s3,

The area is

3 3 0 3 3
9
f(x)dx — / g(x)dr = / vV + ldx +/ (1 —x)dx — / (—Vzx + 1)dx = 7
1 1 -1 0 -1
Note that the region is obtained by rotating the region in Example 3.8.7. Natu-
rally the results are the same. The previous example actually suggests another way
of computing the area, by exchanging the roles of z and y.

Example 3.8.10. Consider f(x) = 2°+22% — 2z —3 and g(z) = 2° — 23 + 2% — 3. We
have

flx)—glx) =2 +2* — 22 = z(x — 1)(z + 2).
Therefore the two functions intersect at + = —2,0,1 and enclose two regions. The
first region is over [—2,0], on which f(z) > g(z). The second region is over [0, 1],
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r+y=1 y—r=1

Figure 3.8.10: Region between a parabola and a straight line.

on which f(z) < g(x). The areas of the regions are

0

Area over [-2,0] = /Q(f(x) —g(z))dr = 2,
Area over [0,1] = /0 (f(z) —g(z))dx = %

Note that we may change the functions to f(z) = 2° + 222 — 20 — 3+ €* and
g(z) = 2° — 23 + 22 — 3+ € and get the same result. Although it is hard (actually

b b
impossible) to compute the exact values of / f(x)dx and / g(x)dx. Yet we can

still compute the area.

Exercise 3.8.6. Compute area of the region with the given bounds.

1. y =+/z, y-axis, y = 1. 6. y=¢e% y=a?—1,0n [-1,1].

2. y=e€", y=u, on|0,1]. 7.y=logz, > =x+2,y=—1,y=1.
3. y=logz,y=z,y=0,y=1. 8. x=19y%—4dy, x =2y —y>

4. y=2% y=2z — 2 9. y=2x—2% z+y=0.

5. y =sinz, y = cosx, on [0, 7). 10. y =2, y = 2 +sin®z, on [0, 7].

Exercise 3.8.7. Explain that, if 0 > f > g on [a, b], then the area of the region between the

b
graphs of f and g over [a, b] is / (f(x) — g(x))dx.

Exercise 3.8.8. Explain that, the area of the region between the graphs of f and g over
b

[a, b] is |f(x) — g(x)|dz, even when we may have f > g some place and f < g some

a
other place.
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In practise, a region is often enclosed by a closed boundary curve (or several
closed curves if the region has holes). It is often more convenient to describe curves
by their parameterisations. For example, the unit disk is enclosed by the unit circle,
which can be conveniently parameterised as = = cost, y = sint, t € [0, 27].

A parameterisation of a curve can be considered as a movement along the curve,
and therefore imposes a direction on the curve. We will always make the standard
assumption that, as we move along a parameterised boundary curve, the region is
always on the left of curve. Figure 3.8.2 illustrates the meaning of the assumption.
For a region without holes, this means that the curve has counterclockwise direction.
The unit circle parameterisation above is such an example. If the region has holes,
then the “inside boundary components” should have clockwise direction.

C Cq

(&

Figure 3.8.11: The region is always on the left of the boundary curve.

Consider a simple region in Figure 3.8.2, such that the boundary curve can be
divided into the graphs of two functions y = yi(x) and y = ys(z) for x € [a, 5]
Suppose the boundary curve has parameterisation ¢(t) = (z(t), y(t)), t € [a, b], such
that y; and y, correspond respectively to ¢t € [a,c] and t € [¢,b]. The direction of
the parameterisation satisfies our assumption.

T+
[
SR

Y2

& B

Figure 3.8.12: Calculate the area by integrating along the boundary curve.

The area of the regionis [ (y1(z)—y2(z))dz. We may use the parameterisation

of the boundary curve as the ghange of variable to get the following formula for the
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area

We note that the negative sign comes from our assumption of the direction. The
B

upper part y; is supposed to positively contribute / y1(x)dz to the area of X.
However, the direction of y; is leftward, opposite to the z-direction (the direction of

dx). This introduces a negative sign. Similarly, the lower part y, should negatively
contribute to the area, and yet has the rightward direction, the same as the -
direction. This also introduces a negative sign.

We may further use the integration by parts to get another formula for the area

- [ vtz = =)+ y(@yal) + [ a0ayte) = [ wdy

Here we have x(a) = x(b) and y(a) = y(b) because the boundary curve is closed.
The positive sign on the right can be explained as follows. The area is supposed to
be the contribution from the right boundary part subtracting the contribution from
the left boundary part. From the picture, we see that the direction of the right part
is upward, the same as the y-direction (the direction of dy), and the direction of the
left part is downward, opposite to the y-direction.

Example 3.8.11. The boundary circle of the unit disk is parameterised by x(t) = cost,
y = sint, t € [0,27]. Since the parameterisation satisfies our assumption, we may
use it to calculate the area of the unit disk

2m 2m
—/ y(t)dx(t) = / sin’ tdt = 7.
0 0

Example 3.8.12. Consider the region enclosed by the Archimedean spiral x = t cost,
y = tsint, t € [0,7], and the z-axis. The boundary of the region consists of the
spiral and the interval [—m, 0] on the x-axis. After checking that the direction of the
boundary satisfies the assumption, we get the area

T 0 ™ 1
- / (tsint)(tcost)'dt — / Odr = — / (tsintcost — t*sin®t)dt = 67r3.
0 0

—T
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t=m t=0

Figure 3.8.13: Archimedean spiral.

Exercise 3.8.9. Explain that the area of the region on the left of Figure 3.8.2 may be

calculated by — / ydzx. You may need to break the boundary into four parts y1, y2, ys, y4.
C

Moreover, show that the area may also be calculated by / xdy.
C

Exercise 3.8.10. Explain that the area of the region on the right of Figure 3.8.2 may be
calculated by —/ yda:—/ ydx and/ xdy+/ xdy.
Ch Ca C1 Cs

Exercise 3.8.11. Explain that, if the direction of the boundary curve C' is opposite to our
assumption, then the area is | ydzx.

C
Exercise 3.8.12. Compute the areas of the regions enclosed by the curves.

2 2
1. Elhpse ﬁ + b72 =1.

2. Astroid 25 + y§ =1.

3. Vx| + /]yl = 1.

4. Hyperbola 22 —y?> =1 and z = a (a > 1).

5. Sprial x = el cost, y = e'sint, t € [0, 7], and the z-axis.

6. One period of the cycloid in Example 3.8.5 and the z-axis.

3.8.3 Surface of Revolution

If we revolve a curve on the plane with respect to a straight line, we get a surface.
For example, the sphere is obtained by revolving a circle around any straight line
passing through the center of the circle, and the torus is obtained by revolving a
circle around any straight line not intersecting the circle.

Let (x(t),y(t)), t € [a,b], be a parametrized curve in the upper half of the (z,y)-
plane (this means y(¢) > 0). To find the area of the surface obtained by revolving
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the curve around the z-axis, we let A(t) be the area of the surface obtained by
revolving the [a,t] segment of the curve around the z-axis. Again the subsequent
argument ignores the sign.

As the parameter is changed by At, the change AA = A(t+At)— A(t) of the area
is the area of surface obtained by revolving the curve segment from (x(t),y(t)) to
(x(t+ At),y(t+ At)) = (z,y) + (Ax, Ay). Since the curve segment is approximated
by the straight line connecting the two points, the area AA is approximated by the
area of the revolution of the straight line.

\ V-?-V»,
»\j
V&e

fivg
(v + A)rg

Figure 3.8.14: Area of surface of revolution.

The revolution of the straight line can be expanded to lie on the plane. It is part

of the annulus of thickness \/Axz? + Ay?. Moreover, the inner arc has length 27y(t)
and the outer arc has length 27y(t + At). Therefore the area of the partial annulus

gives the approximation

(2my(t) + 2my(t + At))\/ Az? + Ay? = w(y(t) + y(t + At))/ Ax? + Ay2.

Dividing the change At of the parameter, we get

AA ~

N | —

% ~m(y(t) +y(t+ At))\/(%)Q + <%)2.

The approximation gets more refined as At — 0. By taking the limit as At — 0,
the approximation becomes an equality

i AA Az\* Ay’
A= oy T AT it At>>\/ (5) + (&)

= 2my(t) V@' (6)? +y' (1),
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This leads to
b
area of surface of revolution = A(b) = 27r/ y(t)\/2' ()% + y'(t)%dt.

We note that ds = /' (t)? + y/(t)2dt is used for computing the length of curve, and

we can write

b
area of surface of revolution = 27 / y(t)ds.

Here y is really the distance from the curve to the axis of revolution.

Example 3.8.13. The 2-dimensional sphere of radius r is obtained by revolving the
half circle
r=rcos, y=rsinf, 60¢€l0,7]

around the x-axis. Since the length of circular arc is given by ds = rdf, the area of
the sphere is

27r/ (rsin@)rdd = 4nr?.
0

Example 3.8.14. The torus is obtained by revolving a circle on the upper half plane
around the z-axis. Let the radius of the circle be a and let the center of the circle
be (0,b). Then a < b and the circle may be parametrized as

r=acosf, y=asinf+b, 6¢€]0,2n]

The length is given by ds = adf, so that the area of the torus is

2m
27?/ (asinf + b)add = 4n*ab.
0

(acosf,asinf + b)

o

Figure 3.8.15: Torus.
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Example 3.8.15. Take the segment y = z?, = € [0,1] of the parabola in Example
3.8.2. If we revolve the parabola around the z-axis, then ds = /1 + 4x2dx, the
distance from the curve to the axis of rotation (i.e., the z-axis) is x?. Therefore the
area of the surface of revolution is

1
27?/ 22V1 + 422dx
0

With the help of Example 3.5.15 and the computation in Example 3.8.2, we have

1 L2 L
/ 932V1+4552d517:§/ $2v1+:v2dx:§/ ((1+x2)%—(1+x2)%> dx
0 0 0

1 1 5|2 2.3 2
— — x(1 2)3 2 —1/1 2dx
8( x(+x)0+(2%+ )O(er) )

2-2+1
:1(253_2(\/3+ 10g2+\/_)) log(2+\/_).

