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Preface

This is the lecture note used by the author at Brown University in 2013-14, and at HKUST
in Spring 2020. The purpose of the course and the note is to give an introduction to
Theory of Ordinary Differential Equations (ODEs). There is not much emphasis on solving
ODEs, finding explicit solutions or applying numerical methods, but several theoretical
issues of ODEs including existence, uniqueness, stability and periodicity are examined.

The major purpose of the course and the lecture notes is to strength students’
knowledge on basic mathematical analysis by illustrating the use of analysis on the
qualitative studies on differential equations.

The pre-requisite of the course is workable background mathematical analysis. Stu-
dents should already have a good sense of concepts such as limit, continuity, differentiabil-
ity of functions of both one and several variables. Basic linear algebra such as eigenvalues
and eigenvectors are also needed. The course will essentially start from Section 1.3.
Students should read Sections 1.2 by their own as a review of MATH 2351/2352.

Frederick Tsz-Ho Fong
January 10, 2020

HKUST, Clear Water Bay, Hong Kong
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Chapter 1

Linear Systems

1.1. Systems of ODEs

Ordinary Differential Equations (ODEs) are equations whose unknowns functions have
only one independent variable. You should have already encountered some of them in
single-variable calculus, physics or engineering classes. Here are some examples:

• Exponential decay equation:

d

dt
y(t) = −ky(t).

• Newton’s Second Law:

m
d2

dt2
x(t) = F (x(t)).

The above examples are ODEs with a single unknown function. This course will
mainly investigate systems of ODEs. A system of ODEs is a number of simultaneous
ODEs with one or more unknown functions. In order for these functions to form a
solution to the system, all ODEs in the system have to hold simultaneously. The order of
the system refers to the highest derivative order involved in the equations. In this course,
we will mostly focus on first-order systems, meaning that the system involves only first
derivatives with respect to the independent variable.

Here is an example of a first-order system of ODEs (which governs the glycolysis
inside human bodies):

dx

dt
= −x+ ay + x2y

dy

dt
= b− ay − x2y.

The variable t, often regarded as the time, is the independent variable. The functions
x(t) and y(t) are the unknowns of the system, whereas a and b are constants.

Remark 1.1. Unless otherwise is stated, we always use t to denote the independent
variable in this course. �

While there are many systems of ODEs of scientific interest, we will study systems
of ODEs regardless of their roles in sciences. We will investigate ODE systems from
linear-algebraic, geometric and analytic viewpoints and will focus on general ODEs which
may not be related to any current scientific fields.
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2 1. Linear Systems

The general form of a first-order system of ODEs is:

x′1 = F1(x1, . . . , xd)

x′2 = F2(x1, . . . , xd)

...

x′d = Fd(x1, . . . , xd).

It is a simultaneous system of d equations. In this system, x1(t), . . . , xd(t) are the
unknown functions of the system, and F1, . . . , Fd are given functions of d variables. We
often put a system of ODEs in a vector form. The reasons for doing so are many-folded.
One obvious reason, as we will investigate soon in a more detail, is that it allows the
interaction between the ODE system and its geometry.

To represent an ODE system in vector form, we let x(t) be the unknown vector
whose components are the unknown functions x1, . . . , xd, i.e.

x(t) =

x1(t)
...

xd(t)

 .
If the independent variable t is clear from the context, we may simply write the unknown
vector as

x =

x1

...
xd

 .
We also put the right-hand side of an ODE system into a vector by letting:

F(x1, . . . , xd) =

F1(x1, . . . , xd)
...

Fn(x1, . . . , xd)

 .
Since the components (x1, . . . , xd) can be represented1 by x, we can further abbreviate
F(x1, . . . , xd) by F(x). Therefore, a general system of ODEs can be written in the form
of:

x′ = F(x).

The vector form of an ODE system links the theory of ODEs with geometry. We think
of a solution x(t) as a parametrized curve, x(t) = (x1(t), . . . , xd(t)) in Rd. The
components xi(t)’s give the coordinates of the trajectory at time t. The t-derivative,
x′(t) = (x′1(t), . . . , x′d(t)), represents the tangent, or velocity, vector of the curve at time
t. Therefore, we will often call a solution x(t) as a solution curve, or a trajectory, etc.

The right-hand side of the equation, written as F(x), defines a vector field on Rd. A
vector field on Rd is a function that associates each point x ∈ Rd to a vector. The vector
field corresponding to the glycolysis system is shown in Figure 1.1

In order for x(t) to be a solution curve, it has to satisfy x′ = F(x). Geometrically, it
means that the tangent vector x′(t) of the curve is at any time equal to the vector field
F at the point x(t). To put it in an even simpler terms, the solution curve x(t) flows
along the vector field F at any time. Figure 1.2 shows the relation between the family of
solution curves (in red) and the vector field (in blue) of the glycolysis example.

1In this course, we make very little distinction between (x1, . . . , xd) and the column vector


x1

...
xd
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Figure 1.1. The vector field plot of the system: dx
dt

= −x+ 1
10
y + x2y, dy

dt
= 1

2
− 1

10
y − x2y.
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Figure 1.2. The vector field plot with solution curves with of the system: dx
dt

= −x +
1
10
y + x2y, dy

dt
= 1

2
− 1

10
y − x2y

A plot consisting of only solution curves of an ODE system is called the phase
portrait of the system.
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1.1.1. Second and higher order ODEs. The reason why we talk mostly about first-
order ODE systems because any higher order ODEs can be reduced to a first-order ODE
system, at the expense of having more unknown functions. Take the second-order ODE
x′′+bx′+kx = 0 as an example. One can let v = x′, then v′ = x′′ = −bx′−kx = −bv−kx.
The second-order ODE is therefore equivalent to the following first-order system:

x′ = v

v′ = −kx− bv,
or in matrix form: [

x
v

]′
=

[
0 1
−k −b

] [
x
v

]
.

Similarly, for a higher-order ODE x(m) + cm−1x
(m−1) + . . .+ c1x

′ + c0x = 0, we can let:

x1 = x, x2 = x′, x3 = x′′, . . . , xm = x(m−1)

or in short, xi = x(i−1) for any i = 1, 2, . . . ,m. Then the higher-order ODE can be written
as:

x′1 = x2

x′2 = x3

...

x′m−1 = xm

x′m = −c0x1 − c1x2 − . . .− cm−1xm,

or in matrix form:
x1

x2

...
xm


′

=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−c0 −c1 −c2 · · · −cm−1



x1

x2

...
xm

 .
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1.2. Planar Linear Systems

This section examines planar linear systems with constant coefficients (for simplicity
we will just call them planar linear systems) which can always be solved using Linear
Algebra. We will derive the general solution of these systems and investigate their phase
portraits. Theory of nonlinear ODEs, as you will see later, is heavily built upon linear
theory.

We first give several important definitions:

Definition 1.2 (Linear Systems). A system of ODE x′ = F(x) is said to be linear if
F : Rd → Rd is a linear transformation2, or equivalently, F(x) is of the form F(x) = Ax
where A is an d× d matrix of real numbers.

Definition 1.3 (Planar Linear Systems). A planar linear system is a linear system
defined on R2. That is, an ODE system of the form x′ = Ax where A is a 2× 2 matrix
of real numbers.

Example 1.1. The system

x′ = x+ 3y

y′ = x− y
is a planar linear system as it can be written in the following matrix-vector form:[

x′

y′

]
︸︷︷︸
x′

=

[
1 3
1 −1

]
︸ ︷︷ ︸

A

[
x
y

]
︸︷︷︸
x

�

The phase portrait of the system is shown in Figure 1.3.
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Figure 1.3. Phase portrait of the system x′ = x+3y, y′ = x−y. The curves represent
solutions of the system.

It is not difficult to notice from the phase portrait that there are two straight-line
solutions through the origin. We are going to show that if a linear system x′ = Ax has a
straight-line solution, it must be parallel to an eigenvector direction:
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Proposition 1.4. Suppose x(t) is a straight-line solution to the linear system x′ = Ax,
then x(t) = Ceλtv0 where v0 is an eigenvector of A with eigenvalue λ, and C is an
arbitrary constant.

Proof. Suppose x(t) is a straight-line solution, then x(t) is parallel to a fixed non-zero
vector v0 at any time t, i.e. there exists a function c(t) of t such that:

x(t) = c(t)v0 for any t ∈ R.

Note that we do not set x(t) = cv0 or x(t) = tv0 because the former is a stationary
solution and the latter travels at constant speed, neither of them may be true.

Substitute x(t) = c(t)v0 into the system x′ = Ax, we have:

(c(t)v0)′ = A(c(t)v0)

c′(t)v0 = c(t)Av0.(1.1)

If c(t0) 6= 0 for some t0 ∈ R, then we have Av0 = c′(t0)
c(t0) v0, which is equivalent to saying

v0 is a eigenvector of A with eigenvalue c′(t0)
c(t0) =: λ. Now we have Av0 = λv0, so by

(1.1), we have

c′(t)v0 = λc(t)v0

c′(t) = λc(t) (since v0 6= 0)

It can be easily shown (see Exercise 1.1) using separation of variables that c(t) = Ceλt

for some constant C. Therefore, we have x(t) = Ceλtv0. �

Exercise 1.1. Show that the general solution of the first-order ODE c′(t) = λc(t) is
given by:

c(t) = Ceλt

where C is a constant.

As shown in Proposition 1.4, to determine the straight-line solutions (if there are
any) of a linear system x′ = Ax, it amounts to finding the eigenvalues and eigenvectors
of the matrix A. In the next subsection, we will first review the matrix algebra required.

1.2.1. Review of Linear Algebra. We first recall the definition of eigenvectors and
eigenvalues of a matrix.

Definition 1.5 (Eigenvectors and Eigenvalues). Let A be a square matrix of real num-
bers. We say v is an eigenvector of A if v 6= 0 and Av = λv for some scalar λ. The
scalar λ is called an eigenvalue of the matrix A.

Remark 1.6. While an eigenvector v must be non-zero, an eigenvalue λ can be zero. �

To determine the eigenvalues of a matrix A, one may use:

Proposition 1.7. A scalar λ is an eigenvalue of A if and only if det(A− λI) = 0.

Proof. See any standard Linear Algebra textbook. �

The determinant equation det(A− λI) = 0 is called the characteristic equation of
A, and det(A−λI) is called the characteristic polynomial of A. Proposition 1.7 tells us
that to find the eigenvalues of A, one can solve the characteristic polynomial. After the
eigenvalues are all determined, we can find their corresponding eigenvectors by solving
systems of linear equations. Here is an example:
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Example 1.2. Consider the matrix

A =

[
1 3
1 −1

]
.

The characteristic equation is given by:

0 = det(A− λI)

= det

([
1 3
1 −1

]
− λ

[
1 0
0 1

])
=

∣∣∣∣1− λ 3
1 −1− λ

∣∣∣∣
= (1− λ)(−1− λ)− 3

= λ2 − 4

= (λ− 2)(λ+ 2).

Therefore, λ = 2 or λ = −2. The matrix A has two eigenvalues: 2 and −2.

To find the corresponding eigenvectors of each eigenvalue, we simply solve the
system Av = λv for v.

For λ = 2, Av = 2v can be written as:[
1 3
1 −1

] [
x1

x2

]
= 2

[
x1

x2

]
which can be rewritten as:

x1 + 3x2 = 2x1

x1 − x2 = 2x2

Both equations can be rearranged as: x1 = 3x2. Therefore, one of the equations
is considered to be redundant, and any vector v = (3x2, x2) with x2 6= 0 is an
eigenvector of A with eigenvalue 2.

The eigenvectors corresponding to eigenvalue −2 can be found by the same
way. It can be verified that any vector w = (x1,−x1) with x1 6= 0 is an eigenvector
with eigenvalue −2. It is left as an exercise for readers. See Exercise 1.2 below. �

Exercise 1.2. Find all eigenvectors corresponding to eigenvalue −2 of the matrix:

A =

[
1 3
1 −1

]
.

For each eigenvalue of A =

[
1 3
1 −1

]
we have found, let’s pick an eigenvector with

that eigenvalue:

λ1 = 2 v1 =

[
3
1

]
λ2 = −2 v2 =

[
1
−1

]
.

Then by Proposition 1.4, both

x1(t) = eλ1tv1 = e2t

[
3
1

]
x2(t) = eλ2tv2 = e−2t

[
1
−1

]
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are straight-line solutions of the system x′ = Ax.

By linearity, it can be easily verified (see Exercise 1.3) that any linear combination of
x1(t) and x2(t) is also a solution to the system.

Exercise 1.3. Show that if x1(t) and x2(t) are both solutions to the linear system
x′ = Ax, then any c1x1(t) + c2x2(t), where c1 and c2 are constants, is also a solution
to the linear system x′ = Ax.

In the next subsection, we will show in fact c1e2t

[
3
1

]
+ c2e

−2t

[
1
−1

]
form all possible

solutions of the system x′ = Ax where A is defined as above.

Exercise 1.4. Find all eigenvalues and their corresponding eigenvectors of the
following matrices:

(i)
[
1 2
0 3

]
(ii)

[
1 2
3 6

]
(iii)

[
1 2
1 0

]
(iv)

[
1 2
3 −3

]
.

Exercise 1.5. Rewrite the second-order ODE x′′ + bx′ + kx = 0, where b and k are
constants, into a first-order planar linear system. Determine the range of values of b
and k for which the matrix of the planar system has real, distinct eigenvalues.

1.2.2. Distinct Eigenvalues. Given a 2× 2 matrix A with characteristic polynomial
given by

det(A− λI) = (λ− λ1)(λ− λ2)

where λ1 and λ2 are two distinct real numbers, then the matrix A has distinct eigenvalues
λ1 and λ2. If for each i = 1, 2, we let vi be an eigenvector with eigenvalue λi, then we
have seen that

x(t) = c1e
λ1tv1 + c2e

λ2tv2

are solutions to the system x′ = Ax for any constants c1 and c2. We will prove in fact
they form all possible solutions of the system. To establish this, we need the following
fundamental fact about eigenvectors:

Theorem 1.8. Eigenvectors of a square matrix with distinct eigenvalues must be linearly
independent. Precisely, if v1, . . . ,vk are eigenvectors of a matrix A with distinct eigenvalues
λ1, . . . , λk respectively, then v1, . . . ,vk are linearly independent, meaning that whenever

c1v1 + . . .+ ckvk = 0

we must have c1 = . . . = ck = 0.

Proof. The proof with an arbitrary integer k can be found in any standard Linear Algebra
textbook. Here we give the proof for the case k = 2, i.e. two vectors involved.

Let v1 and v2 be two eigenvectors of A with distinct eigenvalues λ1 and λ2 respec-
tively, i.e. Av1 = λ1v1 and Av2 = λ2v2.

Suppose c1 and c2 are two scalars such that

(1.2) c1v1 + c2v2 = 0.

We need to show c1 = c2 = 0.

Multiply A from the left on both sides of the above vector equation, we get:

A(c1v1 + c2v2) = 0

c1Av1 + c2Av2 = 0

c1λ1v1 + c2λ2v2 = 0(1.3)
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Subtract (1.3) by λ1× (1.2), we get:

c2(λ2 − λ1)v2 = 0.

Since λ1 6= λ2 and v2 6= 0 (being an eigenvector), therefore we must have c2 = 0.
Substitute c2 = 0 into (1.2), we get c1v1 = 0, and hence c1 = 0 too as v1 6= 0 being an
eigenvector. �

Back to the planar linear system we are considering, if the matrix A has two distinct
eigenvalues λ1 and λ2, with corresponding eigenvectors v1 and v2 respectively, then
these two vectors are linearly independent. Recall that any d× d matrix whose columns
are linearly independent vectors in Rd must be invertible. This observation will be crucial
to establish the following:

Theorem 1.9. Given a planar linear system x′ = Ax whose matrix A has two distinct
real eigenvalues λ1 and λ2. Let v1 and v2 be two eigenvectors of A with eigenvalues λ1

and λ2 respectively, then any solution x(t) to the planar linear system x′ = Ax can be
expressed as:

(1.4) x(t) = c1e
λ1tv1 + c2e

λ2tv2

where c1 and c2 are any real constants.

In order to establish Theorem 1.9, we review how to diagonalize matrix A using the
eigen-data.

Lemma 1.10. Given a 2 × 2 matrix A with two distinct real eigenvalues λ1 and λ2.
Suppose v1 and v2 are corresponding eigenvectors with eigenvalues λ1 and λ2 respectively.
Then the matrix A can be decomposed into the following diagonal form:

(1.5) A =
[
v1 v2

] [λ1 0
0 λ2

] [
v1 v2

]−1
.

Here
[
v1 v2

]
is a 2× 2 matrix whose columns are v1 and v2.

Remark 1.11. Note that the matrix
[
v1 v2

]
is invertible since v1 and v2 are linearly

independent. �

Proof of Lemma 1.10. Since vi’s are eigenvectors of A, we have:

A
[
v1 v2

]
=
[
Av1 Av2

]
=
[
λ1v1 λ2v2

]
=
[
v1 v2

] [λ1 0
0 λ2

]
.

As v1 and v2 are eigenvectors with distinct eigenvalues, they are linearly independent
and so the matrix

[
v1 v2

]
is invertible. By multiplying

[
v1 v2

]−1
on both sides from

the right, we have

A =
[
v1 v2

] [λ1 0
0 λ2

] [
v1 v2

]−1

which is desired. �

Now we are ready to prove the theorem using the diagonal decomposition of the
matrix.
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Proof of Theorem 1.9. For simplicity, we denote P =
[
v1 v2

]
and D =

[
λ1 0
0 λ2

]
.

Should P be invertible, we have A = PDP−1. The diagonal decomposition of A has a
nice consequence toward solving linear ODE systems: if we let y = P−1x, then x = Py
and the ODE system x′ = Ax can be expressed as:

(Py)′ = A(Py)

Py′ = APy (since P is a constant matrix)

Py′ = PDP−1Py

Py′ = PDy

y′ = Dy.

Therefore under this change of variables y = P−1x, the ODE system x′ = Ax can be

transformed into y′ = Dy where D is a diagonal matrix. If we write y(t) =

[
y1(t)
y2(t)

]
, then

y′ = Dy in equation form is:

y′1(t) = λ1y1(t)

y′2(t) = λ2y2(t).

The system for yi(t)’s is a decoupled one, and the solution for yi(t)’s can be found by
separation of variables. Precisely,

y1(t) = c1e
λ1t, y2(t) = c2e

λ2t

where c1 and c2 are constants. In other words, the general solution for y′ = Dy is:

y(t) =

[
c1e

λ1t

c2e
λ2t

]
= c1e

λ1t

[
1
0

]
+ c2e

λ2t

[
0
1

]
.

Since x and y are related via the matrix P , i.e. x = Py, the general solution for the
original system x′ = Ax is:

x(t) = Py(t) =
[
v1 v2

](
c1e

λ1t

[
1
0

]
+ c2e

λ2t

[
0
1

])
.

It is easy to verify that
[
v1 v2

] [1
0

]
= v1 and

[
v1 v2

] [0
1

]
= v2. Therefore,

x(t) = c1e
λ1tv1 + c2e

λ2tv2

which is exactly what we need to prove. . �

Remark 1.12. Since (1.4) gives all possible solutions of the system x′ = Ax with
real distinct eigenvalues, it is called the general solution of the system. Note that (1.4)
applies only to the case where A has two distinct real eigenvalues. We have not accounted
for the cases where A has complex or repeated eigenvalues. �

1.2.2.1. Phase portrait of planar linear systems with distinct real eigenvalues.
The general solution formula (1.4) allows us to sketch the phase portrait of the planar
system x′ = Ax where A has distinct real eigenvalues.

The fate of each solution curve x(t) = c1e
λ1tv1 + c2e

λ2tv2 as t→ ±∞ depends on
the signs of the eigenvalues λ1 and λ2: the limit of eλt as t → ±∞ is either 0, 1 or ∞
when λ is negative, zero or positive respectively.

Let’s first assume that both λ1 and λ2 are non-zero, and without loss of generality,
assume λ1 < λ2.
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If λ1 > 0 and λ2 > 0, then x(t) = c1e
λ1tv1 + c2e

λ2tv2 approaches
[
±∞
±∞

]
as t→∞

(except the case where c1 = c2 = 0), while x(t) →
[
0
0

]
as t → −∞. Therefore, the

solution curves in the phase portrait are moving way from the origin. We call this type of
phase portrait a source. See Figure 1.4.

If λ1 < 0 and λ2 < 0, then x(t) = c1e
λ1tv1 + c2e

λ2tv2 approaches
[
±∞
±∞

]
as t→ −∞

(except the case where c1 = c2 = 0), while x(t) →
[
0
0

]
as t → +∞. Therefore, the

solution curves in the phase portrait are attracted to the origin. We call this type of phase
portrait a sink. See Figure 1.5.

Now suppose λ1 < 0 < λ2, or in other words, the eigenvalues of A are of different
signs. Recall that x(t) = c1e

λ1tv1 + c2e
λ2tv2. As t → ∞, the coefficient c1eλ1t of v1 is

vanishing while the other coefficient c2eλ2t of v2 tends to ±∞ (here again assume c1
and c2 are non-zero). Therefore, as time increases, the v1-part becomes more dominant
than the v2-part, so the solution curves will approach asymptotically to the line spanned
by v1. The reverse scenario happens as t → −∞. We call this type of phase portrait a
saddle. See Figure 1.6.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 1.4. The diagram shows a source phase portrait. Solution curves are tending
away from the origin. Also, it can be noticed that the solution curves are tangent to one
of the straight-line solutions as t→ −∞.

In all three cases (source, sink or saddle), there are two straight-line solutions
corresponding to the two linearly independent eigenvectors of A. For the source and
sink cases, you can observe from Figures 1.4 and 1.5 that the curves are approaching
tangentially to one of the straight-line solutions as t tends to either +∞ or −∞. To which
eigen-direction the curves approach depends on the how close λ1 and λ2 are from 0:

Proposition 1.13. Suppose x′ = Ax is a planar linear system with distinct, non-zero, real
eigenvalues λ1 and λ2 of the same sign. Denote v1 and v2 the eigenvectors with eigenvalues
λ1 and λ2 respectively. Assume |λ1| < |λ2|, then the solution curves in the phase portrait
are tangent to the eigenvector v1 as they approach to the origin.

Proof. We will only prove the source case, i.e. the solution curves tend to the origin
as t → −∞. The sink case can be proved in a similar way, mutatis mutandis. While it
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Figure 1.5. The diagram shows a sink phase portrait. Solution curves approach to the
origin tangentially to one of the straight-line solutions as time increases.
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Figure 1.6. The diagram shows a saddle phase portrait. Solution curves are asymptotic
to the straight-line solutions as t→ ±∞.

is possible to prove this proposition by computing the asymptotic slope of the position
vector and show that it is the same as the slope of the line spanned by v1, there is a
smarter way to establish this using a little bit linear algebra.

Recall from the proof of Theorem 1.9 that a solution x(t) to the system x′ = Ax
can be expressed as x(t) = Py(t) where P =

[
v1 v2

]
and y(t) is a solution to the

diagonalized system:

y′ =

[
λ1 0
0 λ2

]
y.

Therefore, the phase portrait of the x-system can be obtained by transforming the phase
portrait of the y-system via the linear map associated to the matrix P . This transformation
takes the standard basis vectors (1, 0) and (0, 1) in the y-portrait to the eigenvectors v1

and v2 respectively in the x-portrait.
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As such, to establish this proposition it suffices to show the solution curves in the
y-system approach to the y1-axis as t→ −∞. The general solution to the y-system is:

y(t) =

[
c1e

λ1t

c2e
λ2t

]
.

Letting y =

[
y1(t)
y2(t)

]
, one can compute:

dy2

dy1
=
y′2(t)

y′1(t)
=
c1e

λ2t

c2eλ1t
=
c1
c2
e(λ2−λ1)t.

As we assume that 0 < λ1 < λ2, we have λ2 − λ1 > 0 and so dy2
dy1
→ 0 as t → −∞.

Therefore, the solution curves (with non-zero c1 and c2) in the y-portrait approach to
the origin tangentially to the y1-axis, and hence the solution curves in the x-portrait
approach to the origin tangentially to the line spanned by v1. �

Exercise 1.6. Complete the proof of the Proposition 1.13 for the sink case.

Next we account for the case where one of the eigenvalues λ1 and λ2 is zero. Without
loss of generality, let’s assume λ1 = λ 6= 0 and λ2 = 0. Then the general solution to the
planar system x′ = Ax can be expressed as:

x(t) = c1e
λtv1 + c2v2.

The phase portrait of this case is drastically different from the previous three cases we
have investigated. First take c2 = 0, then the solution x(t) = c1e

λtv1 is a straight-line
solution through the origin and parallel to v1. Whether this straight trajectory tends to or
away from the origin depends on the sign of λ. Adding c2v2, which is a constant vector,
will parallel translate the solution line by c2v2. How much it translates depends on the
value of c2. Therefore, the phase portrait is a parallel family of straight-line solutions as
shown in Figure 1.7.

-1.0 -0.5 0.0 0.5 1.0
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0.0

0.5

1.0

Figure 1.7. The phase portrait of the system x′ = x + 2y, y′ = −3x − 6y The eigen-
values are 5 with an eigenvector (1, 3), and 0 with an eigenvector (−1, 2).

Note that the line spanned by the null-eigenvector3 v2 is not a solution line of the
system, but instead each individual point is a stationary solution of the system.

3A null-eigenvector is an eigenvector with eigenvalue 0.
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Exercise 1.7. For each of the following matrix A: (i) find the general solution of the
system x′ = Ax, (ii) state the phase portrait type and (iii) sketch the phase portrait.

(a) A =

[
1 4
2 3

]
(b) A =

[
1 2
0 3

]
(c) A =

[
−5 1
4 −2

]
.

1.2.3. Complex Eigenvalues. We have settled all possible cases with distinct real
eigenvalues in the previous subsection. However, it does happen often in real life that
complex eigenvalues can occur even for a real 2×2 matrix. A quick example is the matrix[
0 −1
1 0

]
whose eigenvalues are ±i. We are going to deal with the complex case in this

subsection.

Throughout this subsection (and for most part of the course), A always denote a real
matrix although its eigenvalues may be complex. Since the characteristic polynomial
det(A− λI) is real, if λ is a complex root then so does λ. In other words, the complex
eigenvalues of a real matrix A must come in conjugate pair. If A is 2× 2 with complex
eigenvalue λ = α+ βi (where β 6= 0), then the other eigenvalue must be α− βi and so
A has distinct eigenvalues.

Let v1 and v2 be complex eigenvectors corresponding to eigenvalues λ1 and λ2

respectively. Although one can mimic what was done for the distinct real case to find the
general solution of x′ = Ax with complex eigenvalues, it would only give us a general

complex solution. Let illustrate this by letting A =

[
0 −1
1 0

]
. Readers should verify that

the eigen-data are:

λ1 = i v1 =

[
i
1

]
λ2 = −i v2 =

[
−i
1

]
.

The complex general solution is then given by:

x(t) = c1e
it

[
i
1

]
+ c2e

−it
[
−i
1

]
, c1, c2 ∈ C.

It left much to be desired because we began with a real problem but end up having a
complex answer! It is not trivial to figure out the geometry of the phase portrait.

Our approach of deriving the real general solution formula will be as follows:

(1) We begin by considering matrices of the form Q =

[
α β
−β α

]
where α and β are

real numbers and β 6= 0. These matrices have complex eigenvalues α± βi. We will
derive the real general solution of the system y′ = Qy. See Theorem 1.14.

(2) Next, we will use a bit Linear Algebra to show that any real 2× 2 matrix A with
complex eigenvalues can be decomposed into the form of:

A = PQP−1

where P is a suitably chosen invertible matrix and Q is a matrix of the form[
α β
−β α

]
.

(3) Finally, as in the diagonal case, we make a change of variables by letting y(t) =
P−1x(t). Then x(t) solves x′ = Ax if and only if y(t) solves y′ = Qy. Since the
real general solution of the y-system can be found, the real general solution of the
x-system can be derived via the relation x(t) = Py(t).



1.2. Planar Linear Systems 15

1.2.3.1. General solution of systems in complex canonical form. We call a 2×2

matrix of the form Q =

[
α β
−β α

]
a complex canonical form. The real general solution

with matrix in this form is stated in the following theorem:

Theorem 1.14. The real general solution of the system y′ = Qy where Q =

[
α β
−β α

]
,

with α, β ∈ R and β 6= 0, is given by:

(1.6) y(t) = c1e
αt

[
cosβt
− sinβt

]
+ c2e

αt

[
sinβt
cosβt

]
, c1, c2 ∈ R.

Outline of Proof. We let y(t) =

[
y1(t)
y2(t)

]
be a real solution of the system y′ = Qy, which

can be written as equations:

y′1 = αy1 + βy2

y′2 = −βy1 + αy2.

Define a function f : R→ C by:

f(t) = (y1(t) + iy2(t))e(−α+iβ)t.

One can verify by straight-forward computation that f ′(t) = 0 provided that y(t) is a
solution to the system y′ = Qy. Let f(t) = c1 + ic2 where c1, c2 ∈ R. It can be verified
that this implies:

y1(t) + iy2(t) = eαt(c1 cosβt+ c2 sinβt) + ieαt(−c1 sinβt+ c2 cosβt)

and that y(t) =

[
y1(t)
y2(t)

]
equals to the expression given by (1.6). �

Exercise 1.8. Verify all the detail left-out in the proof of Theorem 1.14.

Example 1.3. Let Q =

[
0 −1
1 0

]
whose eigenvalues are ±i, i.e α = 0 and β = −1.

By Theorem 1.14, the real general solution of the system y′ = Qy is given by:

y(t) = c1

[
cos t
sin t

]
+ c2

[
− sin t
cos t

]
, c1, c2 ∈ R.

�

1.2.3.2. Phase portrait of planar linear systems in complex canonical form.
The sin and cos terms of the real general solution formula (1.6) suggests that the solution
curves in the phase portrait should be circular or spiral depending whether α is zero or
not.

When α > 0, eαt → 0 as t→ −∞ whereas eαt → +∞ as t→ +∞. Since | cosβt| ≤ 1
and | sinβt| ≤ 1, a simple squeezing argument shows that y(t) tends away from the
origin. In contrast with the real distinct case, the solution curves are spiraling around the
origin (see Figure 1.8). We call this type of phase portrait a spiral source.

Similarly, when α < 0, eαt → 0 as t→ +∞. The solution curves y(t) tend towards
the origin as t→ +∞ in a spirally manner (see Figure 1.9). We call this type of phase
portrait a spiral sink.

If α = 0, the phase portrait consists of concentric circles centered at the origin (see
Figure 1.10). This type of phase portrait is called a center.
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The sign of α, i.e. the real part of the complex eigenvalue, determines the phase
portrait type of the planar linear system. The sign of β determines the orientation of the
solution curves. From the expression of the general solution (1.6), the solution curves[

cosβt
− sinβt

]
and

[
sinβt
cosβt

]
determine the clockwise/counterclockwise orientation of the

phase portrait.