8\ 5 3

2
So the area is 77% - 210 log(2 +V/5).

Figure 3.8.16: Revolving a parabola segment around different axes.

If we revolve around the y-axis, then we get a paraboloid. We still have ds =
V1 + 422dz, but the distance from the curve to the axis of rotation (i.e., the y-axis)
is now x. Therefore the area of the paraboloid is

1
2

27r/ zV1+4a?de =27 m(l +42?)2
. .

1

- %(5\/5 —1).

0

Finally, if we revolve around the diagonal y = x, then the distance from the

. . . T .
curve to the axis of rotation is ———, and the area is

V2

27T/01 \f 1+ 4a2 \/_((5f )—\/5 zlolog(2+\/3))

—Var (V5 - 5 - gyloRz+V5)).
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Example 3.8.15 shows how to adapt the formula for the area of the surface
of revolution to the more general case of any parametrized curve (z(t),y(t)) with
respect to a straight line ax + By + v = 0. Assume the curve is on the “positive
side” of the straight line

ax(t) 4+ By(t) +v >0, forallt € [a,b)].

o(t) + By(t) +7. We still have
Vo + (2

ds = \/a'(t)? + ¢/ (t)%dt. Therefore we get the general formula

b t t (+)2 ()2
area of surface of revolution = 27?/ (ax(t) + By(t) + v)va'(t) +y'(t)

Exercise 3.8.13. Find the formula for the area of the surface of revolution of the graph of
a function y = f(x) around the z-axis. What about revolving around the y-axis? What
about revolving around the line x = a?

Then the distance y(¢) should be replaced by a

dt.

Exercise 3.8.14. Find the area of the surface of revolution.

. x —x
1. y =23, 2 € [0,2], around z-axis. 7.2 = € ""26 . & € |-a,a], around
2. 22 = 2py, x € [0, 1], around y-axis. x-axis.
3. y=¢€", x €[0,1], around z-axis. 8. y? =23 x €]0,1], around z-axis.
4. y=¢€", x € [0,1], around y-axis. 72 2
. Y :
9. Ellipse — + -5 = 1, around z-axis.
5. y=e*, z€l0,1], around y = 1. a b
6. y =tanz, x € [0, §], around z-axis. 10. Astroid x5 + y% =1, around z-axis.

Exercise 3.8.15. Find the area of the surface obtained by revolving one period of the cycloid
in Example 3.8.5 around the z-axis.

Exercise 3.8.16. Find the area of the surface obtained by revolving the involute of the circle
in Example 3.8.5 around the z-axis.

3.8.4 Solid of Revolution

If we revolve a region in the plane with respect to a straight line, we get a solid. For
example, the ball is obtained by revolving a disk around any straight line passing
through the center of the disk, and the solid torus is obtained by revolving a disk
around any straight line not intersecting the disk.

Consider the region Giay(f) for a function f(x) > 0 over the interval [a, b]. To
find the volume of the solid obtained by revolving the region around the x-axis, we
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let V() be the volume of the part of solid obtained by revolving G, 4 (f) around
the x-axis. Then the change AV = V(z + Az) — V(z) is the volume of the solid
obtained by revolving G, z1aq)(f)-

Figure 3.8.17: Volume of solid of revolution.

Let m = ming, y1aq) f and M = maxj; ;1 aq f. Then Gy aqa4(f) is sandwiched
between the rectangles [z,z + Az| x [0,m] and [z,x + Ax] x [0, M]. Therefore
the revolution of G, ,4a4)(f) is sandwiched between the revolutions of the two
rectangles. The revolutions of rectangles are cylinders and have volumes mm?2Ax
and wM?Ax. Therefore we get

mm?Az < AV < tM?*Az.

This implies
A
m? < —V < wM?2.
Az
If f is continuous, then lima, ,om = lima, ,o M = f(x). By the sandwich rule, we

get

. AV
Vi) = fimy 5y ="

This leads to

b
volume of solid of revolution = V(b) =7 / f(z)*da.

Example 3.8.16. The 3-dimensional ball of radius r is obtained by revolving the half
disk around the z-axis. The half disk is the region between v/r2 — 22 and the z-axis
over [—r,r]. Therefore the volume of the ball is

1
4
7r/ (Vr2 — 22)2dr = §7r7"3.

1
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Example 3.8.17. The solid torus is obtained by revolving a disk in the upper half
plane around the z-axis. Let the radius of the disk be a and let the center of the disk
be (0,b). Then a < b and the disk is the region between y;(z) = b + v a? — z? and
y2(z) = b—+/a? — x2 over the interval [—a, a]. The torus is the solid obtained by re-
volving G, (y1) subtracting the solid obtained by revolving G'[_ 4] (y2). Therefore
the volume of the torus is the volume of the first solid subtracting the second

a

o [ npde—n [ p@Pde = [ (@2 - (s

—a —a —a

_ w/ (b+ VA =22 — (b— Va® = 22)2)da
= 7T/ 4bva? — x2dzx

3
= 47rb/ a® cos® tdt = 2w%a’b.

Wl

Figure 3.8.18: Solid of revolution of the region between two functions.

Example 3.8.17 shows that, if f > g > 0 on [a, b], then the volume of the solid of
revolution obtained by revolving the region between f and g over [a,b] around the

T-axis is
b
w [ e - gl
Now we extend the discussion before Example 3.8.11 about calculating the area

of a plan region by the integrating along the boundary curve. Suppose the region X
in Figure 3.8.2 lies in the upper half plane. Then similar to the earlier discussion,
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the volume of the solid obtained by rotating X around the z-axis is

B

. / @) = ) = / T p(e)de | walaas

« «

- / 2 da(t) — 7 / (e (t)

— / by(t)2dx(t) =—r /C yda.

So all the earlier discussion about the area can be applied to the volume of the solid
of revolution.

Example 3.8.18. The volume of the 3-dimensional ball of radius r is obtained by
revolving the half disk around the x-axis. The boundary of the half disk consists
of the half circle x = cost, y = cost, t € [0, 7], and the interval [—1,1] on the z-
axis. Moreover, the parameterisation of the boundary curve satisfies our assumption.
Therefore the volume of the ball is

T 1 T 4
7r/ (rsint)®d(r cost) + 7T/ 0%dw = 7TT’3/ (1 — cos?t)d(cost) = §7rr3.
0 - 0

1

Example 3.8.19. We use the parameterisation z = acost, y = b+ asint, t € [0, 27|
of the circle to calculate the volume of the torus in Example 3.8.17

27 2
- / (b+ asint)?d(acost) = ma / (b?sint + 2absin®t + a*sin® t)dt
0 0

= 27%a°b.

Example 3.8.20. Consider the region enclosed by the Archimedean spiral and the
x-axis in Example 3.8.20. The volume of the solid obtained by revolving the region
around the z-axis is

s T 2
- / (tsint)?d(t cost) = — / (t*sin®t cost — t*sin® t)dt = §7T3 — 4.
0 0

Exercise 3.8.17. Find volume of the solid obtained by revolving the region in Exercise
3.8.12 around the z-axis.

Exercise 3.8.18. Use integration by parts to explain that the volume of the solid of revolu-
tion can also be calculated by 27 [ zydy. Then use this formula to calculate the volumes

C
of the ball, the torus, and the solids obtained by revolving the regions in Exercise 3.8.12
around the z-axis.
The formula will be the “shell method” in Example 3.8.27.
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Exercise 3.8.19. Explain that, if the direction of the boundary curve C' is opposite to our

assumption, then the volume of the solid of revolution around the z-axis is 7 [ y%dz.
C

Exercise 3.8.20. For the solid obtained by revolving a region in the lower half plane around
the z-axis, how should the formula —7 [ y2dz for the volume be modified?
C

Next we consider the general case of revolving a region X around a straight line
L: ax + Py + v =0. We assume X is on the “positive side” of L in the sense that
the parameterisation (x(t),y(t)) of the boundary curve C of X satisfies

ax(t) + py(t) +v >0, for all t € [a,b].

Moreover, we still assume that the direction of C satisfies our assumption. Then in

t t
the formula —m / y*dx, y should be understood as the distance az(t) + By(t) +
o N

from C' to L, and dx should be understood as the progression

pdz —ady _ 52'(0) — /()

VIR Jai

(67 —O()
VT P

. /b (o (t) + By(t) +7)*(B' () — ay/'(1))

. (v/a? + B2y
We note that the negative sign is due to the mismatch (See Figure 3.8.4) of the
direction of the boundary curve and the direction of the progression along L. In

general, we may determine the sign by comparing the direction of the parameter
and the direction of progression.

along the direction of L. Therefore the volume of the solid of revolution
is

dt

(a, B)
X L:ax+py+v=0

/ progression along L

Figure 3.8.19: Revolving a region X around a line.
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For the special case that X is above the horizontal line y = b ((«, 5) = (0, 1)),

the volume of the solid of revolution around the line is —7 [ (y — b)*dx. If X is on
c
the right of the y-axis (i.e., the line z = 0, with (a, 8) = (1,0)), then the volume of

the solid of revolution around the y-axis is

- / (A /() = 7 /C 22y,

The negative sign in front of 3y’ comes from the fact that the progression for the line
x = 0 goes downwards, the opposite of the y-direction. If X is on the right of the
vertical line = a, then the volume of the solid of revolution around the vertical

line is W/(ZE —a)’dy.
c

Example 3.8.21. Take the segment y = 22, x € [0, 1], of the parabola in Example
3.8.2. If we revolve the region X between the parabola and the x-axis around the
zr-axis, then the volume of the solid is

=1 1 1
7r/ yidr = 7T/ (%)2dr = —7.
=0 0 d

If we revolve X around the y-axis, then the volume of the solid is

r=1 y=1 1
7T/ 22dy = 7T/ ydy = .
=0 y=0 2

Let Y be the region between the parabola and the vertical line x = 1. If we
revolve Y around the vertical line x = 1, then the volume of the solid is

w/::1(1 )y — w/olu — 2)2d(a?) = gw.

=0

If we revolve Y around the y-axis instead, then the volume of the solid is

r=1 y=1 1
7T/ (12 — 2%)dy = 7r/ (1—y)dy = 5T

=0 y=0

Let Z be the region between the parabola y = 2% and the diagonal y = z. If we
revolve Z around the x-axis, then the volume of the solid is

ﬂ/:l(xz — (2%)?)dx 2

= —T.
0 15

If we revolve Z around the line x = —1, then the volume of the solid is
1

. / (2 +1)%d(z?) — (x + 1)2dz) = 7r/ (4 12(22 — 1)da

=0 0

? 1
= 7r/ 2*(22 — 3)dz = =,
1 2
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If we revolve Z around the diagonal y = z, then to make sure the region is on
the positive side of the diagonal, we should write the diagonal as x — y = 0, with

2
(o, B) = (1,—1). The distance between the parabola and the diagonal is < \/;
- 1,1
The progression of the parabola in the direction (8, —a) = (=1,—1) of the line
Va2 + pg? V2
—dr —dy —dr—d(=*) —(142x)
V2o V2 V2

Therefore the volume of the solid is

/m=1 <x—x2)2—(1+2x) 1

- dz = TT.

=0 \/§ \/i 30\/§

If we revolve Z around the line y = x — 1, we should write the line as —x+y+1 =10
for Z to be on the positive side, with («,5) = (—1,1). The distance from the

18

dzx.

1 x — x?
diagonal and the parabola to the line are — and — — . The progressions
g p \/§ \/5 5 prog
of the diagonal and the parabola in the direction of the line are

Ve F o V2

dx + dx dr +d(z?) 1+ 2x
AT fodr and _
V2 RV NG

Therefore the volume of the solid is

() v (575 ) e

Exercise 3.8.21. Let A < f(x) < B for = € [a,b]. Find the formula for the volume of the
solid of revolution of the region between the graph of function f and y = A around the
line y = C, where C ¢ (A, B).

dx.

Exercise 3.8.22. Find the formula for the volume of the solid obtained by revolving a region
X for which the parameterised boundary has the right direction.

1. X is on the left of the y-axis, around the y axis.

2. X is on the left of x = a, around = = a.

3. X is below y = b, around y = b.

4. X is on the negative side of x 4+ y = 0, around = + y = 0.

5. X is on the negative side of x +y = 1, around = +y = 1.
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Exercise 3.8.23. Find the volume of the solid obtained by revolving the region between the
curve and the axis of revolution.

1.
2.

3
4.
)

9.

10.

y =23, z € [0,2], around z-axis.

x? = 2py, x € [0,1], around y-axis.

. y=¢€" z€]|0,1], around x-axis.

y = e, z € 0,1], around y-axis.

. y=¢€* x€]|0,1], around x = 1.

T .
y =tanx, x € [0, Z]’ around z-axis.

x —X
2 _ € +e

Y , T € [—a,al, around z-axis.

2
y? =23, z € [0,1], around z-axis.
1,2 y2
Ellipse — + -5 <1, around z-axis.
a b2

2 2
Astroid z3 + y3 < 1, around z-axis.

Exercise 3.8.24. Find the volume of the solid of revolution.

1.

© %o N o Gk wN

—_
e

[
—_

12.

13.

14.

2 around z-axis.

Region bounded by y =z and y = «
Region bounded by y = x and y = 22, around = = 2.
Region bounded by y = x and y = 22, around x = y.

Region bounded by y = x and y = 22, around x + y = 0.

Region bounded by y? =2z +1 and z +y = 1, around =z + y = 1.

Region bounded by y?> = 2 + 1 and z + y = 1, around z = 3.
Region bounded by 4> =z + 1 and 4+ y = 1, around y = 1.

Region bounded by y =logz, y = 0, y = 1, and y-axis, around y-axis.

Region bounded by y = cosx and y = sinx, around y = 1.

Triangle with vertices (0,0), (1,2),(2,1), around x-axis.

2?2
. Ellipse — + 5 <1, around y = b.
a b
22 2
Ellipse — + -5 < 1, around bx + ay = 2ab.
a b

Region bounded by y =

1
1+ |z

Region bounded by y = e~1* and the z-axis, around z-axis.

and the x-axis, around z-axis.
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3.8.5 Cavalieri’s Principle

The formulae for the area of surface of revolution and the volume of solid of revolu-
tion follow from a more general principle.

In general, an n-dimensional solid X has n-dimensional size. For n =1, X is a
curve and the size is the length. For n = 2, X is a region in R? or more generally a
surface, and the size is the area. For n = 3, X is typically a region in R® but can
also be a “3-dimensional surface” such as the 3-dimensional sphere in R*, and the
size is the volume.

To find the size of an n-dimensional solid X, we may decompose X into sections
X; of one lower dimension (i.e., X; has dimension n — 1). For 2-dimensional X,
this means that X is decomposed into a one parameter family of curves. For 3-
dimensional X, this means that X is decomposed into a one parameter family of
surfaces. The decomposition is equidistant if the distance between two nearby pieces
does not depend on the location where the distance is measured. In this case, we
have the distance function s(t), such that the distance between the sections X; and
Xirar is As = s(t + At) — s(t). If X spans from distance s = a to distance s = b,
then

t=b b
size of X = / size(X;)ds = / size(X,)s (t)dt.
t=a a

A consequence of the formula is the following principle of Cavalieri: If two solids
X and Y have equidistant decompositions X; and Y;, such that X; and Y; have the
same size, and the distance between X; and X is the same as the distance between
Y, and Yy, then X and Y have the same size.

Example 3.8.22. Let X be a region inside the plane. We decompose X by intersecting
with vertical lines X, = X Nz x R. The decomposition is equidistant, with the z-
b

coordinate as the distance. Thus the area of X is / length(X,)dz. In the special

case X is the region between f(z) and g(x), where af(x) > g(x), the section X, is
the interval [g(z), f(x)] and has length f(z) — g(z). Then we recover the formula
b

/ (f(x) — g(z))dx in Section 3.8.2.

a

Example 3.8.23. Let X be a region inside R®*. We decompose X by intersecting

with vertical planes X, = X N2 x R2. The decomposition is equidistant, with
b

the z-coordinate as the distance. Thus the volume of X is area(X,)dz. In the

special case X is obtained by rotating the region between }L(x) and g(z), where
f(z) > g(x) > 0, around the z-axis, the section X, is the annulus with outer radius
f(x) and inner radius g(x). The section has area 7(f(z)* — g(z)?), and we get the
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a x b

Figure 3.8.20: Area of a region in R2.

b
formula 7T/ (f(x)* — g(z)?)dz for the solid of revolution.

a z b

Figure 3.8.21: Volume of a solid in R3.

Example 3.8.24. Let R be a region in the plane. Let P be a point not in the plane.
Connecting P to all points in R by straight lines produces the pyramid X with base
R and apex P.

We may put R on the (z,y)-plane in R? and assume that P = (0,0, k) lies in the
positive z-axis, where h is the distance from P to the plane. Let A be the area of R.
We decompose the pyramid by the horizontal planes, so that z is the distance. The
section X, is similar to R, so that the area of X, is proportional to the square of its

B 2\ 2
distance h — z to P. We find the area of X, to be (TZ> A, and the volume of

h . 2
/ h=2N\" g = Lha,
.\ h 3

Example 3.8.25. Let X be the intersection of two round solid cylinders of radius 1 in

the pyramid is
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h P
B\ 2
p area< hz> A
area A
0

Figure 3.8.22: Pyramid.

orthogonal position. We put the two cylinders in R3, by assuming the two cylinders
to be 22 +y? < 1 and 22+ 2% < 1. Then we decompose the solid by intersecting with
the planes perpendicular to the z-axis. The section X, is a square of side length
2v/1 — 22 and therefore has area 4(1 — z?). The volume of the intersection solid X

is
1
1
/ 4(1 — 2*)dx = —6
. 3

Figure 3.8.23: Orthogonal intersection of two cylinders.

Exercise 3.8.25. Explain the formula in Section 3.8.3 for the area of surface of revolution
by using suitable equidistant decomposition.

Exercise 3.8.26. Explain that if a solid is stretched by a factor A in the z-direction, by B

in the y-direction, and by C' in the z-direction, then the volume of the solid is multiplied
by the factor ABC.

Exercise 3.8.27. Find the volume of solid.
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2 2 2

L LLx oyt oz
1. Ellipsoid o) + 2 + = <1.
2 2 2
2. Solid bounded by —5 + % — 2 — 1 and 2 = +c.
a b c

3. Intersection of the sphere 2 + 3% + 22 < 1 and the cylinder 22 + 3% < x.

4. Solid bounded by = 4 y + 22 = 1 and inside the first quadrant.

Exercise 3.8.28. Find the volume of solid.

1. A solid with a disk as the base, and the parallel sections perpendicular with the
base are equilateral triangles.

2. A solid with a disk as the base, and the parallel sections perpendicular with the
base are squares.

3. Cylinder cut by two planes, one is perpendicular to the cylinder and the other form
angle o with the cylinder. The two planes do not intersect inside the cylinder.

4. Cylinder cut by two planes forming respective angles o and 8 with the cylinder.
The two planes do not intersect inside the cylinder.

5. A wedge cut out of a cylinder, by two planes forming respective angles « and 5 with
the cylinder, such that the intersection of two planes is a diameter of the cylinder.

So far we used parallel lines and planes to construct the decomposition. We may
also use equidistant curves and surfaces to construct the decomposition.