If β > 0:: then the solution curves travel in the clockwise direction as t increases;
whereas

If β < 0:: then the solution curves travel in the counterclockwise direction as t in-
creases.
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Figure 1.8. A spiral source: phase portrait of a system with α > 0 and β > 0
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Figure 1.9. A spiral sink: phase portrait of a system with α < 0 and β < 0

1.2.3.3. Complex canonical decomposition of 2× 2 matrices. In the distinct
real case, we decompose the matrix A into the form of A = PDP−1 where D is a
diagonal matrix. By the change of variable y = P−1x, it was shown in the proof of
Theorem 1.9 that x(t) is a solution to the system x′ = Ax if and only if y(t) is a solution
to the system y′ = Dy. The y-system can be easily solved.

We will do an analogous change of variables for the complex eigenvalues case, but
instead of having a diagonal matrix in the middle, we have a complex canonical form. The
next lemma shows that any 2× 2 matrix A with complex eigenvalues can be decomposed
as A = PQP−1 where Q is a complex canonical form. We will call this the complex
canonical decomposition of the matrix A.
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Figure 1.10. A center: phase portrait of a system with α = 0 and β < 0

Lemma 1.15. Let A be a 2× 2 real matrix with complex eigenvalues α± βi. Suppose v is
a complex eigenvector of A with eigenvalue α+ βi. Denote the real and imaginary parts of
v by vRe and vIm respectively, i.e. v = vRe + ivIm. Then:

A =
[
vRe vIm

] [ α β
−β α

] [
vRe vIm

]−1
.

Proof. The given matrix A has complex eigenvalues α± βi which are in conjugate pair.
It is also crucial to observe that their corresponding eigenvectors are also in conjugate
pair. To show this, let v be a complex eigenvector of A with eigenvalue α + βi. Then
Av = (α+ βi)v and we have:

Av = (α+ βi)v (take conjugate on both sides)

Av = (α+ βi)v (multiplicative property of conjugate)

Av = (α− βi)v (since A is real)

Therefore v is an eigenvector of A with eigenvalue α− βi.
Now that v and v are eigenvectors with distinct eigenvalues. By Theorem 1.8, which

also applies to the complex case, they are linearly independent. It is not difficult to verify
that Lemma 1.10 also holds for complex eigenvectors with distinct complex eigenvalues.
Therefore, we have:

(1.7) A =
[
v v

] [α+ βi 0
0 α− βi

] [
v v

]−1
.

Note that
[
v v

]
is invertible because the columns are linearly independent.

Finally, the last step and also the key part of the proof is to relate
[
v v

]
with[

vRe vIm
]
. It can be easily seen that:[

v v
]

=
[
vRe + ivIm vRe − ivIm

]
=
[
vRe vIm

] [1 1
i −i

]
.

Taking the determinant on both sides, we get:

det
[
v v

]
= det

[
vRe vIm

]
· det

[
1 1
i −i

]
.

Since v and v are linearly independent, we have det
[
v v

]
6= 0 and so det

[
vRe vIm

]
6=

0 as well. The matrix
[
vRe vIm

]
is invertible. By substituting

[
v v

]
=
[
vRe vIm

] [1 1
i −i

]
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into (1.7), we arrive at:

A =

([
vRe vIm

] [1 1
i −i

])[
α+ βi 0

0 α− βi

]([
vRe vIm

] [1 1
i −i

])−1

=
[
vRe vIm

] [1 1
i −i

] [
α+ βi 0

0 α− βi

] [
1 1
i −i

]−1 [
vRe vIm

]−1
.

The proof can be completed by verifying[
1 1
i −i

] [
α+ βi 0

0 α− βi

] [
1 1
i −i

]−1

=

[
α β
−β α

]
.

This is left as an exercise. �

Exercise 1.9. Verify that
[
1 1
i −i

] [
α+ βi 0

0 α− βi

] [
1 1
i −i

]−1

=

[
α β
−β α

]
.

With Lemma 1.15, every 2 × 2 matrix A with complex eigenvalues admits a complex
canonical form A = PQP−1. Since the real general solution of y′ = Qy was already
derived in Theorem 1.14, we can now solve for any planar system x′ = Ax with complex
eigenvalues via the relation x = Py. Precisely, we have the following:

Theorem 1.16. Let A be a 2× 2 matrix with complex eigenvalues α± βi, where α, β ∈ R
and β 6= 0, and v = vRe + ivIm be a complex eigenvector (with real and imaginary parts
vRe and vIm respectively) of A with eigenvalue α+ βi. Then, the real general solution of
the system x′ = Ax is given by:

(1.8) x(t) = P

(
c1e

αt

[
cosβt
− sinβt

]
+ c2e

αt

[
sinβt
cosβt

])
, c1, c2 ∈ R,

where P =
[
vRe vIm

]
.

The proof is omitted here since it is in principle the same as in the distinct real case,
i.e. Theorem 1.9. The major difference is that the diagonal matrix D now becomes a
complex canonical form Q, and the transformation matrix P has a different form. The
solving of y′ = Dy in Theorem 1.9 is now replaced by the use of Theorem 1.14.

Exercise 1.10. Write down the whole proof of Theorem 1.16.

1.2.3.4. Phase portrait of planar linear systems with complex eigenvalues.
Theorem 1.16 asserts that the real general solution of any planar linear system x′ = Ax
with complex eigenvalues can be obtained by multiplying an invertible matrix P by the
general solution of the corresponding system y′ = Qy in complex canonical form, so the
phase portrait of the x-system is the transformed image of the y-portrait by the linear
map associated to P . The type of the phase portrait (spiral source, spiral sink or center)
is preserved since A and Q have the same complex eigenvalues. The solution curves,
however, may be distorted, rotated, and more elliptic than those in a complex canonical
form system. See Figure 1.11 as an example.

However, one should note the orientation of the solution curves in the x-portrait may
not be the same as in the y-portrait. It is because the linear transformation associated to
P may change the orientation! From Linear Algebra, a linear transformation associated
to a matrix P preserves the orientation if det(P ) > 0, and reverses the orientation if
det(P ) < 0. Therefore, to determine the orientation of the solution curves, one should
take both the sign of β and the sign of det(P ) into account.
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Figure 1.11. A spiral source: phase portrait of the system: x′ = x− 4y, y′ = 4x+ 5y

To summarize the above discussion, we let x′ = Ax be a planar system with complex
eigenvalue α± βi, and v = vRe + ivIm be a complex eigenvector of A with eigenvalue
α+ βi. Let P =

[
vRe vIm

]
. The phase portrait is a:

• spiral source if α > 0;

• spiral sink if α < 0;

• center if α = 0.

The orientation can be determined by Table 1 below.

Table 1. Orientation of solution curves with complex eigenvalues

det(P ) > 0 det(P ) < 0
β > 0 clockwise counterclockwise
β < 0 counterclockwise clockwise

1.2.4. Repeated Eigenvalues. The last case for deriving the general solution of a
planar linear system x′ = Ax is that the matrix A has a repeated real eigenvalue λ. It
happens when the characteristic polynomial det(A− zI) can be factorized as (z − λ)2.
Note that in the planar case, it is not possible to get a repeated complex eigenvalue since
complex roots of a real polynomial must appear in conjugate pairs. However, readers
should note that repeated complex eigenvalues may appear in higher dimensional linear
systems.

Back to planar systems, suppose from now on A is a 2× 2 real matrix with a repeated
eigenvalue λ. In order to find the general solution of x′ = Ax, we introduce the Jordan
canonical form which, in 2× 2 case, is a matrix of the form:

J =

[
λ 1
0 λ

]
.

We are going to show that any 2 × 2 matrix A with a repeated eigenvalue λ can be
decomposed as A = PJP−1 for a suitable invertible matrix P (unless A is simply
λI). We call this a Jordan decomposition. Then, in order find the general solution of
x′ = Ax, we do the same ‘y-trick’ again: let y(t) = P−1x(t), then x(t) solves x′ = Ax
if and only if y(t) solves y′ = Jy. The general solution to the system with a Jordan
canonical form J as the matrix can always be found. As in the diagonal and complex
case, the general solution of the x-system can be obtained by multiplying the matrix P to
the y-system.
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Walking on a similar path as in the complex case, we first find the general solution
to the planar system y′ = Jy where J is a Jordan canonical form.

Theorem 1.17. The general solution to the system y′ = Jy where J =

[
λ 1
0 λ

]
is:

(1.9) y(t) = c1e
λt

[
1
0

]
+ c2e

λt

[
t
1

]
, c1, c2 ∈ R.

Proof. Let y(t) =

[
y1(t)
y2(t)

]
and rewrite the system y′ = Jy in equation form:

y′1 = λy1 + y2

y′2 = λy2.

Clearly, the second equation gives y2 = c2e
λt for some c2 ∈ R. Substitute this into the

first equation, we get:
y′1 = λy1 + c2e

λt

where is an ODE of one unknown function y1. Some trial of separation of variables
should convince you that this equation is not separable. Fortunately, it can be solved by
so-called the method of integration factor. Multiply e−λt on both sides of the equation.
After rearranging, we get:

e−λty′1 − λe−λty1 = c2.

It is worthwhile to note that the left-hand side can be rewritten as a total differential.
Precisely, we have:

d

dt
(e−λty1) = e−λty′1 − λe−λty1 = c2.

Reader should verify this using the product rule. It then implies

e−λty1 = c2t+ c1, c1 ∈ R.

Finally, multiplying both sides by eλt yields:

y1 = c1e
λt + c2te

λt,

and so [
y1

y2

]
=

[
c1e

λt + c2te
λt

c2e
λt

]
= c1e

λt

[
1
0

]
+ c2e

λt

[
t
1

]
,

as desired. �

1.2.4.1. Phase portrait of planar linear systems in Jordan canonical form. As
can be seen from (1.9), the fate of the solution curves y(t) as t → ±∞ is completely
determined by the sign of λ.

When λ > 0, y(t) tends to 0 as t → −∞ while it blows up as t → +∞. The phase
portrait (see Figure 1.12) is a source.

When λ < 0, y(t) tends to 0 as t → +∞ while it blows up as t → −∞. The phase
portrait (see Figure 1.13) is a sink.

These sources and sinks, however, look a bit different from the case of distinct real
eigenvalues. There is only one straight-line solution, which happens when c2 = 0, in
contrast to the distinct real case.

It can be easily verified that when c2 6= 0, the slope is given by:

dy2

dy1
=
y′2
y′1

=
c2λe

λt

c1λeλt + c2(eλt + λteλt)
=

c2λ

c1λ+ c2(1 + λt)
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which tends to 0 as t→ ±∞. Therefore, the solution curves is tangent to the y1-axis as it
approaches to the origin and also become more and more horizontal as they blow up.

The degenerate case again happens when λ = 0. In this case, the general solution
becomes:

y(t) = c1

[
1
0

]
+ c2

[
t
1

]
=

[
c1
c2

]
+ t

[
c2
0

]
.

The phase portrait of the degenerate case is a family of parallel lines parallel to the
y1-axis. When c2 > 0, the solution line is traveling in the positive y1-direction, whereas
when c2 < 0, the solution line is traveling in the negative y1-direction. However, when
c2 = 0, the solution is a stationary point (c1, 0). Therefore, the y1-axis is not a solution
line, but each point on the y1-axis by itself is a stationary solution to the system (see
Figure 1.14)
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Figure 1.12. A source where the matrix of the system with a positive repeated eigenvalue.
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Figure 1.13. A sink where the matrix of the system with a negative repeated eigenvalue.

1.2.4.2. Jordan decomposition of 2× 2 matrices with repeated eigenvalues.
We are going to show that every 2× 2 matrix A with repeated eigenvalues must admit a
Jordan decomposition A = PJP−1. After this is established, one can find the general
solution of all planar linear systems with such matrices using the ‘y-trick’ as in the
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Figure 1.14. A degenerate type of phase portrait of the system with a zero repeated eigenvalue.

diagonal and complex cases. In order to establish this, we need the following celebrated
theorem in Linear Algebra:

Theorem 1.18 (Cayley-Hamilton’s Theorem). Any square matrix A satisfies its own
characteristic polynomial. Precisely, suppose A is d× d and its characteristic polynomial is
given by:

det(A− xI) = c0 + c1x+ c2x
2 + . . .+ cdx

d.

Then, the following holds:

c0I + c1A+ c2A
2 + . . .+ cdA

d = 0.

The proof of this theorem can be found, for instance, in Friedberg–Insel–Spence’s
Linear Algebra book. The special case where A is a 2× 2 matrix can be verified by direct
computations:

Exercise 1.11. Let A be an arbitrary 2 × 2 matrix
[
a b
c d

]
. First verify that the

characteristic polynomial det(A− xI) is given by:

x2 − (a+ d)x+ (ad− bc).
Then, verify by direct computation that A satisfies:

A2 − (a+ d)A+ (ad− bc)I =

[
0 0
0 0

]
.

In particular, if A has a repeated eigenvalue λ, what can you say about the matrix
(A− λI)2?

Theorem 1.18 will be crucial to prove that any 2×2 matrix with a repeated eigenvalue
must have a Jordan decomposition.
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Lemma 1.19. Let A be a 2× 2 matrix with a repeated eigenvalue λ. Then, either A = λI,
or there exists two linearly independent vectors v1 and v2 satisfying

(A− λI)v1 = 0 (i.e. v1 is an eigenvector of A)

(A− λI)v2 = v1 (note that v2 is not an eigenvector of A)

such that:

(1.10) A =
[
v1 v2

] [λ 1
0 λ

] [
v1 v2

]−1
.

Proof. Given that λ is an eigenvalue and A is 2× 2, there are two cases to consider:

• dim null(A− λI) = 2, or

• dim null(A− λI) = 1.

Here null(A− λI) denotes the null space of the matrix A− λI. Any non-zero vector in
null(A− λI) is an eigenvector of A with eigenvalue λ.

The first case implies A = λI (see Exercise below). For the second case dim null(A−
λI) = 1, suppose null(A− λI) = span(v1), then v1 is an eigenvector of A and any other
eigenvector of A must be a constant multiple of v1. Pick any vector w in R2 such that v1

and w are linearly independent, then we consider the vector (A− λI)w.

Since A has a repeated eigenvalue λ, its characteristic polynomial must be given by:

det(A− xI) = (x− λ)2.

By Theorem 1.18, the matrix A satisfies its own characteristic polynomial, and so

(A− λI)2 = 0.

Therefore, we have (A − λI)[(A − λI)w] = (A − λI)2w = 0. This shows (A − λI)w
is an eigenvector of A with eigenvalue λ, and by the assumption of this case that
null(A− λI) = span(v1), we must have

(A− λI)w = cv1 for some c ∈ R.

This c cannot be zero, otherwise (A− λI)w = 0 then w is also an eigenvector of A with
eigenvalue λ and hence w would a constant multiple of v1. It contradicts to our choice
of w that v1 and w have to be linearly independent.

Now c 6= 0, we have:
(A− λI)

w

c
= v1.

Define v2 := w
c , then v1 and v2 are a pair of linearly independent vectors that satisfy

(A− λI)v1 = 0

(A− λI)v2 = v1.

Finally, these relations imply Av1 = λv1 and Av2 = v1 + λv2 and we are left to verify
(1.10):

A
[
v1 v2

]
=
[
Av1 Av2

]
=
[
λv1 v2 + λv1

]
=
[
v1 v2

] [λ 1
0 λ

]
Since v1 and v2 are linearly independent, the matrix

[
v1 v2

]
is invertible and therefore

(1.10) can be proved by multiplying
[
v1 v2

]−1
on both sides from the right.