Example 3.8.26. We may decompose a region X in the plane by concentric circles.

The decomposition is equidistant, with the radius r of the circles as the distance. The

section X, consists of the points in X of distance r from the origin and is typically

an arc from angle ¢(r) to angle ¥ (r). The length of the arc X, is (¢(r) — ¢(r))r, so
b

that the area of X is / (W(r) — ¢(r))rdr.

a

Figure 3.8.24: Equidistant decomposition by concentric circles.
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For example, for the disk centered at (1,0) and of radius 1, we have ¢ =
— arccosg and ¢ = arccos g, r € [0,2]. The area of the disk of radius 1 is (taking

t = arccos g, r = 2cost)

2 0 z
/ 2r arccos gdr = / 2t(2cost)d(2cost) = 8/ t cost sin tdt
0 0

us

% T
= 4/ tsin 2tdt = / usinudu = 7.
0 0

Example 3.8.27. Let X be a region in the right plane (i.e., the right side of y-axis).
Let Y be the solid obtained by revolving X around the y-axis. We may use the
cylinders centered at the y-axis to decompose Y. The decomposition is equidistant,
with x as the distance. Let X, be the intersection of X with the vertical line
x X R. Then the section Y, is the cylinder obtained by revolving X, around the

y-axis. The area of the section is 27z (length of X, ). Therefore the volume of the
b

solid of revolution is 27 [ z(length of X, )dz. In particular, if X is the region

between functions f(z) and g(x), where f(z) > g(x) on [a,b], then the volume is

2 / £(f(2) - g(x))de.

Figure 3.8.25: Equidistant decomposition by concentric cylinders.

For example, consider the solid torus in Example 3.8.17. The disk is the region

between x = y/a? — (y — b)? and x = —\/a? — (y — b)?, for y € [b— a,b+ a]. If we

use the formula above (note that  and y are exchanged) we get the volume of the
solid torus

b+a a
27r/ y(2y/a? — (y — b)?)dy = 47r/ (t+b)Va? —t2)dt
b—a —a
= 87r/ bVa? — t2dt = 4r2a®
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Exercise 3.8.29. Compute the volumes of the solids of revolution in Example 3.8.21 by
using the formula in Example 3.8.27.

Exercise 3.8.30. Compute the volumes of the solids of revolution in Exercise 3.8.23 by
using the formula in Example 3.8.27.

Exercise 3.8.31. Compute the volumes of the solids of revolution in Exercise 3.8.24 by
using the formula in Example 3.8.27.

Exercise 3.8.32. After Example 3.8.21, we presented the formula for computing the volume
of a solid obtained by revolving a region in R? bounded by a parameterized curve. Can
you derive the similar formula by using the idea from Example 3.8.277

Exercise 3.8.33. In Section 3.8.4 and Example 3.8.27, we have two ways of computing the
volume of a solid of revolution. For the following simple case, explain that the two ways
give the same result: Let f(z) be and invertible non-negative function on [0, a], such that
f(a) = 0 and both f(x) and f~!(y) are continuously differentiable. The solid is obtained
by revolving the region between the graph of f and the two axis.

Example 3.8.28. Finally, we compute the size of high dimensional objects. Let a,
be the volume of the n-dimensional sphere S™ of radius 1. Then

ay =2, o =2m, a9 =4m.

Moreover, the n-dimensional sphere of radius r has volume «,,r".

To compute a,,, we decompose S™ by intersecting with “horizontal hyperplanes”.
The hyperplanes are indexed by the angle ¢. The section at angle ¢ is the (n — 1)-
dimensional sphere S™~! of radius cost, and form an equidistant decomposition. In

fact, the angle ¢ can be used to measure the distance between the sections. Since
T T
the section at ¢ has volume «,,_; cos” !t and the range of ¢ is [—E, —] , we conclude

2
that

[NIE]

o, = / Qp_q cos" L tdt = 200, 11,1,
-3
s

2 2
where I,,_;1 = / cos" L tdt = / sin"~! tdt has been computed in Example 3.5.14
0 0

. (2k)! 22 (k12
= —FF 7 - .
Thus
U 2m
=20 111 = 4y ol 11 o = 4o, = Ap_2.

2(n—1) n-—1
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By the values of a; and as, we conclude that

2m) 2
o 24(7? Y if n is even,
" 2(2m) " o
f dd.
T3 (n_2) ifniso

Figure 3.8.26: Decomposing n-dimensional sphere of radius 1.

Exercise 3.8.34. Let (3,, be the volume of the ball B™ of radius 1.

1. Similar to Example 3.8.28, use the intersection with horizontal hyperplanes to derive
the relation between (3, and (5,_1. Then use the special values 37 and (5, and
Example 3.5.14 to compute S,,.

2. Use the decomposition of B™ by concentric (n — 1)-dimensional spheres to derive
the relation between (,, and a,,—1. Then use Example 3.8.28 to find 3,,.

The two methods should give the same result.

Exercise 3.8.35. Suppose R is a region in R”~! with volume. Suppose P is a point in R”
of distance h from R"~!. By connecting P to all points of R by straight lines, we get a
pyramid X with base R and apex P. Find the relation between the volumes of X and R.

3.9 Polar Coordinate

The polar coordinate locates a point on the plane by its distance r to the origin
and the angle # indicating the direction from the viewpoint of origin. It is roughly
related to the cartesian coordinates (z,y) by

r=rcosl, y=rsinf; r= /22412 — arctan 2.
x

We say “roughly” because the relation between (z,y) and (r,0) is not a one-to-one
correspondence. For example, the last formula literally restricts 6, as the value of
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T w
inverse tangent function, to be within <——, —>. In fact, the angle for a point in the

plane is unique only up to adding an integer multiple of 27, and is more precisely
determined by
(z,y)

Another way to say this is that 6 is unique if we restrict to [0, 27) (or [—m, ), etc.).

For the convenience of presenting polar equations, we also allow r to be negative,
by specifying that (—r,0) and (7,0 + 7) represent the same point. In other words,
(—r,0) and (r, ) are symmetric with respect to the origin. The cost of such extension
is more ambiguity in the polar coordinates of a point because all the following
represent the same point

(cosf,sinf) =

(r,0), (=r,0 £m), (r,0£2m), (—r,0 £3n), ....

3.9.1 Curves in Polar Coordinate

Example 3.9.1. The equation r = ¢ is the circle of radius |c| centered at the origin.
The equation 6 = c is a straight line passing through the origin.

(5 I

Figure 3.9.1: r = ¢, § = ¢, and polar equation for general straight line.

The equation for a general straight line is

d

"= cos(av — 6)°

Moreover, r = acos 8 is the circle of diameter a passing through the origin.

Figure 3.9.2: Circle r = acos#.

Exercise 3.9.1. Find the cartesian equation.
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1. r=2. 3. r=sind. 5. r = tanfsech.

2. r=-2. 4. rsinf = 1. 6. r = cosf + sinf.

Exercise 3.9.2. Find the polar equation.
1. x=1. 3. z+y=1. 5. 22+ 9y =2,
2. y=-1. 4. z=1y% 6. zy = 1.

Exercise 3.9.3. What is the polar equation of the curve obtained by flipping r» = f(#) with
respect to the origin? Then use your conclusion to find the curve r = — cos 6.

Exercise 3.9.4. What is the relation between the curves r = f(#) and r = —f(6 + )7

Exercise 3.9.5. What is the polar equation of the curve obtained by rotating » = f(6) by
angle a? Then use your conclusion to answer the following.

1. What is the curve r = sin 67

2. Find the polar equation for a general circle passing through the origin.
Exercise 3.9.6. Find the polar equation of a general circle.

Example 3.9.2. The Archimedean spiral is r = 0. Note that r < 0 when 6 < 0, so
that a flipping with respect to the origin is needed when we draw the part of the
spiral corresponding to # < 0. The symmetry with respect to the y-axis is due to
the fact that if (r, ) satisfies r = 6, then (—r, —0) also satisfies r = 6.

The Fermat’s spiral is v> = 0. The symmetry with respect to the origin is due
to the fact that if (r,0) satisfies 72 = 6, then (—r, #) also satisfies r? = 6.

Figure 3.9.3: Spirals 7 = 6 and r? = 0.

Example 3.9.3. The curve r = 14 cosf is a cardioid. Its clockwise rotation by 90° is
another cardioid » = 1 4+ sin#. More generally, the curve r = a + cos 8 is a limacgon.
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The curve intersects itself when |a| < 1 and does not intersect itself when |a| > 1.
The symmetry with respect to the z-axis is due to the fact that if (r,0) satisfies
r = a+ cosf, then (r,—0) also satisfies the equation.

e

3
2

r=1+ cosf r=1+sinf

Figure 3.9.4: Cardioids and limagons r = a + cos 6, a = 0.4, 1, 1.5.

The cardioid originates from the following geometrical construction. Consider a
circle C of diameter 1 rolling outside of a circle A of equal diameter 1. This is the
same as the circle rolling inside a big circle B of diameter 3. The track traced by a
point on C'is the cardioid. Note that the origin O of the polar coordinate should
be a point on A, not the center of A.

Figure 3.9.5: Origin of the cardioid.

If we imagine the rolling circle C' as part of a rolling disk D, and we fix a point
in D of distance d from the center of C. Then the track tranced by the point is the
limacon » = 1 4 2d cos#, with the origin of the polar coordinate being a point of
distance d form the center of A.

Example 3.9.4. The curve r = cos 260 is the four-leaved rose, and r = cos 36 is the
three-leaved rose. The circle r = cos f can be considered as the one-leaved rose.
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In general, the curve r = cosnf can be described as follows. For € in the arc

1 = [—21, 21], the value of r goes from 0 to 1 and then back to 0, so that the
n’ 2n

corresponding curve is one leaf occupying T angle of the whole circle. This is the
n

leaf in [—z, q for n = 2 and in [—E, q for n = 3. For 6 in the second arc I + E,

44 6 6 - n

we need to rotate this first leaf by angle — and then flipping with respect to the
n

v
origin (because r becomes negative), which gives a leaf occupying I + — + 7. This
n

is the leaf in [%T, %} for n = 2 and in [%r’ 9%} for n = 3. For # in the third arc

2 2
I+ —7T, we get the leaf obtained by rotating the first leaf by angle il (no flipping
n n

needed now because r becomes non-negative again), which gives a leaf occupying

2 3 5 3m 5

I+ ZT  This is the leaf in —W, 27| for n = 2 and in —W, T\ for n = 3. Keep
n 474 6" 6

going, we see two distinct patterns depending on the parity of n.

Figure 3.9.6: Four-leaved rose r = cos 20 and three-leaved rose r = cos 36.

More generally, we may consider r = cospf. Again we get first leaf occupying

T s 2
I = {—2—, 2| the second leaf occupying I + —+m, the third leaf occupying I+ —,
p <p p p
etc. The pattern could be very complicated, depending on whether p is rational or
irrational, and in case p is rational, the parity of the numerator and denominator of
p. -
Finally, » = sin pf is obtained by rotating r» = cos 26 by 70" We also get many
p

leaved roses by other rotations.

Exercise 3.9.7. Describe the curve.



3.9. POLAR COORDINATE 289

Figure 3.9.7: Many leaved roses r = sin 26 and r = sin %0.

1 r=—9. 11. 7 =2 — cosf. 91, r:COS%Q'
2. r=0+mr. 12. r = cosf +sin6.
2
3. r = 20. 13. r=1+4 cosf + sinf. 22. 7"200559-
4 12— _p. 14. r = cos46. 9 9
15 9 sin 50 23. r = cos §9+sm§9.
5 12 — 40 . 7= 2sin56.
6. 12 =0+ 16. 7= —3sin66. 24. r? = sin 26.

17. r = sin 260 — cos 26. 5
7. " =40. 25. r“ = —cos46.

18. r = sin 26 + 2 cos 26.

8. rfd=1. 1
4 — -
19. r:cosge. 26. r 1+2€os20.

9. r =2+ cosb.
) 1
10. 7 = 2 + 3 cos 0. 20. r:smge. 27. r:2+cos§0.

3.9.2 Geometry in Polar Coordinate
The curve r = f(6) for 6 € [a, f] is the parameterized curve
x = f(0)cosh, y= f(f)sind, 06¢cla,/p]

in the cartesian coordinate. The length of the curve is

B B
/ \/(f(Q) cos0)? + (f(0)sin)2df = / V 2+ fr2de.

For the area in terms of polar coordinate, assume f > 0 and consider the region
Xia,g(f) bounded by r = f(0), 0 € [, f], and the rays # = « and 6 = 3. Using the
idea of Section 3.1.1, let A(6) be the area of the region X, ¢(f). Then the change
A(0 + h) — A(0) is the area of X g4s)(f). Since Xgg1n(f) is sandwiched between
fans of angle between 0, 6 4 h and radii m = ming g4 f, M = maxjg4n f, We get

1 1
Mh < A0+ h) = A(B) < SMh.
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Here the left and right sides are the known areas of the fans. The inequality is the
same as

1, A@+h) —A@0) 1

—m? < < M2
" = h =9
B
0+h
M 0
m
(0%
10

Figure 3.9.8: Estimate the change of area.

If f is continuous, then lim,_,om = limy,_,o M = f(6). By the sandwich rule, we
get

Therefore the area of X, g(f) is

B8
AB) = / £(0)2db.

Example 3.9.5. The cardioid » = 1 + sin # has length

2w

2T
V(1 +5in6)2 + (1 4 sin 0)2dH = vV 2(1 +sin6)do
0
- -
= /}Nr vV 2(1 + cos2t)d (§ - 2t>

lﬂ' K
:4/ |Cost|dt:4/ costdt = 8.
_3rx 0
4

The region enclosed by the cardioid has area

0

1 2 1 2 3
—/ (1 +sin#)?df = —/ (1+2sinf + sin” §)df = —.
2 /s 2 /s 2

1
Example 3.9.6. Let p > 3 Then one leaf of the rose r = cospf is from the angle
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~ T to the angle 21 The length of the leaf is
p

/2p V/ (cos pf)? 4 (cos pd)2df = /Zp \/0052 Pl + p?sin” pddo

2
= / \/p—2 cos? t + sin® tdt
3

1 2m
V14 (p=2 — 1) cos? tdt.

]

IMEN®)

_20

This is the elliptic integral in Example 3.8.1. Moreover, the area of the leaf is

1 [ 9 T
i/ﬂ(cospe) do = e

2p

Example 3.9.7. The cardioid » = 1 + cos# and the circle r = 3cos@ intersect at
0 = +£—. The area of the region outside the cardioid and inside the circle is

™

! /_ ((3c0s6)? — (1+ cos6))d6 = .

2

el

Figure 3.9.9: Ourside cardioid r = 1 + cos# and inside circle r = 3 cos 6.

Example 3.9.8. We try to find the volume of the solid of revolution obtained by
revolving the region between the two leaves of the limacon r = a+cosf, 0 < a < 1,
around the z-axis. In the cartesian coordinate, the curve is parameterized by

r = (a+cosb)cost, y=(a+cosh)sinf, 6 ¢cl0,m].
Let 6 = a at the origin O. Then the volume we are looking for is the volume of
the solid of revolution from 6 = 0 to 6 = «, subtracting the volume of the solid of



292 CHAPTER 3. INTEGRATION

revolution from 6 = o to 0 = 7. As 6 goes from 0 to a, we are moving opposite to
0=«

the direction of the xz-axis. Therefore the first volume is —7 y2dz. As 0 goes

=0
from « to m, we are moving in the direction of the x-axis. Therefore the second

O=m
volume is 7 / y*dx. We conclude that the volume we are looking for is
0

=

O=a O=m O=m
—7r/ yidr — 7T/ yidr = —7'('/ yidx

= —7T/ (a + cos 0)? sin? 0d[(a + cos #) cos 6]
0

= —7T/ (a+ cos0)*(1 — cos® 0)(a + 2 cos §)d(cos 0)
0

S_— /_1(a +1)2(1 — %) (a + 2t)dt = gﬂa(aQ +1).

Figure 3.9.10: Revolving the region between two leaves of a limacon.

Exercise 3.9.8. What is the length of lemicon? What is the area of the region enclosed by
lemicon? Note that for |c¢| > 1, we have two parts of the lemicon and two regions.

Exercise 3.9.9. Find length of the part of the cardioid r» = 1 + cos 6 in the first quadrant.
Moreover, find the area of the region enclosed by this part and the two axes.

Exercise 3.9.10. Find the area of the region enclosed by strophoid r = 2 cos — sec .

Exercise 3.9.11. Find length.

1. r=0,0¢c(0,7]. 2. r=0%0¢c]0,n]. 3. r=¢% 0¢|0,2n].

Exercise 3.9.12. Find area.

1. Bounded by r =0, 6 € [0, 7] and the z-axis.
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2. Outside r = 1 and inside r = 2cos 6.
3. Inside r = 1 and outside r = 2 cos 6.
4. Inside both r =1 and r = 1 4 cos 6.
5. Outside r = 3sin# and inside r = 2 — sin f.
6. Inside both r = cos 26 and r = sin 26.
7. Inside both r =1+ ccosf and r = 1+ ¢sinf, |c| < 1.
8. Inside both r =14 ccosf and r =1 — ccos¥, |¢| < 1.
9. Inside both 72 = cos 20 and r? = sin 26.
10. Outside r = 1 and inside r = 2 cos 36.

11. Between the two loops of r = 1 + 2 cos 36.

3.10 Application to Physics

3.10.1 Work and Pressure

Integration is also widely used to compute physical quantities. If under a constant
force F', an object moves by a distance d in the direction of the force, then the work
done by the force is F'd. In general, however, the force may vary. For simplicity,
assume the object moves along the z-axis, from x = a to x = b, and a horizontal
force F(x) is applied when the object is at location x. Then the work done by
the force when the objects moves a little bit from = to z + Az is approximately
AW =~ F(z)Auz.

Similar to the earlier argument, let W (z) be the work done by the force when
the object moves from a to x. Since the work is additive, we have AW = W (zx +

AW
Ax) — W (x). The approximation —— = F'(x) becomes more accurate as Az — 0,
and we get an equality after taking the limit
W(zx + Azx) — W(x) AW

/ I I R —
R - Y

This implies that the work done for the whole trip from a to b is

Example 3.10.1. Suppose one end of spring is fixed and the other end is attached
to an object. In the natural position, when the spring is neither stretched nor
compressed, no force is exercised on the object. When the position of the object
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deviate from the natural position by x, however, Hooke’s law says that the spring
exercises a force F'(x) = —kx on the object. Here k is the spring constant, and the
negative sign indicates that the direction of the force is opposite to the direction of
the deviation.

If the object starts at distance a from its natural position, then the work done
by the spring in pulling the object to its natural position is

/ kxdr = EaQ.
0 2

Here we use the positive sign because the direction of movement is the same as the
direction of the force.

The argument about the work done by a force is quite typical. In general, if a
quantity is additive, then the quantity can be decomposed into small pieces. The
estimation of each small piece tells us the change of the quantity. The whole quantity
is then the integration of the change.

In the subsequent examples, we will only analyze a small piece of an additive
quantity. We will omit the limit part of the argument and directly write down the
corresponding integration.

Example 3.10.2. We want to find the work it takes to pump a bucket of liquid out
of the top of the bucket.

Figure 3.10.1: Bucket of liquid.