�
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Exercise 1.12. Complete the first case in the proof of Lemma 1.19, i.e. show that if
dim null(A− λI) = 2 for a 2× 2 matrix A, then A = λI.

Using the ‘y-trick’ which we have been using, we can now derive the general solution
of planar linear systems x′ = Ax where A has a repeated eigenvalue λ.

Theorem 1.20. Given a 2 × 2 matrix A with a repeated eigenvalue λ. If A = λI, the
general solution to the system x′ = Ax is:

x(t) = eλt
[
c1
c2

]
.

Otherwise if A 6= λI, then A admits a Jordan decomposition A = P

[
λ 1
0 λ

]
P−1 for some

invertible matrix P , as shown in Lemma 1.19, and hence the general solution of the system
x′ = Ax is:

(1.11) x(t) = P

(
c1e

λt

[
1
0

]
+ c2e

λt

[
t
1

])
, c1 c2 ∈ R.

Proof. For the first case if A = λI, the system x′ = Ax is simply two decoupled ODEs:

x′1 = λx1

x′2 = λx2.

Solving each equation separately yields x1(t) = c1e
λt and x2 = c2e

λt. Hence,

x(t) = eλt
[
c1
c2

]
.

For the second case A 6= λI and so A admits a Jordan decomposition A = P

[
λ 1
0 λ

]
P−1.

Let y = P−1x, then x(t) solves x′ = Ax if and only if y(t) solves y′ =

[
λ 1
0 λ

]
y. By

Theorem 1.17,

y(t) = c1e
λt

[
1
0

]
+ c2e

λt

[
t
1

]
.

Since x(t) = Py(t), we have (1.11) as desired. �

1.2.4.3. Phase portrait of planar linear systems with a repeated eigenvalue.
For a planar linear system x′ = Ax where A has a repeated eigenvalue λ, if A = λI then
by its general solution formula the phase portrait is a family of straight-lines passing
through the origin. Whether it tends to or away from the origin depends on the sign of λ.

For the generic case where A has a Jordan decomposition A = PJP−1. The general
solution formula (1.11) tells us that the phase portrait of the system x′ = Ax can be
obtained by transforming that of the system y′ = Jy by the linear map associated to P .
Since P transforms the vector (1, 0) on the y-portrait to an eigenvector v1 of A in the
x-portrait, the x-portrait consists of solution curves which are tangent at the origin to
the line spanned v1. An example of such a phase portrait is shown in Figure 1.15.

Exercise 1.13. Find a Jordan decomposition of each matrix A below, i.e. express
the matrix A in the form of PJP−1 where P is an invertible matrix and J is a Jordan
canonical form. Then, write down the general solution of the system x′ = Ax, and
find the solution x(t) with initial condition x(0) = (1,−2).
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Figure 1.15. A source phase portrait of the following system with repeated eigenvalues:
x′ = 4x+ y, y′ = −x+ 6y.

λ1 λ2 type of phase portrait
real, positive real, positive source
real, negative real, negative sink
real, negative real, positive saddle
complex, positive real part complex, positive real-part spiral source
complex, negative real part complex, negative real-part spiral sink
complex, negative real part complex, positive real-part not possible

Table 2. Phase portrait types of linear systems x′ = Ax when all eigenvalues of A has
non-zero real part. Denote λ1 and λ2 the two eigenvalues ofA. Without loss of generality,
assume λ1 ≤ λ2.

(i) A =

[
7 1
0 7

]
(ii) A =

[
2 −3
3 −4

]
(iii) A =

[
4 1
−1 6

]
.

Exercise 1.14. Let A =

[
3 1
a 3

]
where a is real. In the table below, fill in the range

of value(s) of a for which the system x′(t) = Ax(t) has the type of phase portraits
indicated on the left column. Fill in “∅" (i.e. the empty set) for those phase portrait
type(s) that cannot exist under this system.

Type of phase portrait Range of value(s) of a
saddle
sink
source
spiral sink
spiral source
center

Exercise 1.15. Consider the second-order equation x′′ + bx′ + kx = 0. By rewriting
this ODE into a planar linear system, determine all possible phase portrait types and
indicate the range of values of b and k in which each portrait type occurs.
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1.3. Matrix Exponentials

This section presents an elegant and unified approach to linear ODE systems with constant
coefficients. This approach, known as matrix exponentials, not only unifies all three cases
(distinct real, complex, repeated eigenvalues) of planar linear systems and extend to ,
but also gives an explicit form of general solutions to linear systems of any dimension
without regarding to the eigendata, which may be difficult to find in higher dimensions.

In one dimension, the solution to the initial-value problem x′(t) = ax(t), x(0) = x0

is given by x(t) = x0e
at. The exponential term eat can be written as an infinite series:

eat =

∞∑
k=0

(at)k

k!
=

∞∑
k=0

aktk

k!
.

Now take a square matrix A of any dimension, we are going to define the matrix
exponential of A, denoted by eA or exp(A), such that the solution to the initial-value
problem x′ = Ax, x(0) = x0 can be written as x(t) = etAx0, which is analogous to the
one dimension case (with the constant matrix A replaces the role of a in one dimension).

Definition 1.21 (Matrix Exponentials). Given a square matrix A of any dimension, we
define eA (or alternatively denoted by exp(A)) by:

eA =

∞∑
k=0

Ak

k!
,

where A0 is defined to be I, the identity matrix with the same dimension as A.

Remark 1.22. While it makes perfect sense to add up finitely many matrices, convergence
has to be justified when summing up infinitely many matrices. It will be done later after
computing a few examples. �

Example 1.4. Let A =

[
λ1 0
0 λ2

]
, then Ak =

[
λk1 0
0 λk2

]
. Therefore

eA =

∞∑
k=0

Ak

k!
=

∞∑
k=0

1

k!

[
λk1 0
0 λk2

]
=

[∑∞
k=0

λk1
k! 0

0
∑∞
k=0

λk2
k!

]
=

[
eλ1 0
0 eλ2

]
.

�

Example 1.5. LetA =

[
0 −θ
θ 0

]
. By computing the first few powersA2, A3, A4, . . .,

one should observe that

A2k = (−1)kθ2k

[
1 0
0 1

]
, A2k+1 = (−1)kθ2k+1

[
0 1
−1 0

]
for any k ≥ 0. Therefore, by splitting up

∑∞
k=0

Ak

k! into even and odd terms, we get:

eA =

∞∑
k=0

A2k

(2k)!
+

∞∑
k=0

A2k+1

(2k + 1)!
=

∞∑
k=0

(−1)kθ2k

(2k)!

[
1 0
0 1

]
+

∞∑
k=0

(−1)kθ2k+1

(2k + 1)!

[
0 1
−1 0

]
.

Recall that the Taylor’s series of sin θ and cos θ are:

sin θ =

∞∑
k=0

(−1)kθ2k+1

(2k + 1)!
, cos θ =

∞∑
k=0

(−1)kθ2k

(2k)!
.
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Therefore, eA = (cos θ)

[
1 0
0 1

]
+ (sin θ)

[
0 1
−1 0

]
=

[
cos θ sin θ
− sin θ cos θ

]
. �

Exercise 1.16. Let A =

[
λ 1
0 λ

]
, express eA as a single matrix.

1.3.0.1. Norm of a matrix. Although eA is defined in every example we have seen
so far, you may wonder whether it is so in any square matrix. The answer is yes! In order
to justify this, we first introduce the concept of norm of a matrix, which will also appear
frequently throughout the course.

Definition 1.23 (Matrix Norm). Given a matrix A (not necessarily square), the norm
of A is defined as:

‖A‖ = sup{|Ax| : |x| = 1}.

Remark 1.24. From now on, we will use double lines ‖·‖ for the norm of a matrix defined
as above, and single lines |·| for the Euclidean norm of a vector. �

Remark 1.25. In case of R2, think of a matrix A as a linear map, taking x to Ax. The set
{|x| = 1} represents the unit circle centered at the origin. The linear map associated to A
transforms the unit circle to a ellipse centered at the origin. The geometric interpretation
of ‖A‖ is the furthest distance of points on this ellipse from the origin. �

The following are some useful properties of the norm of a matrix.

Lemma 1.26 (Properties of Matrix Norm). Given any matrices A, B and C such that
AB and B + C are defined, we have

(1) ‖A‖ ≥ 0, and ‖A‖ = 0 if and only if A = 0.
(2) ‖cA‖ = |c| ‖A‖ for any c ∈ R.
(3) ‖B + C‖ ≤ ‖B‖+ ‖C‖.
(4) |Ax| ≤ ‖A‖ |x| for any vector x such that Ax is defined.
(5) ‖AB‖ ≤ ‖A‖ ‖B‖.

Proof. We leave (1), (2) and (3) as exercises for readers. To prove (4), take an arbitrary
vector x. If x = 0, (4) is trivially true. Now assume x 6= 0, then the vector x

‖x‖ is a unit
vector. By the definition of matrix norm, we have∣∣∣∣A( x

‖x‖

)∣∣∣∣ ≤ sup{|Ay| : |y| = 1} =: ‖A‖ .

Therefore,
1

‖x‖
|Ax| ≤ ‖A‖ ,

which implies |Ax| ≤ ‖A‖ |x|.
To prove (5), we consider an arbitrary vector y such that |y| = 1. Then using (4),

we have:
|ABy| ≤ ‖A‖ |By| ≤ ‖A‖ ‖B‖ |y| = ‖A‖ ‖B‖ .

Note that |y| = 1. Therefore, taking max over all unit vectors y, we have:

‖AB‖ := sup{|ABy| : |y| = 1} ≤ ‖A‖ ‖B‖
as desired. �
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Exercise 1.17. Prove (1), (2) and (3) of Lemma 1.26.

Using these properties, we can now prove that matrix exponential of any square
matrix A must be well-defined. For any matrix P , we denote [P ]ij the (i, j)-th entry of P .

Proposition 1.27 (Well-definedness of eA). Let A be a square matrix. The (i, j)-th
component of eA, which is the following infinite series,

∞∑
k=0

[Ak]ij
k!

must converge. Therefore, eA is a well-defined matrix for any square matrix A. Further-
more, we have

∥∥eA∥∥ ≤ e‖A‖.
Proof. We first show that for any square matrix P , we must have |[P ]ij | ≤ ‖P‖ . The
argument goes as follows: the j-th column of the matrix P is the components of the
vector P (ej) where ej is the j-th standard basis vector, i.e. P (ej) =

∑
i[P ]ijei. By the

definition of matrix norm, we have

|P (ej)| ≤ ‖P‖ (since ej is unit)∣∣∣∣∣∑
i

[P ]ijei

∣∣∣∣∣ ≤ ‖P‖√∑
i

|[P ]ij |2 ≤ ‖P‖

Since for each i, we have |[P ]ij | ≤
√
|[P ]1j |2 + . . .+ |[P ]dj |2 =

√∑
i |[P ]ij |2, and so

|[P ]ij | ≤ ‖P‖.
Now we use the absolute convergence test to show the following infinite series∑∞

k=0
[Ak]ij
k! converges. Consider:∣∣∣∣ [Ak]ij

k!

∣∣∣∣ ≤ ‖Ak‖k!
≤ ‖A‖

k

k!
.

The last inequality follows from (5) of Lemma 1.26. Since
∑∞
k=0

‖A‖k
k! converges to e‖A‖,

by comparison test and absolute convergence test,
∑∞
k=0

[Ak]ij
k! converges absolutely. It

shows eA is defined.

To show the last part of the proposition, we use (3) and (5) of Lemma 1.26:

∥∥eA∥∥ =

∥∥∥∥∥
∞∑
k=0

Ak

k!

∥∥∥∥∥ ≤
∞∑
k=0

∥∥∥∥Akk!

∥∥∥∥ ≤ ∞∑
k=0

‖A‖k

k!
= e‖A‖

as desired. �

Exercise 1.18. Given a sequence of d×d matrices {An}∞n=1, show that An converges
to a d× d matrix A∞ if and only if lim

n→∞
‖An −A∞‖ = 0.

1.3.0.2. Solution to linear systems with initial conditions. Having established that
eA is well-defined, we are about to prove that the initial-value problem x′ = Ax, x(0) =
x0 has a solution x(t) = etAx0, analogous to the one dimension case.
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Theorem 1.28. Let A be a d × d matrix and x0 is any given vector in Rd. Then the
initial-value problem

x′ = Ax, x(0) = x0

has a solution x(t) = etAx0.

Proof. Let x(t) = etAx0, then

x′(t) =
d

dt

∞∑
n=0

tnAn

n!
x0

We want to differentiate the infinite series term-by-term. In order to do so, recall that we
have to justify that as N →∞:

(1)
d

dt

N∑
n=0

tnAn

n!
x0 converges uniformly on any open interval (a, b), and

(2)
N∑
n=0

tnAn

n!
x0 converges pointwise on (a, b).

Note that (2) follows directly from Proposition 1.27. For (1), we compute that:

d

dt

N∑
n=0

tnAn

n!
x0 =

N∑
n=1

tn−1An

(n− 1)!
x0.

For any t ∈ (a, b), we have for each term that:∥∥∥∥ tn−1An

(n− 1)!
x0

∥∥∥∥ ≤ |t|n−1

(n− 1)!
‖A‖n |x0| ≤

(|a|+ |b|)n−1 ‖A‖n |x0|
(n− 1)!

.

Since
∞∑
n=1

(|a|+ |b|)n−1 ‖A‖n |x0|
(n− 1)!

converges as a series of real numbers – can be easily

checked by ratio test, Weiestrass’ M-test shows the series of functions
∞∑
n=1

tn−1An

(n− 1)!
x0

converges uniformly on (a, b). It proves (1).

By term-by-term differentiation, we get

x′(t) =

∞∑
n=1

tn−1An

(n− 1)!
x0 =

∞∑
n=0

tnAn+1

n!
x0

= A

( ∞∑
n=0

tnAn

n!

)
x0

= Ax(t).

Clearly x(0) = e0x0 = Ix0 = x0. Therefore, etAx0 is a solution to the given initial-value
problem. �

We say in the statement of Theorem 1.28 that the initial-value problem has a solution
given by etAx0 because we haven’t shown the solution is unique. Now we are about to
prove the uniqueness of this solution. In fact, we have a stronger result:
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Theorem 1.29 (Continuous Dependence Inequality for Linear Systems). Let A be d× d
matrix, and x0, y0 be two given vectors in Rd. Suppose x(t) and y(t) are solutions to the
following initial-value problems respectively (with the same matrix but different initial
conditions):

x′ = Ax, x(0) = x0

y′ = Ay, y(0) = y0,

then we have

(1.12) |x(t)− y(t)| ≤ |x0 − y0| e‖A‖|t| for any t ∈ R.

Remark 1.30. We call Theorem 1.29 the Continuity Dependence on Initial Data because
(1.12) shows that in short-time, a slight change of the initial data will only change the
solution a little. We will see later that this kind of continuity dependence also holds for
nonlinear systems assuming the vector field F(x) is sufficiently regular. �

As an easy corollary to Theorem 1.29, if x(t) and y(t) are solutions with the same
initial data, i.e. x0 = y0, then it is necessary that x(t) ≡ y(t):

Corollary 1.31 (Uniqueness of Solutions to Linear Systems). The solution to the initial-
value problem

x′ = Ax, x(0) = x0

is unique. Hence, x(t) = etAx0 is the only solution.