Suppose the bucket has base diameter 7, top diameter R, and height H. Suppose
the liquid has density p and depth h. We decompose liquid into horizontal sections.
At distance x from the top, the section is a disk of radius r(z) satisfying

r(m)—r:H—:p'

R—r H

The liquid of thickness Az and at distance z from the top has (approximate) weight
gprr(x)?Ax (g is the gravitational constant). The work it takes to lift this piece



3.10. APPLICATION TO PHYSICS 295

of liquid to the top of bucket is AW = (gprr(x)*Ax)r = wgpxr(x)?Az. Since the
liquid spans from x = H — h to x = H, the total work needed is

W = ng/ or(r)’dr = %/ z[(R—7)(H —z)+rH*dx

H—-h H—-h

1 1 1
= ngpH?R? (a% + §a(2a — 3b)b? + §(1 —a)(1—3a)b® — Z(1 - a)2b4) :

h
where a = % and b = IR

Example 3.10.3. We want to find the force exercised by water on a dam.
Let p be the density of water. At the depth z, the pressure of water is px per unit
area. Now suppose the dam is a vertical trapezoid with base length [, top length L,

and height H. We decompose dam into horizontal sections. At distance x from the
top, the section is a strip of height Az and length [(x) satisfying

(z)—1 H-=x
L—-1  H

The force exercised on the strip is AF = (pz)l(x)Az. Since the water spans from
x =0 tox = H, the total force

" " L—1 1
F= p/ zl(z)dx = p/ x (L — x) dx = ~pH*(L + 21).
0 0 H 6

Figure 3.10.2: Hydraulic dam.

Exercise 3.10.1. A spring has natural length a. If the force F' is needed to stretch the
spring to length b, how muck work is needed to stretch the spring from the natural length
to the length b7

Exercise 3.10.2. A ball of radius R is full of liquid of density p. Due to the gravity, the
liquid leaks out of a hole at the bottom of the ball. How much work is done by the gravity
in draining all the liquid?
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Exercise 3.10.3. A circular disk of radius r is fully submerged in liquid of density p, such
that the center of the disk is at depth h. What is the force exercised by the liquid on one
side of the plate? Note that the plate may be inclined at some angle.

Exercise 3.10.4. A ball of radius r is fully submerged in liquid of density p, such that the
center of the disk is at depth h. What is the force exercised by the liquid on the ball?

Exercise 3.10.5. A cable of mass m and length | has a mass M tied to the lower end. How
much word is done in using the cable to lift the mass M to the top end of the cable?

Exercise 3.10.6. Newton’s law of gravitation says that two bodies with masses m and M
gmM
e
Suppose the radius of the earth is R and the mass is M. How much work is needed to
launch a satellite of mass m vertically to a circular orbit of height H? What is the minimal

initial velocity needed for the satellite to escape the earth’s gravity?

attract each other with a force F = , where d is the distance between the bodies.

3.10.2 Center of Mass

Consider n masses my, mo, ..., m, distributed at the locations 1, xs, ..., z, along
a straight line. The center of mass is

mi1To + Malo + - -+ + MyTy
my+mo+ - +my,

T =

The center has the physical meaning that the total moment of the system with
respect to T is zero, or the system is balanced with respect to z.

Now suppose we have masses distributed throughout an interval [a, b], with the
density p(z) at location z. We partition the interval into small pieces

Pia=xy<o1 <1< - <2z, =0

Then the system is decomposed into n pieces. The ¢-th piece can be approximately
considered as a mass m; = p(xf)(z; — z;_1) located at x, for some x} € [z;_1,x;].
The whole system is approximated by the system of n pieces, and has approximate

center of mass " . .
Ty = > i1 P(@]) (@i — wio1) 2]
2o P (25 — i)
The denominator is the Riemann sum of the function zp(z) and the numerator is the

Riemann sum of the function p(z) (see the beginning of Section 3.3.1). Therefore
as the partition gets more and more refined, the limit becomes the center of mass

/a  ipl)de
/a @)dz

T =
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The center of mass can be extended to higher dimensions, simply by considering
each coordinate separately. For example, the system of n masses mq, mo, ..., m, at
(x1,21), (x2,y2), ..., (Tn,ys) in the plane has the center of mass (z,y) given by

Zmil’i 7:Zmiyi
>omy Y >om; '

Now consider masses distributed along a curve (z(t), y(t)), t € [a, b], with the density
p(t) at location t. Take a partition P of [a,b]. The curve is approximated by
straight line segments connecting (x(¢;_1),y(t;—1)) to (z(¢;),y(¢;)). The i-th straight
line segment has length As; = /(2(t;) — x(t;-1))2 + (y(t:;) — y(ti—1))? and can be
approximately considered as a mass m; = p(t)As; located at (x(t7), y(t})), for some
t¥ € [ti_1,t;]. The whole system is approximated by the system of n pieces, and has
approximate center of mass

ap = i (p)As)2t) S p(t)Asi)y(t)
P pnAs, T S ot As,

As the partition gets more and more refined, the limit becomes the center of mass

T =

/ y(t)p(t)ds
A NN e RS e

/ab p(t)ds

Example 3.10.4. For constant density p(z) = p distributed on the interval, the center
of mass is the middle point

8l
Il
<

b
1
[oote oper-a) o

j‘: =

b b— 2
/pdx p(b— a)

If the density is p(z) = A + pa, which is linearly increasing, then the center of mass
is

b
/a r(A + px)de _ 3Ma+b)+ 2u(a? + ab + b?)

/b(/\+w)dx 3(2A + p(a + b))

T =

Example 3.10.5. Consider the semi-circular curve of radius r and constant density p.
We have
r=rcosf, y=rsinf, ds=rdf, 0<60<m,



298 CHAPTER 3. INTEGRATION

and the center of mass is

/ (r cos @) prdb / (rsin @) prdf
- - Y y - - T .

/ prdf / prdf
0 0

Exercise 3.10.7. Find the center of mass of the parabola y = 2%, = € [0,2], of constant
density.

Exercise 3.10.8. Find the center of mass of a triangle of constant density and with vertices

at (—1,0), (0,4/15) and (7,0).

Exercise 3.10.9. Let m[,p and T, be the mass and the center of mass of a distribution
of masses on [a, b] with the density p(z). Let [a,b] = [a,c] U [c,b] and similarly introduce
Mia,ds Meb]s Tlard]> Tep]- Show that the center of mass has the distribution property

Mia,]Tla,q] + MYe,bZe,b] '
Ma,c] T Me,b]

Mgp] = Ma,c] T Mcp)s  T[ab] =

Does the property extend to curves in R??



Chapter 4

Series

4.1 Series of Numbers

A series is an infinite sum

Zan:a1+a2+a3+-~-.

n=1
The following are some examples.

Zr”:1+r+7’2+7"3+-~-+r”+---,

n=0

S h= 142084t

n=1
i 11 L1 1
“~nm+1) 1-2 2.3 3-4 n(n+1) ’
=1 1
71@- +§+§+" —|——p—|— )
o
_1n+1 1 1 _1n+1
SSEUT e
o n 2 3 n
. L, 1
Z%ﬁ TR TR e
Like sequences, series do not have to start at n = 1. For example, it is more

convenient for the geometric series Y .~ r™ to start at n = 0.

299
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4.1.1 Sum of Series

Definition 4.1.1. The partial sum of a series >~ a, is
sn:Zai:a1+a2+-~-+an.
i=1

If the partial sum converges, then the series converges and has sum (or value)

oo

E a, = lim s,,.
n—oo

n=1

If the partial sum diverges, then the series diverges.

If finitely many terms in a series are modified, added or dropped, then the new
partial sum s/, and the original partial sum s, are related by s/, = s,4,, + C for
some constants ng and C'. This implies that the convergence of series is not affected,
although the sum may be affected.

The arithmetic properties of the sequence limit implies

Z(an+bn) = Zan—l—an, ann = CZ%-

a
However, there is no formula for ) a,b, or > b—"
n

Example 4.1.1. Let s, = 1 +7 + 72+ --- + 1" be the partial sum of geometric series
Yoo o™ Then

(L=r)sp=04r+r’4+-+r") =+’ +r’ 4+ ") =1 "

1— ,,m+1
Therefore s,, = — and
1—r
1

= — if [r| <1

Zr" =< 17 if |r] ’

n=0 diverges, if |r| > 1.

. ) . 1
Example 4.1.2. The computation in Example 1.3.1 gives the partial sum of » ﬁ
n(n

LR SRS SRR SRR Y 6 S & WY 6 SR S BT
1-2 2.3 nin+1) 2 2 3 n n+l) T a4+l

Therefore
> 1 1
E — = lim (1— =1
n(n + 1) n—00 n-+1
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1
Example 4.1.3. Example 2.7.5 shows that the partial sum of — satisfies [s, —e| =
n!

1
|R,(1)] < which implies )7 — = e. Exercise 1.3.18 gives an alternative
n!

(n+ 1)V
argument. Of course the argument, which uses the Lagrange form of the remainder

(Theorem 2.7.1), can be extended to the series ) x_' The partial sum satisfies
n!

x| __ R _ ec n+1 < e|z| n+1
|sp — €| = | n($)|—m|$| _mm o le <z
Since for fixed z, the right side converges to 0 as n — oo, we conclude that
:L.n
> w0 o er.

Exercise 4.1.1. Suppose the partial sum s, = . Find the series ) a,, and its sum.

n
2n+1

Exercise 4.1.2. Decimal expressions for rational numbers have repeating patterns. For
example, we have

— 34 34 34
1.234 =1.2343434--- = 1.2
+ 1000 + 100000 + 10000000 +
34 = 1 34 1 611
=124+ — =12+ — =—.
+ 1000 7;) 1007 + 1000 1_ 1 495
100
1. Find rational expressions for 1.23, 1.230, 1.023.
4
2. Final the decimal based series representing the rational numbers 12’ 3—2

Exercise 4.1.3. What is the total area of infinitely many disks?

/

Exercise 4.1.4. The Sierpinski carpet is obtained from the unit square by successively
deleting “one third squares”. Find the area of the carpet.
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Exercise 4.1.5. Two lines L and L’ form an angle 6 at P. A boy starts on L at distance a
from P and walk to L’ along shortest path. After reaching L', he walks back to L along
shortest path. Then he walks to L’ again along shortest path, and keeps walking back and
forth. What is the total length of his trip?

Exercise 4.1.6. Find the area between curves y = 2™ and y = 2" *! and use this to conclude

oo 1
that anl m =1

Exercise 4.1.7. Compute the partial sum and the sum of series.

oo 1
LY 2 nr’. 4. S )
! 2in=2 nn+1)(n+2)
on (_1)n3n71 1
2. X 5l : 5. > 0 ,log <1 — n2>
3 Ln=o (a+nd)(a+ (n+1)d) 6 2 (n+ 1)1
00 Ln

Exercise 4.1.8. Suppose z,, > 0. Compute » >, Aro)(tm) (o)
"L‘l x2 DY "'Un

Exercise 4.1.9. The Fibonacci sequence 1,1,2,3,5, ... is defined recursively by ag = a1 = 1,
Qp = Qp_1 + an_9. Prove the following
oo 1 oo

I 1 3 LYy

- )
Ap—10n+1 Ap—10n AnQn+1 —o Ap—10n+1 o Ap—10n+1

Exercise 4.1.10. Use the Lagrange form of the remainder to show that the Taylor series

for converges for |z| < 1.

Exercise 4.1.11. Use the Lagrange form of the remainder to show that the Taylor series
for cosx and sinz converge for any x

o 2n o x2n+l

Z(—l)"én)! = cos z, Z(—l)"m = sinzx.

n=0

4.1.2 Convergence of Series

Theorem 4.1.2. If > a, converges, then lim,_,, a, = 0.

This is a consequence of

lim a, = lim (s, — $,_1) = lim s, — lim s, 1 = s —s=0.
n—oo n—oo n—oo n—oo
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By the theorem, the series > 1, > n, > (=1)", Z% diverge. By Example
n

1.1.20, the series > sinna converges if and only if a is an integer multiple of 7.
If a,, > 0 for sufficiently large n, then the partial sum sequence is increasing for
large n, and Theorem 1.3.2 becomes the following.

Theorem 4.1.3. If a, > 0, then > a, converges if and only if the partial sums are
bounded.

1
Example 4.1.4. The terms in the series > = — are positive. Therefore the con-
n

vergence is equivalent to the boundedness of the partial sum. For p > 2, we have
1

1
— < —— — and the following bound from Examples 1.3.1 and 4.1.2
n?  (n—1)n

RO NP RV SIS S S
1 2r n~ 1.2 2.3 (n—1n =~ n 7

By Theorem 4.1.3, therefore, the series converges for p > 2.
For p = 1, we used Cauchy criterion in Example 1.3.8 to show that the harmonic
series Y — diverges.
n

(-1

Example 4.1.5. The even partial sum of the series Y | ~———— is the partial sum of
n

X (aam) - (2) 1)

The terms of the series above are positive, and the partial sum has upper bound

the series

] 1 n 1 n 1 I ] 1 1 1 1 1 <1
23 2n—1 2n 2 3 2n—2 2n-1) 2n
1 1 . :
By Theorem 4.1.3, >° 5 1~ 2, converges. This means that the even partial
n— n
(_1)n+1 1 )
sum sg, of > converges. By Soni1 = S9, + a1 the odd partial sum
n
-1 n+1
Son+1 converges to the same limit. Therefore > L converges.
n
Exercise 4.1.12. Show the divergence of ) {;a and ) %

Exercise 4.1.13. Determine convergence.
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11+l1 111+ 31+i+i+i+
' 2 3 4 5 6 ' : 92 733" 44
1 2 1 1 2 1 1 1
9 14 ST Z. 4. 1+ + + 4.
+2 3+4+5 6+ V12 V/3-4 V5.6

Exercise 4.1.14. Use Theorem 4.1.3 to argue about the convergence of > r" for 0 <r < 1
1
and Z ﬁ

Exercise 4.1.15. What is wrong with the following calculation?

0=0+04+0+---
=1-D+1-1)+1—-1)+---
=1-14+1-14+1—-1+--

=1+ (-1+1)+(-1+1)+(-1+1)+---
=1+0+0+0+-- =1

We used the Cauchy criterion (Theorem 1.3.3) for the divergence of harmonic

1
series Y —. In general, applying the Cauchy criterion to the partial sum shows that
n

> a, converges if and only if for any ¢ > 0, there is N, such that (since |s,, — s,| is
symmetric in m and n, we may always assume n > m)

n>m>N = sy — Su| = |ami1 + Gmio+ -+ an] <e
We may further modify the criterion by taking m + 1 to be m.

Theorem 4.1.4 (Cauchy Criterion). A series Y a, converges if and only if for any
e > 0, there is N, such that

n>m>N = |an+ ap1 + - +a,| <e

Theorem 4.1.2 is a special case of the Cauchy criterion by taking m = n.

4.2 Comparison Test

+oo
Series Y a, are very much like improper integrals (x)dx. The two can be

compared in two aspects. First the convergence of the fwo can be compared, through
+00

the integral test. Second all the convergence theorems for f(z)dz, such as the

comparison test, Dirichlet test and Abel test, have parallelg for the convergence of
series.
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4.2.1 Integral Test

Theorem 4.2.1 (Integral Test). Suppose f(x) is a decreasing function on [1,400)
satisfying lim,_, 1o f(x) = 0. Then

ﬂn+f@ww~+fm%1[7@wx+v+%,

for a constant 0 < v < f(1) and a decreasing sequence €, converging to 0. In partic-
+oo

ular, the series Y f(n) converges if and only if the improper integral f(z)dx

converges. ¢

Let
amzﬂU+f®+~~+ﬂm—Kmﬂ@M-

By f decreasing, we get
n— dn-1 = - ' d VA
0 — Tur = £(n) Alﬂ®x<0
r = J) = J() o+ fn=1) = [ f(apdr =0

n—1

=ZQ®—

— k+1
k=1

f(x)dx) > 0.

k

The first inequality implies z,, is decreasing, and the second inequality implies x,, >
f(n) > 0. Therefore limz, = 7 converges, and the theorem follows. We have
0<~vy<a = f(1).

1
Example 4.2.1. For p > 0, the function - is decreasing and converges to 0 as
x

1
r — +00. By Theorem 4.2.1, therefore, the series — converges if and only if the
n

+0o0o
improper integral / —f converges. By Example 3.7.3, this happens if and only
.
if p>1.

1
Although the harmonic series ) | — diverges, Theorem 4.2.1 estimates the partial
n
sum

1 1 1
1+_+_+—|——:10gn+7+6n7
2 3 n

where €, decreases and converges to 0, and

v = 0.577215664901532860606512090082 - - -

is the Euler-Mascheroni constant.
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Example 4.2.2. For p > 0 and x > e, the integral test can be applied to the function
1

We conclude that > converges if and only if the improper

n(logn)r

. o da :

integral (1— converges. By Example 3.7.9, this means p > 1.
e T

ogx)P

z(logx)P

1 2
Example 4.2.3. We will show that > 7% — = % in Example 4.5.13. In fact, for
n
1
even k, Y -~ — can be calculated as a rational multiple of 7*. However, very little

is known about the sum for odd k. Still, we may use the idea of Theorem 4.2.1 to
estimate the remainder

too k41 ©  rktl +00
f(z)dz = Z / f(z)dz < Z f(k Z f(z)dz = f(z)dz
n+1 k=n Yk n
. o 1.
For example, the 10-th partial sum of ) >~ — s
n
1 1 1
— — = 1.197532 -
TR T
By
> dx 1 > dx 1
— = = 0.005 — = = 0.004132- - -
/10 x3  2(10)2 ’ /11 x3 2(11)2 ’
we get

1.201664 - - - = 1.197532 - - - + 0.004132 - - -

=1
<> — < 1197532 +0.005 = 1.202532- - - .

1
If we want to get the approximate value of » >, — up to the 6-th digit, then
n
we my try to find n satisfying

1
er e a 1.
3 2n%(n+ 1) 3 < 0.00000

/ g 2n+ 1
So we may take n = 100 and get
100

1 *dx - 21 > dx
;E—I—/unﬁ_; Z;n_ /1005.

1
n(logn)(log(logn))P

Exercise 4.2.1. Determine the convergence of »_
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1 1
Exercise 4.2.2. Find suitable function f(n), such that the sequence 14+ —=+---+—=—f(n)

V2 vn

vn

converges to a limit 7. Then express the sum of the series » ~ (—1) in terms of ~.

1
Exercise 4.2.3. Estimate Y >~ ; — to within 0.01.
n2

4.2.2 Comparison Test

Theorem 4.2.2 (Comparison Test). Suppose |a,| < b, for sufficiently large n. If
> b, converges, then _ a, also converges.

The test is completely parallel to the similar test (Theorem 3.7.1) for the con-
vergence of improper integrals, and can be proved similarly by using the Cauchy
criterion (Theorem 4.1.4).

For the special case b, = |a,/|, the test says that if ) |a,| converges, then > a,
converges. In other words, absolute convergence implies convergence. We note that
the conclusion of the comparison test is always absolute convergence.

1 1 1
Example 4.2.4. Consider the series Zipn. If p <1, then ngn > —. By the
n n n
1 1
comparison test, the divergence of > — implies the divergence of ngn.
n n
If p > 1, then choose ¢ satisfying p > ¢ > 1. We have
1 1 1 1
08T _ 08T 1 - o large n.
np nP—4 nd n4
. o .1 .. logn
Here the inequality is due to the fact that p — ¢ > 0 implies hmﬂ = (0. By
o

1
Example 4.2.1, > — converges. Then by the comparison test, we conclude that
n

2.

logn

converges.

logn 1
The key idea of the example above is to compare a,, = ip with b, = - by
n n
using the limit of their quotient. By

1
lim 2% = 1im —2" — g,

nbP—4

a
we get b—” < 1 for sufficiently large n. Since both a, and b, are positive, we may

n
apply the comparison test to conclude that the convergence of ) b, implies the
convergence of Y a,.
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Qn .
In general, if a,,b, > 0 and lim 5= [ converges, then by the comparison test,
the convergence of Y b, implies the convergence of > a,. Moreover, if [ # 0, then

1 . .
we also have lim — = 7 and we conclude that ) a, converges if and only if > b,

an
converges.