Proof of Theorem 1.29. The inequality (1.12) trivially holds when t = 0. We first
assume t > 0. We consider:

|x(t)− y(t)|2 = (x(t)− y(t)) · (x(t)− y(t))

d

dt
|x(t)− y(t)|2 = 2(x(t)− y(t)) · d

dt
(x(t)− y(t)) (product rule)

= 2(x(t)− y(t)) ·A(x(t)− y(t)) (since x′ = Ax and y′ = Ay)

≤ 2 |x(t)− y(t)| · |A(x(t)− y(t))| (Cauchy-Schwarz’s Inequality)

≤ 2 |x(t)− y(t)| · ‖A‖ |x(t)− y(t)| (by (4) of Lemma 1.26)

≤ 2 ‖A‖ · |x(t)− y(t)|2.

Therefore, by the “integrating-factor” trick:

d

dt

(
e−2‖A‖t · |x(t)− y(t)|2

)
= e−2‖A‖t

(
d

dt
|x(t)− y(t)|2 − 2 ‖A‖ · |x(t)− y(t)|2

)
≤ 0

Hence, for any t > 0, we have:

e−2‖A‖t · |x(t)− y(t)|2 ≤ e−2‖A‖·0 · |x(0)− y(0)|2 = |x0 − y0|2 .

By rearrangement, one can prove (1.12) for t > 0.

The case t < 0 is almost the same, except for the Cauchy-Schwarz’s Inequality one
should consider

2(x(t)− y(t)) ·A(x(t)− y(t)) ≥ −2 |x(t)− y(t)| · |A(x(t)− y(t))|

instead. The detail of this case is left as an exercise to readers. �
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Exercise 1.19. Complete the proof of Theorem 1.29 for the case t < 0.

Proposition 1.32. Given two real numbers t and s, and a square matrix A, we have

(1.13) etAesA = e(t+s)A.

Corollary 1.33. For any square matrix A, e−A =
(
eA
)−1. Therefore, eA must be invert-

ible.

Proof (not rigorous).

etAesA =

( ∞∑
k=0

tkAk

k!

)( ∞∑
l=0

slAl

l!

)

=

∞∑
k, l=0

tksl

k! l!
Ak+l

=

∞∑
j=0

∑
k+l=j

tksl

k! l!
Ak+l (sum up along diagonals of the (k, l)-array)

=

∞∑
j=0

j∑
k=0

tksj−k

k! (j − k)!
Aj (re-label indices: l = j − k)

=

∞∑
j=0

j∑
k=0

j! tksj−k

k! (j − k)!

Aj

j!
.

The binomial theorem asserts that (t + s)j =
∑j
k=0

j!
k! (j−k)! t

ksj−k, so from above, we
deduce:

etAesA =

∞∑
j=0

(t+ s)jAj

j!
=

∞∑
j=0

((t+ s)A)j

j!
= e(t+s)A

as desired. The corollary follows directly from e0 = I. �

We say the proof is not rigorous because it involves rearrangement of a double-
indexed sum (over k, l) into a diagonal sum. It has to be justified rigorously by estimating
the remainder terms and proving that they go to zero (see my lecture notes on MATH
4023, in which we proved ezew = ez+w for any complex numbers z and w). As a
course on theory of ODE, we provide an alternative proof using the uniqueness theorem
(Corollary 1.31) that we have just proved.

Proof of Proposition 1.32. Consider two curves

Xs(t) := etAesAx0 and Ys(t) := e(t+s)Ax0,

where x0 is any vector in Rd. Here we regard t as the variable and s as fixed. We claim
that for any fixed s ∈ R, both Xs(t) and Ys(t) solve the ODE system x′(t) = Ax(t) with
the same initial data. It would then follow by Corollary (1.31) that Xs(t) = Ys(t) for
any t ∈ R.
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d

dt
Xs(t) =

d

dt
etAesAx0

=

(
d

dt
etA
)
esAx0

= AetAesAx0 (from Theorem 1.28)

= AXs(t)

d

dt
Ys(t) =

d

dt
e(t+s)Ax0

=
d

d(t+ s)
e(t+s)A · d(t+ s)

dt
· x0

= Ae(t+s)x0

= AYs(t)

Hence, both Xs(t) and Ys(t) satisfy the ODE system x′(t) = Ax(t) for any fixed s ∈ R.
For their initial values at t = 0, we can check that they are also the same:

Xs(0) = IesAx0 = esAx0

Ys(0) = e(0+s)Ax0 = esAx0.

By Corollary 1.31, we have etAesAx0 = e(t+s)Ax0 for any t, s ∈ R and any x0 ∈ Rd. This
show etAesA = e(t+s)A for any t, s ∈ R. �

Exercise 1.20. Let A, B and P be square matrices of the same dimension, and
further assume that P is invertible. Show that:

(1) ePAP
−1

= PeAP−1

(2) AeA = eAA

(3) If AB = BA, then eAeB = eBeA = eA+B. Using this, express exp

[
α −β
β α

]
as a single matrix.

1.3.0.3. Flow of a linear system. Theorem 1.28 and Corollary 1.31 assert that
x(t) = etAx0 is the only solution to the initial-value problem x′ = Ax, x(0) = x0.
Therefore, starting at any point x0 on the phase portrait, there is one and only one
trajectory passing through it, and x(t) = etAx0 can be thought as flowing along the
trajectory through x0 for t unit time. This concept motivates the introduction of the
flow map of a linear system:

Definition 1.34 (Flow of a Linear System). Given a system of ODEs x′ = Ax on Rd, the
flow of the system, denoted by Φ(·, t) : Rd × (−∞,∞)→ Rd such that for any x0 ∈ Rd,
Φ(x0, t) is the point on Rd reached by flowing along the trajectory from x0 for t unit
time. Equivalently, the flow Φ(·, t) is sometimes denoted as Φt(·) : Rd → Rd.

Remark 1.35. The flow can be defined similarly for nonlinear systems, but one should
first justify uniqueness and the time interval has to be restricted so that the solution is
defined. We will do these in the next chapter. �

Remark 1.36. For linear systems x′ = Ax, the flow is explicitly given by

Φt(x0) = etAx0.

However, an explicit expression of the flow for most nonlinear systems are usually
extremely difficult to find. �
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The flows, for both linear and nonlinear systems, will be used frequently throughout
the course. One advantage of using flows Φt(x0) instead of using x(t) to represent
a solution to an initial-value problem is that one can read off the initial condition
immediately from the x0-slot. If one uses x(t), one has to declare aside that its initial
condition is given by x(0) = x0, which can be cumbersome and confusing if there are
many initial conditions being considered simultaneously.

Another feature of using flows concerns about taking compositions of two flows.
Since for any given t, s ∈ R and x0 ∈ Rd, we have:

Φs (Φt(x0)) = Φs
(
etAx0

)
= esAetAx0

= e(s+t)Ax0 (from (1.13))

= Φs+t(x0).

Therefore, Φs ◦ Φt = Φs+t, meaning that flowing along the trajectory starting from x0

for t unit time, followed by flowing along for s unit time, will reach the same point as
flowing along the trajectory starting from x0 for s+ t unit time. It is consistent with our
intuition. Evidently, this fact can easily be seen using flows but it is not quite clear why it
is true if one labels the trajectories by x(t) and y(t).

By Theorem 1.29, the flow Φt(·) can be shown to be continuous:

Proposition 1.37 (Continuity of Flow for Linear Systems). Let Φt(·) : Rd → Rd be the
flow of a linear system x′ = Ax. Then Φt(·) is continuous function from Rd to Rd.

Proof. Using the flow, (1.12) can be rewritten as:

(1.14) |Φt(x0)− Φt(y0)| ≤ |x0 − y0| e‖A‖|t|

Fix t ∈ R, regarding y0 is fixed and x0 is a variable. When x0 → y0, meaning that
|x0 − y0| → 0, the right-hand side of (1.14) tends to 0. The squeezing principle shows
we have |Φt(x0)− Φt(y0)| → 0, or equivalently, Φt(x0)→ Φ(y0) as x0 → y0. Therefore,
Φt(·) is continuous. �

Remark 1.38. The flow must be continuous, even differentiable, in the t-slot, since
Φt(x0) is defined to be the solution x(t) that solves the system x′ = Ax with initial
condition x(0) = x0. Therefore,

d

dt
Φt(x0) = x′(t) = Ax(t) = AΦt(x0).

�

Remark 1.39. Since for each fixed t ∈ R the flow Φt : Rd → Rd is invertible with
inverse Φ−t being also continuous, in topological terminology we call the flow Φt a
homeomorphism of Rd to itself. �

The expression x(t) = etAx0 as the solution to the initial-value problem x′ =
Ax,x(0) = x0, although works for any square matrix A, is not as explicit as it may
seem. The matrix exponential etA is defined by an infinite series of matrices. Each
term of the series involves the power Ak, which cannot be computed easily. In fact,
we need to find the eigen-data and a canonical decomposition in order to find Ak. In
higher dimensions, finding solutions to linear systems with matrix A will require a good
canonical decomposition of the matrix. We will not go into that because it will deviate
from the main theme of this course. Interested readers may consult Chapters 5 and 6 of
Hirsch–Smale–Devaney’s book for the Linear Algebra treatment of ODE systems in higher
dimensions.





Chapter 2

Existence and Uniqueness

This chapter is about the existence and uniqueness theorems of ODEs. The purpose of
establishing the existence and uniqueness theorems is that nonlinear ODEs are extremely
difficult to solve, but in many applications in other areas such as differential geometry,
it is not necessary to know the explicit solution yet we need to make sure there is a
solution.

If you have taken some elementary ODE courses, you probably have learned various
methods to solve some types of ODEs. These methods might include separation of variables,
integration factor, characteristics equations, variation of parameters, Laplace’s Transforms,
etc. However, you probably have realized that these toolkits are far from being complete
for solving all ODEs. One can easily write down a nonlinear ODE such as:

y′(t) = log sin(y(t)2 + t2), y(0) = 1.

It is almost impossible to find the explicit solution even using computer softwares.

For nonlinear ODE systems, solving for explicit solutions is much harder even for a
simple nonlinear ODE system like this:

x′ = x2 − y
y′ = x+ y2 + 1

Another goal of working through the existence theorem is to give you a taste of how
differential equations interact with analysis. While most undergraduate ODE/PDE courses
focus on solving differential equations, the studies of PDE at graduate or research level
require a strong background in analysis, especially functional analysis.

2.1. Contraction Maps and Iterations

Let’s begin by a discussion on the following problem.

Problem 2.1. Suppose you put a map of the HKUST campus on a flat table inside a
building at HKUST. Assume the map has size smaller than the HKUST campus (a fairly
sensible assumption). Prove that there must be a point on the map which is directly
above the actual point it represents, no matter how you orient the map.

You may think this problem is completely off-topic, but you will realize later the key
idea of the existence theorems actually stem from this problem. To formulate Problem 2.1
in a mathematical way, we denote U the set representing the whole HKUST University

35
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including its boundary. Define f : U → U to be the function that takes an actual point x
at HKUST, to the point f(x) on the map that represents this point x.

f(x) is in U since the map is put inside HKUST. To solve Problem 2.1, we need to
find a point y0 ∈ U such that

f(y0) = y0

so that the point f(y0) on the map is equal to the point y0 which it represents.

We will show that such a y0 always exists. The key ingredient is that such a function
f must be a contraction. Precisely, there exists a positive α < 1, such that given any
x, y ∈ U , we must have

(2.1) |f(x)− f(y)| ≤ α |x− y| .

Obviously, this assumption makes sense because the distance between any two points on
the map is significantly smaller than that between the two actual points at HKUST they
represent. The argument for the existence of such a y0, which we call it a fixed-point of
f , is through an iteration argument.

We take any point x1 ∈ U , and consider x2 := f(x1). If x2 = x1, then x1 is the
desired fixed-point, and we are done. Otherwise, look for x3 := f(x2), x4 := f(x3) and
continue indefinitely, i.e. xn+1 := f(xn) for any integer n > 0. Intuitively, the distance
between two adjacent points should be decreasing as the process continues. It can be
verified by (2.1) that for any integer n > 0,

|xn+1 − xn| = |f(xn)− f(xn−1)| ≤ α |xn − xn−1| .

Inductively, one can show:

|xn+1 − xn| ≤ α |xn − xn−1|
≤ α2 |xn−1 − xn−2|

...

≤ αn−1 |x2 − x1| .

Next, we consider the infinite series
∑∞
n=1 |xn+1 − xn|, which is bounded above by

the geometric series
∑∞
n=1 α

n−1 |x2 − x1|. Note that |x2 − x1| is regarded as a con-
stant. As the common ratio α of the geometric series is strictly less than 1, the series∑∞
n=1 α

n−1 |x2 − x1| converges, so by comparison test, the series
∞∑
n=1

|xn+1 − xn|

converges too.

Finally, the absolute convergence test shows the telescoping series
∑∞
n=1(xn+1 − xn)

converges. Then for any integer N > 1, we have:

xN = x1 + (x2 − x1) + (x3 − x2) + . . .+ (xN − xN−1)

= x1︸︷︷︸
constant vector

+

N−1∑
n=1

(xn+1 − xn)︸ ︷︷ ︸
converges as N →∞

,

Letting N → ∞, this shows xN , as a sequence, must converge too. If we denote
y0 = limn→∞ xn, then letting n→∞ on both sides of xn+1 = f(xn), we get y0 = f(y0),
where we used the fact that f is continuous as guaranteed by the contraction inequality
(2.1). Therefore, such a fixed point y0 always exists and it is exactly the point on the
map which is directly above the actual point it represents.
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The sequence xn in this map problem is defined via the recurrence relation xn+1 =
f(xn) with a ‘seed’ x1. We call this type of sequence an iteration sequence. As you will
see, the existence of solutions for ODE systems is proved by rewriting the ODE problem
to a problem of finding a fixed-point. The iterative sequence involved, commonly called
the Picard’s iteration sequence, will be proved to converge to a solution to the ODE
system. Proving existence of a solution is analogous to locating the fixed-point of the
map problem.

2.1.0.1. More iteration examples. You may have tried the following “experiment"
with your scientific calculator: start with any value x0 in [0, 1], say 0.1; then press the
cos button repeatedly. After pressing it for around 20 times you will see the displayed

value will soon “stabilize" and converge to a particular value (around 0.739085133). This
value is in fact an approximate solution to the equation x = cosx. To see why is that,
let’s formulate this “pressing-the-button" experiment in a mathematical way. We let:

x0 = 0.1

xn = cos(xn−1) for any n ≥ 1.

Then the sequence x0, x1, x2, . . . will be equal to:

0.1, cos(0.1), cos(cos(0.1)), cos(cos(cos(0.1))), . . .

which is exactly the sequence of numbers you get by pressing the cos button repeatedly.
If we assume (and we will justify) that limn→∞ xn exists and converges to a limit L, then
taking limit on both sides of xn = cos(xn−1) will yield:

lim
n→∞

xn = lim
n→∞

cos(xn−1)

L = cos
(

lim
n→∞

xn−1

)
(since cos is continuous)

L = cos(L).

It shows the limit L is a solution to the equation x = cosx. That’s why when you press
the cos button for many many times, you will get a value which is very close to this L.

In order to complete the above argument, we need to prove the sequence xn con-
verges. Let’s complete the detail here. Define

f(x) = cosx : [0, 1]→ [0, 1].

It makes sense to define the codomain of f to be [0, 1] because cosx is decreasing on
[0, 1] and so f(x) ∈ [cos 1, cos 0] = [cos 1, 1] ⊂ [0, 1]. Now xn is an iteration sequence by
the function f , i.e. xn = f(xn−1) for any n ≥ 1.