Example 4.2.5. For 3 1 S7 ke the followi i
xample &.2.9. or ——, WeE Imake € Iollowing comparison

p m g comp
n 4+ sinn
lim ntn+2 =1
n2

n +sinn

1
By the convergence of Y — . we get the convergence of Y ————.
y verg > weg verg DD e e

Similarly, by the comparison
2" + n?
n—1 _ n49n
lim ) nt3r \/57

2 2"
and the convergence of > ( +n converges.

%> the sries ¥ 2

1\* 1
Example 4.2.6. By Example 2.5.14, we know (1 + —) —e= _2£ +o ( ) This
x x x

n

implies that for sufficiently large n, (1 + — ] — e is negative and comparable to
n

1 \"
. Since the harmonic series > — diverges, we conclude that > {(1 + —) — e}
n n

S|

Q.

iverges.

| sin 7|

Example 4.2.7. By Example 3.7.14, we know that / dx converges if and

1 P
0 |sin ax|

dx

TP

converges if and only if p > 1. However, we cannot use the integral test (Theorem

| sin nal |sinaz|
is

only if p > 1. By a change of variable, we also know that, for a # 0, /
1

. The problem is that

4.2.1) to get the similar conclusion for )

xP
not a decreasing function.
| sin nal| 1 | sin na|
By —

< - and the comparison test, we know
p> 1. The series also converges if a is a multiple of 7, because all the terms are 0.
It remains to consider the case p < 1 and a is not a multiple of 7.

converges for
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4’ 4

has length g and therefore must contain nia for some natural number n;. Then

3
First assume 0 < a < g For any natural number £, the interval [lmr + T kn + —W}

| sinngal > and for p < 1,

RS
\/57
Z \smna| Z |smna| Z |smnka] > \/—Z

N

3m 1 4
Bynk<k7r+z,weget— ¢

Z—=+oo and Y
ng

0
In general, if a is not an integer multiple of 7, then there is b, such that 0 < b < 5

a 1
—. Then b - = t
T > T en yzk +o0, we ge

| sin nal|
= +00.

and either a+b or a —b is an integer multiple of 7. Then we have |sinna| = |sinnb|,
| sin nal

and we still conclude that diverges for p < 1.

Exercise 4.2.4. Show that if a,, > 0 and > a,, converges, then " a2 converges. Moreover,
show that the converse is not true.

Exercise 4.2.5. Show that if > a2, then Y fn converges.
n

Exercise 4.2.6. Show that if >_ a2 and > b2 converge, then > a,b, and > (an + by)?
converge.

Exercise 4.2.7. Determine the convergence.

) VA4n® + 5nt 2 v 3n? — 2n3 5 v 3n” 4 (—1)"2n?
»> 3n2 —2n3 ’ VAan5 + 5nt ’ 4nd 4+ 5nt
Exercise 4.2.8. Determine the convergence, p,q,7,s > 0.
1 n" + (logn)® n" + (logn)*
[T ) p—— oy logn)” ot Uogn)?
Z nP + (log TL)q 3 Z nP + (log n)q 5 Z np(log n)q
1 n"(logn)® 1
2. _. 4. _ 6. .
> nP(logn)? 2 nP + (logn)4 2 nP(logn)i(log(logn))”
Exercise 4.2.9. Determine the convergence, b, d, p,q > 0.
d)? 1
1. ' (CJF*” 3. ,
DD prprATE (a+ nb) 2.2 (a 4 nb)P > (a + nb)P(c + nd)1
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(log(c + nd))? 1 (log(c 4 nd))?
ornby > fa b lloate  nd)) & (T

4%

Exercise 4.2.10. Determine the convergence, p,q > 0.

L (07 +a)” — (n? + b)), 5> [(””“)q_l].

Exercise 4.2.11. Determine the convergence.

1 1 n? (logn)"
1. Zn\/ﬁ. 3. ZT- 5. 27 7. 27'

n’ " logn (logn)™” nn
1 1 nlogn
(logn)™’

1
2. Y ——. 4. 3
e
Exercise 4.2.12. Determine the convergence, p,q > 0.

1 n? —nsinn 1
1. —. Lo e =
>_sin n 3. . 5. (cos o 1).

n3 + cosn
2 .
1 .1 n“ —nsinn . 1 1 .1
2. Y —sin—. 4. Y —5———sin—. 6. > cos —sin —.
np nd n° —+ cosn n np nd

Exercise 4.2.13. Determine the convergence.

1 3n+1 5n71 _ n22n

1.Z5n_1. 2. %

sr—1 _ 290 : 3. Z 3n+l
Exercise 4.2.14. Determine the convergence, a,b > 0.

L Y Va1, 3.5t L

a® + b’

1 1

. n 7 6. —
N 4 Y@+ o). T

Exercise 4.2.15. Determine the convergence.

2. 3

1. S a2 3. v, 5. 3 nZa™’
2. Y na 4. Y navr, 6. > nPx™.

Exercise 4.2.16. Determine the convergence.

1LY a 4 z(n%p —1). 6. Z(‘m*b)n,
2. S(an —1).

3. Z<ei_1—i). 5. 2(1+ak;g”)n. 7. nd (M)n
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.z<1n— o n;l), T S 1,5 (e 2)
el (3) 52 (el
9. > (1 - 1)112. n2n "

12. . .
" 2 (n+a)"tt(n+b)rte” 16. ) log (np sin %).

2

1 2n—nm
10. 1+ — _ S | cos nal
Z( n) 13. 2(2\/6 Vb \/E). A
Exercise 4.2.17. Determine the convergence.
n+1 L oo n 1
L. Z/ eV sin wdx. 3. 8%t 5. Z/ |sinz|Pdx.
n 1 xP 0
n+1
n+l o i P 1
sin x noox )
2. Z/n > dx. 4. > ; mdw. 6. Z/o sinz"dz.

1
Exercise 4.2.18. Suppose a,, is a bounded sequence. Show that »_ —(a, —an+1) converges.
n

Exercise 4.2.19. The decimal representations of positive real numbers are actually the sum
of series. For example,

m = 3.1415926 - - - = 3+0.1+0.04+0.001 +0.0005 + 0.00009 + 0.000002 + 0.0000006 +- - - - .

Explain why the expression always converges.

4.2.3 Special Comparison Test

We compare a series Y | a,, with the geometric series Y | 7", which we know converges
if and only if |r| < 1. If |a,| < r™ for some r < 1, then the comparison test implies
that »_ a, converges. We note that the condition |a,| < r™ for some r < 1 is the

same as {/|a,| <r < 1.

Theorem 4.2.3 (Root Test). Suppose |a,| < 1™ for some r < 1 and sufficiently large
n. Then Y a, converges.

Example 4.2.8. To determine the convergence of > (n® + 2n + 3)a™, we note that
limy, 00 +/](n° 4 2n + 3)2”| = |x|. If || < 1, then we can pick r satisfying |z] < r <
1. By lim,, 0o {/](n® + 2n + 3)2"| < r and the order rule, we get {/|(n® + 2n + 3)2"| <
r for sufficiently large n. Then by the root test, we conclude that 3 (n® +2n + 3)z"
converges for |z| < 1.

If |z| > 1, then the term (n°+ 2n + 3)x™ of the series does not converge to 0. By
Theorem 4.1.2, the series diverges for |z| > 1.
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The example suggests that, in practice, it is often more convenient to use the
limit version of the root test. Suppose lim, o, ¥/|a,| < 1. Then fix r satisfying
lim, 00 V/|an] < r < 1. By the order rule, we have {/|a,| < r for sufficiently
large n. Then the root test shows that ) a, converges. On the other hand, if
lim,, oo {/|an| > 1, then we have {/|a,| > 1 for sufficiently large n. This implies
la,] > 1, and Y a, diverges by Theorem 4.1.2.

Exercise 4.2.20. Determine the convergence, a,b > 0.

1. Z(loif)n. 6. > nPa™. 10. Z<1+2)2nn2.
n? an+b\"

2. Zi(logn)”' 7. Z<6n+d> . . Znipn

R sy (e )" s

4. > (a™ +b")P. o

5. > nPx™. 9. Z(l—l—%)_n. 12. 3°n? (E)L:L_((j;l) .

Next we turn to another way of comparing series. Theorem 2.3.3 compares two
functions by comparing their derivatives (i.e., the changes of functions). Similarly,
we may compare two sequences a,, and b,, by either comparing the differences a,, 1 —
An+1 and-bn+1

a, and b, — by, or the ratios . The comparison of ratio is especially

aTL n
suitable for the comparison of series.

Qp, bn a

Suppose a,, b, > 0, and < 1 for p > N. Then for ¢ = b_N’ the two
a, n N

Anp+1

Cbn+1

<
a, ~  Ccby,
sequence has bigger change than the first one, at least for n > N. This should imply

a, < cb, for n > N. The following is the rigorous argument

sequences a, and cb,, are equal at n = N, and implies that the second

AN+1 ON+2 ap bni1 Oy bn,

< cby

= cb,,.
aN aN41  (p—1 by bnii bpa

an, = a
By the comparison test, if > b, converges, then > a,, converges.

Qp+1 bn—l—l

Theorem 4.2.4 (Ratio Test). Suppose < for sufficiently large n. If

n n

> by, converges, then _ a, converges.

We note that the assumption implies that the terms b, have the same sign for
sufficiently large n. By changing a