By the mean-value theorem, one can prove a contraction inequality similar to (2.1):
for any x, y ∈ [0, 1]

|f(x)− f(y)| = |f ′(ξ)||x− y| for some ξ between x and y

= | sin ξ||x− y|
≤ (sin 1)|x− y| since x, y, ξ ∈ [0, 1]

Denote α := sin 1 for simplicity, we have the following contraction inequality:

(2.2) |f(x)− f(y)| ≤ α|x− y| for any x, y ∈ [0, 1].

Note that α < 1. Therefore, one can mimic the steps after (2.1) for the map problem
(now the real number sequence {xn} replaces the role of the vector sequence {xn}) to
show that xn converges to some number L ∈ [0, 1], which is a fixed-point of f and a root
to the equation x = f(x).
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Exercise 2.1. Complete the detail of showing the convergence of xn in the above
iteration using the contraction inequality (2.2).

Exercise 2.2. This is an exercise of using iterations to show the existence of a root
of another trigonometric equation. Define g(x) = cosx− 1

3 cos3 x where x ∈ [0, π3 ].
Consider the following iteration sequence:

x0 = 0, xn = g(xn−1) for n ≥ 1.

Show that g(x) maps [0, π3 ] into [0, π3 ] and satisfies a contraction inequality: there
exists α < 1 such that |g(x)− g(y)| ≤ α|x− y| for any x, y ∈ [0, π3 ]. Hence, prove
that the iteration sequence xn converges to a limit L which is a root of the equation
x = cosx− 1

3 cos3 x.
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2.2. Picard’s Iteration

The proof of the existence theorem of ODEs is also based on an iteration argument. We
will first reformulate an ODE problem as an iteration problem like the examples in the
previous section. Then, showing the existence of solutions will be equivalent to proving
an iteration sequence converges. That is why analysis comes into play.

As in Section 1.1, we can represent a system of ODEs (which may not be linear) in
vector form:

x′ = F(x).

Here F(x) is regarded as a vector field on Rd, and the vector equation x′ = F(x) asserts
that the solution curve x(t) travels with velocity (or tangent) vector x′ equals to the
vector field direction for all time t.

The vector fields F(x) we have considered in Chapter 1 are in the form Ax where A
is a constant matrix. From now on, we not only consider these linear systems, but also
nonlinear ones which are very challenging to solve. In this chapter in particular, we also
allow the vector field F to be time-dependent, i.e. changing over time. Mathematically
speaking, we allow F to depend on both time t and the space x. Therefore, a general
form of an ODE system in this chapter is in the form of:

x′ = F(x, t)

where F : Ω× I → Rd is a time-dependent vector field defined on some open region Ω in
Rd and some time interval I.

Definition 2.2 (Autonomous and Non-autonomous Systems). An autonomous ODE
system is one that the vector field is time independent, i.e. x′ = F(x), whereas a non-
autonomous ODE system is one that the vector field is time dependent, i.e. x′ = F(x, t).

2.2.0.1. Integral equation of an initial-value problem. Given an ODE system
x′ = F(x, t) with an initial condition x(0) = x0, we will first rewrite the initial-value
problem (from now on will be called IVP) as an equivalent integral equation. Then, we
will formulate the iteration procedure for the integral equation.

Proposition 2.3 (Integral Equations for an IVP). Given any fixed vector x0 ∈ Rd and a
continuous vector field F, the trajectory x(t) is a solution to the IVP

(2.3) x′ = F(x, t), x(0) = x0

if and only if x(t) is a continuous solution to the integral equation

(2.4) x(t) = x0 +

∫ t

0

F(x(s), s) ds.

Remark 2.4. Inside the integral we use x(s) instead of x(t) so as to avoid confusion
with the upper limit t of the integral. The letter s is dummy and can be replaced by your
most favorite variable (other than t). �
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Proof of Proposition 2.3. (⇒)-part: Given x(t) solves the IVP (2.3), then:

RHS of (2.4) = x0 +

∫ t

0

F(x(s), s) ds

= x0 +

∫ t

0

x′(s) ds

= x0 + [x(s)]
s=t
s=0 (Fundamental Theorem of Calculus)

= x0 + x(t)− x(0)

= x(t) (since x(0) = x0)

= LHS of (2.4).

(⇐)-part: Given x(t) solves the integral equation (2.4), we have:

x′(t) =
d

dt

(
x0 +

∫ t

0

F(x(s), s) ds

)
=

d

dt

∫ t

0

F(x(s), s) ds

= F(x(t), t) (Fundamental Theorem of Calculus)

x(0) = x0 +

∫ 0

0

F(x(s), s) ds

= x0.

Therefore, x(t) is a solution to the IVP (2.3). �

Exercise 2.3. Consider the following IVP (below µ > 0 and λ > 0 are constants,
hi(x, y)’s are some continuous functions of x and y, and x0, y0 are two fixed initial
conditions):

x′ = −µx+ h1(x, y) x(0) = x0

y′ = λy + h2(x, y) y(0) = y0

Show that the above IVP is equivalent to the following integral system.

x(t) = e−µt
(
x0 +

∫ t

0

eµsh1(x(s), y(s)) ds

)
y(t) = eλt

(
y0 +

∫ t

0

e−λsh2(x(s), y(s)) ds

)
,

i.e. (x(t), y(t)) solves the IVP if and only if it is a continuous solution to the integral
system.

2.2.0.2. Picard’s iteration sequence of an initial-value problem. By the equiv-
alence of IVPs and integral equations as illustrated in Proposition 2.3, we can now
reformulate the integral equation as an iteration problem. The iteration sequence in-
volved is known as the Picard’s iteration sequence.

From now on, the vector field F(x, t) is always assumed to be continuous in both
x- and t-slots, so that the IVP (2.3) and the integral equation (2.4) are equivalent.
This assumption is crucial since the Fundamental Theorem of Calculus applies only to
continuous functions.
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Definition 2.5 (Picard’s Iteration Sequence). Given an IVP

x′ = F(x, t), x(0) = x0,

its Picard’s Iteration Sequence is a sequence of functions {xn(t)}∞n=0 defined by:

x0(t) = x0 (an abuse of notation)

xn(t) = x0 +

∫ t

0

F(xn−1(s), s) ds for any n ≥ 1(2.5)

Remark 2.6. We used x0 to denote both the initial condition and the first term of the
iteration sequence. Because we set the two to be equal, there should not be any confusion
on this use of notations. �

The Picard’s iteration sequence is related to the existence theorem of ODE in the
following way. If one is able to show that the sequence xn(t) converges a limit function
x∞(t) as n→∞, then heuristically, letting n→∞ on both sides of (2.5) will yield:

lim
n→∞

xn(t) = lim
n→∞

(
x0 +

∫ t

0

F(xn−1(s), s) ds

)
x∞(t) = x0 + lim

n→∞

∫ t

0

F(xn−1(s), s) ds

= x0 +

∫ t

0

lim
n→∞

F(xn−1(s), s) ds (cheating!)

= x0 +

∫ t

0

F
(

lim
n→∞

xn−1(s), s
)
ds (true if F is continuous)

x∞(t) = x0 +

∫ t

0

F(x∞(s), s) ds.

Therefore, x∞(t) solves the integral equation (2.4) which is equivalent to the given
IVP. Therefore, pending all justifications of the steps that we ‘cheated’, we have shown
the limit x∞(t) is a solution to the IVP. Although this limit function x∞(t) may not be
explicit, it at least shows that a solution to the IVP exists and we can study its qualitative
behaviors such as stability.

However, we still have to justify the steps that we ‘cheated’, namely why we can
switch the limit and the integral signs. Even in one dimension, there are examples of
sequence of continuous functions {xn(t)}∞n=0 that converges to a limit function x∞(t) as
n→∞, but

lim
n→∞

∫ t

0

xn(s)ds 6=
∫ t

0

lim
n→∞

xn(s)ds.

A substantial part of the existence theorem is to show that it is legitimate to switch
the limit and integral signs for the Picard’s iteration sequence. It involves a concept in
analysis known as uniform convergence (See Appendix A.1).

Let’s look at a few examples of Picard’s iteration before we go into the analysis of
the general case. Some of the examples can possibly be solved in an more elementary
way. However, in order to make better sense of the Picard’s iteration, let’s pretend not
knowing how to solve them. These examples will convince us that the Picard’s iteration
sequence will indeed converge to the solution of the IVP.
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Let’s start with one dimension:

Example 2.1. Consider the IVP: x′ = x, x(0) = 1. Obviously, the solution should
be x(t) = et, but as said in the previous paragraph, let’s pretend we don’t know this
answer and try to use Picard’s iteration to solve this IVP.

By Proposition 2.3, the equivalent integral equation is given by:

x(t) = 1 +

∫ t

0

x(s)ds,

and therefore its Picard’s iteration sequence is defined as:

x0(t) = 1

xn(t) = 1 +

∫ t

0

xn−1(s) ds for n ≥ 1.

Let’s compute the first few terms of the iteration:

x0(t) = 1;

x1(t) = 1 +

∫ t

0

x0(s)ds

= 1 +

∫ t

0

1ds

= 1 + [s]
t
0 = 1 + t;

x2(t) = 1 +

∫ t

0

x1(s)ds

= 1 +

∫ t

0

(1 + s)ds

= 1 +

[
s+

s2

2

]t
0

= 1 + t+
t2

2
;

x3(t) = 1 +

∫ t

0

(
1 + s+

s2

2

)
ds

= 1 +

[
s+

s2

2
+

s3

3 · 2

]t
0

= 1 + t+
t2

2!
+
t3

3!
.

Keep iterating, we should see from the pattern that

xn(t) = 1 + t+
t2

2!
+
t3

3!
+ . . .+

tn

n!
=

n∑
k=0

tk

k!
.
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Let’s prove it by induction. Suppose xi(t) =
∑i
k=0

tk

k! , and consider xi+1(t):

xi+1(t) = 1 +

∫ t

0

xi(s)ds = 1 +

∫ t

0

i∑
k=0

sk

k!
ds

= 1 +

i∑
k=0

[
sk+1

k!(k + 1)

]s=t
s=0

= 1 +

i∑
k=0

tk+1

(k + 1)!

=
t0

0!
+

i+1∑
k=1

tk

k!
(shifting indices)

=

i+1∑
k=0

tk

k!
(absorbing the zero-th term)

as desired. By induction, the Picard’s iteration sequence is given as an infinite series
xn(t) =

∑n
k=0

tk

k! . As n→∞, it converges to

x∞(t) =

∞∑
k=0

tk

k!

which is the Taylor’s series of the function et, our expected solution to the IVP. �

Example 2.2. Consider the IVP

x′ = 2t(1 + x), x(0) = 0.

The equivalent integral equation is:

x(t) =

∫ t

0

2s(1 + x(s))ds

and the Picard’s iteration sequence is defined as :

x0(t) = 0

xn(t) =

∫ t

0

2s(1 + xn−1(s))ds for n ≥ 1.

By direct computations (exercise), one should get:

x1(t) = t2

x2(t) = t2 +
t4

2

x3(t) = t2 +
t4

2!
+
t6

3!

and from the pattern we conjecture that

xn(t) = t2 +
t4

2!
+ . . .+

t2n

n!
=

n∑
k=1

t2k

k!
.
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Let’s verify this is true by induction. Suppose xi(t) =
∑i
k=1

t2k

k! and consider xi+1(t):

xi+1(t) =

∫ t

0

2s(1 + xi(s))ds =

∫ t

0

2s

(
1 +

i∑
k=1

s2k

k!

)
ds

= 2

∫ t

0

(
s+

i∑
k=1

s2k+1

k!

)
ds = 2

[s2

2
+

i∑
k=1

s2k+2

k!(2k + 2)

]s=t
s=0


= t2 +

i∑
k=1

t2k+2

k!(k + 1)
= t2 +

i∑
k=1

t2k+2

(k + 1)!

=
t2

1!
+

i+1∑
k=2

t2k

k!
=

i+1∑
k=1

t2k

k!

as desired. By induction, xn(t) =
∑n
k=1

t2k

k! and converges as n→∞ to

x∞(t) =

∞∑
k=1

t2k

k!
= −1 +

∞∑
k=0

(t2)k

k!
= −1 + et

2

.

One can verify that it is indeed a solution to the IVP. �

Exercise 2.4. For each of the following IVPs, write down the first few terms of its
Picard’s iteration sequence, deduce the general term of the sequence followed by a
proof by induction.

(1) x′ = tx, x(0) = 1

(2) x′ = t+ x, x(0) = 0

Next we look at a two dimensional example:

Example 2.3. Consider the second-order IVP: x′′ = −x, x(0) = 0, x′(0) = 1, which
can be written as a first-order two dimensional system of ODE with initial condition[

x
v

]′
=

[
v
−x

]
,

[
x(0)
v(0)

]
=

[
0
1

]
.

The system is equivalent to the integral equation:[
x(t)
v(t)

]′
=

[
0
1

]
+

∫ t

0

[
v(s)
−x(s)

]
ds.

Integrating a vector-valued function simply means integrating each of its component,
i.e. ∫ t

0

[
v(s)
−x(s)

]
ds =

[ ∫ t
0
v(s)ds

−
∫ t

0
x(s)ds

]
.

The Picard’s iteration sequence xn =:

[
xn(t)
vn(t)

]
is defined as follows:[

x0(t)
v0(t)

]
=

[
0
1

]
[
xn(t)
vn(t)

]
︸ ︷︷ ︸

xn(t)

=

[
0
1

]
︸︷︷︸
x0

+

[ ∫ t
0
vn−1(s)ds

−
∫ t

0
xn−1(s)ds

]
︸ ︷︷ ︸∫ t

0
F(xn−1(s))ds
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By direct computations (exercise), we get:

x1(t) =

[
t
1

]
x2(t) =

[
t

1− t2

2

] x3(t) =

[
t− t3

3!

1− t2

2

]

x4(t) =

[
t− t3

3!

1− t2

2! + t4

4!

]

Exercise 2.5. Verify the above calculations.

Based on these patterns, we conjectured that

x2n−1(t) =

[
x2n−1(t)
v2n−1(t)

]
=

[∑n
k=1

(−1)k−1t2k−1

(2k−1)!∑n−1
k=0

(−1)kt2k

(2k)!

]
(2.6)

x2n(t) =

[
x2n(t)
v2n(t)

]
=

[∑n
k=1

(−1)k−1t2k−1

(2k−1)!∑n
k=0

(−1)kt2k

(2k)!

]
.(2.7)

Again, to prove this claim, we use induction. Assume the above is true for some n,
then we consider both x2n+1 and x2n+2:

x2n+1(t) =

[
0
1

]
+

[ ∫ 1

0
v2n(s)ds

−
∫ 1

0
x2n(s)ds

]
=

[
0
1

]
+

[ ∫ 1

0

∑n
k=0

(−1)ks2k

(2k)! ds

−
∫ t

0

∑n
k=1

(−1)k−1s2k−1

(2k−1)! ds

]

=

[
0
1

]
+

 ∑n
k=0

[
(−1)ks2k+1

(2k+1)!

]s=t
s=0

−
∑n
k=1

[
(−1)k−1s2k

(2k)!

]s=t
s=0

 =

[ ∑n+1
k=1

(−1)k−1t2k−1

(2k−1)!

1−
∑n
k=1

(−1)k−1t2k

(2k)!

]

=

[∑n+1
k=1

(−1)k−1t2k−1

(2k−1)!∑n
k=0

(−1)kt2k

(2k)!

]
,

x2n+2(t) =

[
0
1

]
+

[ ∫ t
0
v2n+1(s)ds

−
∫ t

0
x2n+1(s)ds

]
=

[
0
1

]
+

[ ∫ t
0

∑n
k=0

(−1)ks2k

(2k)! ds

−
∫ t

0

∑n+1
k=1

(−1)k−1s2k−1

(2k−1)! ds

]

=

[ ∑n
k=0

(−1)kt2k+1

(2k+1)!

1 +
∑n+1
k=1

(−1)kt2k

(2k)!

]
=

[∑n+1
k=1

(−1)k−1t2k−1

(2k−1)!∑n+1
k=0

(−1)kt2k

(2k)!

]
.

Therefore, the claim is also true for x2n+1(t) and x2n+2(t). Hence (2.6) and (2.7)
holds for all n ≥ 1. Let n→∞ in either one of (2.6) and (2.7), we have:

x∞(t) =

[∑∞
k=1

(−1)k−1t2k−1

(2k−1)!∑∞
k=0

(−1)kt2k

(2k)!

]
=

[
sin t
cos t

]
.

Therefore x∞(t) = sin t and v∞(t) = cos t, which clearly form a solution to the
first-order system, and x∞(t) = sin t is also a solution to the second-order IVP. �

Exercise 2.6. Deduce the general term of the Picard’s iteration sequence of the
first-order system corresponding to the second-order IVP:

x′′ = −4x, x(0) = 0, x′(0) = 2.

Does the sequence converges? If so, does it converge to a solution to this IVP?
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Example 2.4. In this last example about Picard’s iteration, we consider a linear IVP

x′ = Ax, x(0) = x0.

which was discussed in detail in Chapter 1. We will show that the Picard’s iteration
sequence of these linear systems will converge to the solution in terms of matrix
exponential, i.e. etAx0, as we have seen in Theorem 1.28.

First we rewrite the IVP as an integral equation:

x(t) = x0 +

∫ t

0

Ax(s)ds.

and its Picard’s iteration sequence is defined by:

x0(t) = x0

xn(t) = x0 +

∫ t

0

Axn−1(s)ds.

By direction computation, one can show

x1(t) = x0 +

∫ t

0

Ax0ds

= x0 + [sAx0]
s=t
s=0 (Regard Ax0 as a constant.)

= x0 + tAx0

x2(t) = x0 +

∫ t

0

Ax1(s)ds = x0 +

∫ t

0

Ax0 + sA2x0ds

= x0 + tAx0 +
t2

2
A2x0 = x0 + tAx0 +

(tA)2

2
x0.

Based on this pattern, we conjecture:

xn(t) = x0 + tAx0 +
(tA)2

2!
x0 + . . .+

(tA)n

n!
x0 =

(
n∑
k=0

(tA)k

k!

)
x0.

Exercise 2.7. Prove, by induction, that

xn(t) =

(
n∑
k=0

(tA)k

k!

)
x0.

Let n→∞, we have xn(t)→ x∞(t) which is given by:

x∞(t) =

∞∑
k=0

(tA)k

k!
x0 = etAx0

as desired. �

In all examples we have seen so far, the Picard’s iteration sequence converges to the
solutions we expect, but it is important to keep in mind that the general terms of most
Picard’s iteration sequences are difficult to deduce.

We will ultimately show that the Picard’s iteration sequence {xn(t)}∞n=0 associated to
the IVP x′ = F(x, t), x(0) = x0 must converge provided the vector field F(x, t) satisfies
certain continuity assumption, known as Lipschitz continuity to be introduced in the next
section. Under this assumption, one can also prove that xn(t) converges uniformly as
n→∞. Combining the Lipschitz continuity of F, one can justify why it is true that:

lim
n→∞

∫ t

0

F(xn(s), s) ds =

∫ t

0

lim
n→∞

F(xn(s), s) ds,
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which is a step we ‘cheated’ in page 41. After all these analytic issues have been resolved,
one can prove the existence theorem by showing that the Picard’s iteration sequence
converges to a solution to the IVP.
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2.3. Lipschitz Continuity

Lipschitz continuity is a crucial concept for studying ODE systems. As you will see in
the proof of the existence theorem, the Lipschitz continuity of the vector field F(x, t) is
used to show that the Picard’s iteration sequence converges uniformly. Furthermore, in
Section 2.7, we will show that Lipschitz continuity of the vector field F always implies
the solution to any IVP is unique.

Recall from multivariable calculus that a function F : Rd → Rm is said to be
continuity at x0 if |F(x) − F(x0)| → 0 as |x − x0| → 0. One can say a function is
continuous at a point, or on a region. A function F is continuous on a region Ω if it is
continuous at every point in Ω. However, one can only talk about Lipschitz continuity on
a region Ω, as demonstrated in its definition:

Definition 2.7. Let Ω be a domain in Rd and I be any time interval (which can be
infinite, closed, open, or half-open). A time-dependent function F(x, t) : Ω× I → Rm
is said to be Lipschitz continuous on Ω × I if there exists a constant L > 0, called a
Lipschitz constant, such that

|F(x, t)− F(y, t)| ≤ L|x− y| for any x, y ∈ Ω and t ∈ I.

A time-independent function G : Ω → Rm is said to be Lipschitz continuous on Ω if
there exists a constant L′ > 0 such that

|G(x)−G(y)| ≤ L′|x− y| for any x, y ∈ Ω.

Remark 2.8. By the squeezing principle, a function F(x, t) being Lipschitz continuous
on Ω× I implies it is continuous in the x-slot at every point on Ω. �

Remark 2.9. Note that if Ω′ ⊂ Ω, then F(x, t) being Lipschitz continuous on Ω × I
implies it is Lipschitz continuous on Ω′ × I. However, it is not vice versa. �

Example 2.5. Some easy examples of Lipschitz continuous functions include:

(1) For any constant a ∈ R, the function F (x) = ax is Lipschitz continuous on R:
for any x, y ∈ R, we have

|F (x)− F (y)| = |ax− ay| = |a||x− y|.
(2) F (x) = |x| is Lipschitz continuous on R: for any x, y ∈ R, we have

|F (x)− F (y)| = ||x| − |y|| ≤ |x− y|.
(3) F (x) = sinx is Lipschitz continuous on R: for any x, y ∈ R, we have

|F (x)− F (y)| = | sinx− sin y|
= | cos ξ||x− y| for some ξ between x and y

≤ 1 · |x− y|.
(4) Given an d× d matrix A, the vector field F(x) = Ax is Lipschitz continuous

on Rd: for any x, y ∈ Rd, we have

|F(x)− F(y)| = |A(x− y)| ≤ ‖A‖ |x− y|.
Here we have used Lemma 1.26.

(5) F (x, t) = xt is Lipschitz continuous on R× [−T, T ] where T is a fixed positive
number: for any x, y ∈ R and t ∈ [−T, T ], we have

|F (x, t)− F (y, t)| = |xt− yt| = |t||x− y| ≤ T · |x− y|.
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However, it is not Lipschitz continuous on (x, t) ∈ R× (−∞,∞) since for any
x 6= y in R, we have

|F (x, y)− F (y, t)|
|x− y|

= |t| → ∞ as t→∞.

If F were Lipschitz continuous on R × (−∞,∞), the fraction |F (x,t)−F (y,t)|
|x−y|

(when x 6= y) must be bounded.

�

The last example demonstrated that a function can be Lipschitz continuous on a one
space-time domain but not on a larger one. Therefore, whenever we talk about Lipschitz
continuity, one should indicate the domain. It does not make much sense for just saying
that a function is Lipschitz continuous.

2.3.0.1. Bounded derivative test for Lipschitz continuity. Before we give more
examples of non-Lipschitz continuous functions, we next talk about a very effective test
to determine whether or not a function is Lipschitz continuous on a given domain. As
demonstrated in the F (x) = sinx example, the Lipschitz continuity follows easily from
the mean-value theorem since the first derivative F ′ is bounded from above and below.
This technique can actually be stated as a general theorem.

Theorem 2.10 (Bounded Derivative Test: one dimension). Let F (x, t) : Ω × I → R
be a differentiable function on an interval domain Ω ⊂ R and time interval I, then F is
Lipschitz continuous on Ω× I if and only if the partial derivative ∂F

∂x is bounded on Ω× I,
i.e. there exists a constant C > 0 such that

∣∣∂F
∂x (x, t)

∣∣ ≤ C for all (x, t) ∈ Ω× I.
Similar results hold for time-independent functions: let G(x) : Ω→ R be a differen-

tiable function on an interval domain Ω ⊂ R, then G is Lipschitz continuous on Ω if and
only if the first derivative G′(x) is bounded on Ω, i.e. there exists a constant C ′ > 0 such
that |G′(x)| ≤ C ′ for all x ∈ Ω.

Proof. We only give the proof for the time-dependent functions since the proof of time-
independent functions is exactly the same.

Suppose F (x, t) : Ω × I → R is Lipschitz continuous on Ω × I, then there exists a
constant L > 0 such that

|F (x, t)− F (x0, t)| ≤ L|x− x0| for any x, x0 ∈ Ω and t ∈ I.

Then for any x 6= x0, one has: ∣∣∣∣F (x, t)− F (x0, t)

x− x0

∣∣∣∣ ≤ L.
Since F (x, t) is differentiable on Ω× I, the partial derivative

∂F

∂x
(x0, t) := lim

x→x0

F (x, t)− F (x0, t)

x− x0

exists. It follows from the above inequality that one must have
∣∣∂F
∂x (x0, t)

∣∣ ≤ L. Since
(x0, t) ∈ Ω× I is arbitrarily chosen, we have

∣∣∂F
∂x

∣∣ ≤ L on every (x, t) ∈ Ω× I.

Conversely, suppose
∣∣∂F
∂x

∣∣ ≤ C on every (x, t) ∈ Ω× I. Then given any x, y ∈ Ω and
t ∈ I, we have

F (x, t)− F (y, t) =
∂F

∂x
(ξ, t) · (x− y) (mean-value theorem in the x-slot)

|F (x, t)− F (y, t)| =
∣∣∣∣∂F∂x (ξ, t)

∣∣∣∣ |x− y| ≤ C|x− y| (by the given hypothesis)
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which shows F (x, t) is Lipschitz continuous on Ω× I. �

Example 2.6. Let’s look at a few examples on how to apply Theorem 2.10.

(1) F (x) = x5 is Lipschitz continuous on [0, 1] because F ′(x) = 5x4 and for
x ∈ [0, 1], we have |F ′(x)| = |5x4| ≤ 5 on x ∈ [0, 1]. However, it is not
Lipschitz continuous on R because |F ′(x)| = 5x4 →∞ as x→∞.

(2) F (x) = x1/2 is not Lipschitz continuous on [0,∞), since F is differentiable on
(0,∞) and F ′(x) = 1

2
√
x
→∞ as x→ 0. Therefore, |F ′(x)| is not bounded on

(0,∞) and so Theorem 2.10 asserts it is not Lipschitz continuous on (0,∞).
By the definition of Lipschitz continuity, it is not Lipschitz continuous on the
larger domain [0,∞).

However, it is Lipschitz continuous on [ε,∞) where ε > 0 is any fixed
constant. To see this, consider

|F ′(x)| = 1

2
√
x
≤ 1

2
√
ε

for any x ∈ [ε,∞).

As ε is a fixed non-zero constant, Theorem 2.10 asserts that F is Lipschitz
continuous on [ε,∞).

(3) Consider the time-dependent function F (x, t) = tx which was discussed
before using the definition of Lipschitz continuity. One can show F (x, t) is not
Lipschitz continuous on R× (−∞,∞) because∣∣∣∣∂F∂x

∣∣∣∣ = |t| → ∞ as t→∞.

However, it is Lipschitz continuous on R × [−T, T ] for any fixed constant
T > 0, since

∣∣∂F
∂x

∣∣ = |t| ≤ T for any (x, t) ∈ R× [−T, T ].

�

Remark 2.11. Although the bounded derivative test is very straight-forward, it only ap-
plies to differentiable functions. One cannot use this test for non-differentiable functions
such as F (x) = |x|. �

Exercise 2.8. Determine whether or not each of the following functions is Lipschitz
continuous on the specified domain:

(a) F (x) = x1/3 on x ∈ [−1, 1].

(b) F (x) = x1/3 on x ∈ [− 1
2 , 1].

(c) F (x) = x3 on x ∈ [−M,M ] where M > 0 is a fixed number.

(d) F (x) = x3 on x ∈ R.

(e) F (x) = 1/x on x ∈ [1,∞).

(f) F (x) = 1/x on x ∈ (0, 1].

(g) F (x) = sin(cosx) on x ∈ R.

(h) F (x) = sin(cosx) on x ∈ [0, 2π].

(i) F (x, t) = t1/3 on (x, t) ∈ R× (−∞,∞).

(j) F (x, t) = sin(cos(x+ t2)) on (x, t) ∈ R× (−∞,∞).

(k) F (x, t) = cos(tx) on (x, t) ∈ R× (−∞,∞).
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Exercise 2.9. Consider the function

F (x, t) =
t(x2 + 1)

x
.

Determine whether or not F (x, t) is Lipschitz continuous on each of the following
domain Ω× I:

(a) Ω× I = [1, 2]× [0, 1]

(b) Ω× I = (1, 2)× [0, 1]

(c) Ω× I = [1, 2]× [0,∞)

(d) Ω× I = [1,∞)× [0, T ] where T > 0 is a fixed number.

(e) Ω× I = (0, 1)× [0, 1].

Exercise 2.10. Determine all possible values of a such that F (x) = xa is Lipschitz
continuous on [0, 1].

Exercise 2.11. Given a function F (x) : Ω → R and a function G(y) : F (Ω) → R,
where F (Ω) denotes the image of F . Suppose F is Lipschitz continuous on Ω and
G is Lipschitz continuous on F (Ω), show that the composition G ◦ F is Lipschitz
continuous on Ω.

The bounded derivative test can be generalized to higher dimensions. However, one
should note that there is a convexity condition for the domain Ω.

Definition 2.12 (Convex Domain). A subset Ω ⊂ Rd is said to be convex if for any pair
of points x, y ∈ Ω, the line segment joining x and y lies completely inside Ω. Precisely,
the straight-line

r(s) := sx + (1− s)y
is contained in Ω for any s ∈ [0, 1].

Theorem 2.13 (Bounded Derivative Test: higher dimensions). Let F(x, t) : Ω×I → Rm
be a differentiable function on a convex domain Ω ⊂ Rd and time interval I. Denote
xj , where 1 ≤ j ≤ d, be the j-th component of x, i.e. x = (x1, . . . , xd), and Fi, where
1 ≤ i ≤ m, be the i-th component of F. Precisely:

F(x, t) =

F1(x1, . . . , xd, t)
...

Fm(x1, . . . , xd, t)

 .
Then, F is Lipschitz continuous on Ω × I if and only if all first partial derivatives ∂Fi

∂xj
,

where 1 ≤ i ≤ m and 1 ≤ j ≤ d, are bounded above and below on (x, t) ∈ Ω× I.

Remark 2.14. An equivalent way (without involving components of x and F) to state the
boundedness of all ∂Fi∂xj

’s is that there exists a constant C > 0 such that: ‖DF(x, t)‖ ≤ C
for all (x, t) ∈ Ω × I, where DF(x, t) denotes the Jacobian matrix of F at (x, t) to be
defined in Chapter 3. �

Proof of Theorem 2.13. Suppose there exists a constant C > 0 such that
∣∣∣∂Fi∂xj

∣∣∣ ≤ C on
Ω× I for any i, j. Take any pair of point y, z ∈ Ω and t ∈ I, the line segment

r(s) = sy + (1− s)z, s ∈ [0, 1]
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lies inside Ω by the convexity assumption. Consider the composition of F and r:

G(s, t) := F(r(s), t) : [0, 1]× I → Rm

which is also differentiable on [0, 1]× I. Let Gi(s, t) be the i-th component of G(s, t). For
each i, by the mean-value theorem applied to Gi in the s-slot, we have:

Gi(1, t)−Gi(0, t) =
∂Gi
∂s

(ξi, t) · (1− 0) for some ξi ∈ [0, 1]

=

d∑
k=1

∂Fi
∂xk
· dxk
ds

(chain rule)

Along the straight-line path, the k-th component of r(s) is xk := syk + (1− s)zk where
xk and yk denotes the k-th components of y and z respectively. Therefore,

|Gi(1, t)−Gi(0, t)| =

∣∣∣∣∣
d∑
k=1

∂Fi
∂xk
· d
ds

(syk + (1− s)zk)

∣∣∣∣∣
=

∣∣∣∣∣
d∑
k=1

∂Fi
∂xk
· (yk − zk)

∣∣∣∣∣ ≤
d∑
k=1

∣∣∣∣ ∂Fi∂xk

∣∣∣∣ |yk − zk| (triangle inequality)

≤

(
d∑
k=1

∣∣∣∣ ∂Fi∂xk

∣∣∣∣2
)1/2( n∑

k=1

|yk − zk|2
)1/2

(Cauchy-Schwarz)

≤

(
d∑
k=1

C2

)1/2

︸ ︷︷ ︸
given

· |y − z|︸ ︷︷ ︸
definition

=
√
dC|y − z|.

Finally,

|G(1, t)−G(0, t)| =

(
m∑
k=1

|Gi(1, t)−Gi(0, t)|2
)1/2

≤

(
m∑
k=1

dC2|y − z|2
)1/2

=
√
mdC|y − z|.

By definitions of G and r, we have G(1, t) = F(r(1), s) = F(y, t) and similarly G(0, t) =
F(z, t). Therefore,

|F(y, t)− F(z, t)| ≤
√
mdC|y − z|.

Since y, z and t are arbitrary, F(x, t) is Lipschitz continuous on Ω× I.

Conversely, assume F is Lipschitz continuous on Ω× I, then there exists L > 0 such
that

|F(y, t)− F(z, t)| ≤ L |y − z| for any y, z ∈ Ω, t ∈ I.
Then this implies for any i, we have

|Fi(x0 + sej , t)− Fi(x0, t)| ≤ |F(x0 + sej , t)− F(x0, t)| ≤ L|x0 + sej − x0| = L|s|
for any x0 ∈ Ω, t ∈ I and s in some small interval (−ε, ε). Here ej denotes the j-th
standard basis vector of Rd, and ε is small enough such that x0 + sej ∈ Ω for any
s ∈ (−ε, ε). Then by the definition of partial derivatives, we have∣∣∣∣∂Fi∂xj

(x0, t)

∣∣∣∣ = lim
s→0

∣∣∣∣Fi(x0 + sej , t)− Fi(x0, t)

s

∣∣∣∣ ≤ L.
It completes our proof. �
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From now on, we will use Fi to denote the i-th component of F, and xj to denote
the j-th component of x, etc.

Example 2.7. This following examples demonstrate the use of the higher dimension
bounded derivative test

(1) The linear map F(x) = Ax, where x ∈ Rd and A is an m × d matrix, is
Lipschitz continuous on Rd. Denote the (i, j)-th entry of A by [A]ij . It can

be easily verified that ∂Fi
∂xj

= [A]ij . Therefore, the first partials
∣∣∣∂Fi∂xj

∣∣∣ are all

bounded by M := max {|[A]ij | : 1 ≤ i ≤ m, 1 ≤ j ≤ d.}.

(2) Let F(x1, x2) =

[
x2

1− x2
1

]
. Then:

∂F1

∂x1
= 0

∂F1

∂x2
= 1

∂F2

∂x1
= −2x1

∂F2

∂x2
= 0

which are all bounded by 2 on the infinite strip (x1, x2) ∈ [−1, 1]×R. Therefore
F is Lipschitz continuous on [−1, 1]× R by Theorem 2.13.

However, it is not Lipschitz continuous on the infinite strip R × [−1, 1]

since
∣∣∣∂F2

∂x1

∣∣∣ = 2|x1| → ∞ as x1 →∞.

(3) Let F(x1, x2, t) =

[
x1 + t
tx2

]
. Then:

∂F1

∂x1
= 1

∂F1

∂x2
= 0

∂F2

∂x1
= 0

∂F2

∂x2
= t

Therefore, F is Lipschitz continuous on R2 × [−T, T ] for any fixed number
T > 0, since all first partials are bounded by T in this space-time domain.
However, it is not Lipschitz continuous on Ω×(−∞,∞) for any region Ω ⊂ R2,

as
∣∣∣∂F2

∂x2

∣∣∣ = |t| → ∞ as t→∞.

�

Exercise 2.12. Show that F(x) =

[
lnx1

x2
2 + x1

]
is Lipschitz continuous on the domain

(x1, x2) ∈ [ε,∞) × [−M,M ] for any fixed ε > 0 and M > 0. However, it is not
Lipschitz continuous on either (0,∞)× [−M,M ] or [ε,∞)× R.

The bounded derivative test allows us to prove Lipschitz continuity by simply showing
the boundedness of first partial derivatives. However, there are many examples of
functions whose first derivatives are not bounded on the whole domain but only on part
of it. It prompts us to define a weaker notion, locally Lipschitz continuous, that is less
restrictive.

There are several topological concepts such as open sets and closed sets before we
can define local Lipschitz continuity.

From now on, we denote:

Bdr (x0) = {x ∈ Rd : |x− x0| < r}

= the open ball in Rd centered at x0 with radius r
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Both are convex sets in Rd. If the dimension d is clear from the context, we will omit the
superscript d and simply write Br(x0). In one dimension, ‘balls’ are open intervals. For
instance, Br(x) = (x− r, x+ r).

Definition 2.15 (Open Sets and Closed Sets). A subset U of Rd is said to be an open
set in Rd (or alternatively, open in Rd) if for every x ∈ U , there exists ε > 0 such that
Bdε (x) ⊂ U .

A subset C of Rd is said to be a closed set in Rd (or alternatively, closed in Rd) if
its complement Rd\C is an open set in Rd. �

Example 2.8. Any open ball Bdr (y) is open in Rd: given any x ∈ Bdr (y), one can
take ε = r − |x− y| then one can verify by triangle inequality that Bdε (x) ⊂ Bdr (y):
pick any z ∈ Bdε (x) and we need to show z ∈ Bdr (y). In order to show this, we
bound:

|z− y| = |z− x + x− y|
≤ |z− x|+ |x− y| (triangle inequality)

< ε+ |x− y| (since z ∈ Bdε (x))

= r − |x− y|+ |x− y| = r.

Therefore, |z− y| < r and equivalently we have z ∈ Bdr (y). �

Exercise 2.13. Draw a diagram to illustrate the above proof that Bdr (y) is open in
Rd.

Exercise 2.14. Let C be the closed ball with radius r centered at y, i.e. C = {x ∈
Rd : |x− y| ≤ r}. Show that Rd\C is open in Rd, and hence C is closed in Rd.

In this course, it suffices to verify whether a set is open or closed by visual inspection. In
a point-set topology course, you will learn more tools and techniques to prove a certain
set is open and/or closed.

Remark 2.16. The null set ∅ is both open and closed in Rd. Check up a youtube video
titled “Hitler learns topology" (Profanity warning). �

Definition 2.17 (Bounded Sets). A subset B of Rd is bounded if there exists a ball
Bdr (0) such that B ⊂ Bdr (0). Therefore, Rd is both open and closed in Rd as well. �

Definition 2.18 (Local Lipschitz Continuity). Let Ω ⊂ Rd be an open domain and I is a
time interval. A function F(x, t) : Ω× I → Rm is said to be locally Lipschitz continuous
on Ω×I if for every point x0 ∈ Ω, there exists a ball Br(x0) ⊂ Ω such that F is Lipschitz
continuous on Br(x0)× I.

Similarly, a time-independent function G : Ω→ Rm is locally Lipschitz continuous
on Ω if for every point x0 ∈ Ω, there exists a ball Br(x0) ⊂ Ω such that G is Lipschitz
continuous on Br(x0).

Recall that the motivations for introducing Lipschitz continuity is that F being
Lipschitz continuous, as we will see later, allows us to justify some of the steps we
‘cheated’ in page 41. However, it is a very strong assumption to require a function being
Lipschitz continuous on the whole Rd as we have seen in some of the examples. Even a
simple function like F (x) = x2 is not Lipschitz continuous on R. Yet, it is locally Lipschitz
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continuous on R because for any x0 ∈ R, the function F (x) = x2 is Lipschitz continuous
on any ball centered at x0 with any finite radius, say (x0 − 1, x0 + 1).

In order to establish the convergence of the Picard’s iteration sequence, it is in fact
good enough to have local Lipschitz continuity. Locally Lipschitz continuous functions
are very common as all C1 functions, to be defined below, satisfy this condition.

Definition 2.19 (C1-Functions). Let Ω be an open domain in Rd and I is time interval.
A function F(x, t) : Ω×I → Rm is said to be C1 on Ω×I if all its first partial derivatives
∂Fi
∂xj

and ∂Fi
∂t , for any 1 ≤ i ≤ m and 1 ≤ j ≤ d, exist and are continuous on Ω× I.

Similarly, a time-independent function G : Ω→ Rm is said to be C1 on Ω if all its
first partial derivatives ∂Gi

∂xj
, 1 ≤ i ≤ m and 1 ≤ j ≤ d, exist and are continuous on

Ω. �

Remark 2.20. A function can be C1 on a smaller domain but not on a larger one.
However, if the domain Ω of the function is clearly indicated, one may simply say the
function is C1 to mean that it is C1 on Ω. �

Theorem 2.21 (C1 implies Local Lipschitz Continuity). Let Ω be an open convex domain
in Rd and I is a closed and bounded time interval. If a function F(x, t) : Ω× I → Rm is
C1 on Ω× I, then F must be locally Lipschitz continuous on Ω× I.

Similarly, if a time-independent function G : Ω → Rm is C1 on Ω, then G must be
locally Lipschitz continuous on Ω.

Proof of Theorem 2.21. We will only prove the time-dependent case since the other
case is similar. Suppose F(x, t) is C1 on Ω × I, then its first partial derivatives are all
continuous on Ω× I. At any point x0 ∈ Ω, since Ω is an open domain, one can choose a
small ball Br(x0) ⊂ Ω.

Denote Br/2(x0) the closed ball with radius r/2 centered at x0. Clearly

Br/2(x0) ⊂ Br/2(x0) ⊂ Br(x0) ⊂ Ω.

The set Br/2(x0) × I is a closed and bounded (that’s why we need I to be closed and
bounded!) and therefore the extreme value theorem asserts that all continuous functions
defined on this set must be bounded. In particular, the first partial derivatives ∂Fi

∂xj
are

all bounded on Br/2(x0)× I. Therefore, by Theorem 2.13, F is Lipschitz continuous on
Br/2(x0)× I, and on the smaller set Br/2(x0)× I as well. Since the argument holds for
every x0 ∈ Ω, the function F is locally Lipschitz continuous on Ω× I. �

Example 2.9. The function F(x) =

[
lnx1

x2
2 + x1

]
is C1 on (0,∞)× R because all the

first partials derivatives (listed below) are continuous on this domain:
∂F1

∂x1
=

1

x1

∂F1

∂x2
= 0

∂F2

∂x2
= 1

∂F2

∂x2
= 2x2

Therefore it is also locally Lipschitz continuous on (0,∞)× R. However, it is not
Lipschitz continuous on (0,∞)× R. �
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Exercise 2.15. Let F (x) : B1(0)→ R be the function defined by:

F (x1, x2) =
1

1− x2
1 − x2

2

.

Is F Lipschitz continuous on B1(0)? Is F locally Lipschitz continuous on B1(0)?

Exercise 2.16. Let F (x) :=
√
x.

(a) Is F differentiable at x = 0?

(b) Is F C1 on [0, 1]?

(c) Is F C1 on (0, 1]?

(d) Is F Lipschitz continuous on [0,∞)?

(e) Is F locally Lipschitz continuous on [0,∞)?

(f) Is F Lipschitz continuous on (0,∞)?

(g) Is F locally Lipschitz continuous on (0,∞)?
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2.4. Picard-Lindelöf’s Existence Theorem

After imposing the (local) Lipschitz continuity condition on F(x, y), we are now ready to
state and give a complete proof of the existence theorem due to Picard and Lindelöf. Let’s
first recap the ingredients of proving the existence theorems. We begin with a domain
Ω ⊂ Rd, a point x0 ∈ Ω and an IVP:

x′ = F(x, t), x(0) = x0.

We assume, as always, that the vector field F is continuous, then by Proposition 2.3 the
IVP is equivalent to the integral equation (2.4):

x(t) = x0 +

∫ t

0

F(x(s), s) ds.

In order to show the integral equation has a solution, we mimic the iteration examples
discussed in Section 2.1 and defined the Picard’s iteration sequence:

x0(t) = x0

xn(t) = x0 +

∫ t

0

F(xn−1(s), s) ds for any n ≥ 1.

We will resolve the following two analytic issues:

(1) show that xn converges uniformly on some interval (−ε, ε) as n→∞; and

(2) show that F(xn, ·) converges uniformly on the interval as well, so that we can
perform the following interchanging of the limit and integral signs:

lim
n→∞

∫ t

0

F(xn−1(s), s) ds =

∫ t

0

lim
n→∞

F(xn−1(s), s) ds.

After they are resolved, the limit function x∞ will become a solution to the integral
equation, and by continuity of the limit function x∞, it is also a solution to the IVP.
Hence, the existence of a solution, at least for a short time, is established.

Now we state the existence theorem:

Theorem 2.22 (Picard-Lindelöf’s Existence Theorem). Let Ω be an open domain in Rd,
x0 be a point in Ω, and I = [−T, T ] be a closed and bounded time interval. Suppose
F(x, t) : Ω× I → Rd is a vector field which is locally Lipschitz continuous on Ω× I (see
Definition 2.18), then the initial-value problem

x′ = F(x, t), x(0) = x0

has a solution x(t) defined on an interval [−ε, ε] ⊂ I for some ε > 0.
Similarly, for an autonomous system with a vector field G : Ω→ Rd which is locally

Lipschitz continuous on Ω, the IVP

x′ = G(x), x(0) = x0

has a solution defined on an interval [−ε′, ε′] for some ε′ > 0.

Remark 2.23. By Theorem 2.21, any C1 vector field must be locally Lipschitz continuous.
Therefore, Theorem 2.22 applies to all C1 vector fields. Many examples we have seen so
far are C1 on their domain. �

Like in the previous chapter, we only present the proof of the non-autonomous case,
since the proof for the autonomous case is the same, mutatis mutandis. Here is the
outline of the whole proof:
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(1) Since F is locally Lipschitz continuous, there exists a ball Br(x0) such that F is
Lipschitz continuous on Br(x0)× I.

(2) Then, we show that when restricted to a small time interval [−ε, ε], the Picard’s itera-
tion sequence xn(t) will all lie inside this ball Br(x0). See Lemma 2.24. It will allow
us to apply the Lipschitz continuity of F on the term |F(xn(s), s)− F(xn−1(s), s)|
that will appear in the next step.

(3) Next we show that the adjacent terms xn and xn−1 of the Picard’s iteration sequence
will get closer and closer to each other as n increases. See Lemma 2.25.

(4) As in Problem 2.1, when the adjacent terms xn and xn−1 get closer at suitable rate,
one can use absolute convergence and telescoping method on

∑
n |xn − xn−1| to

show the convergence of xn. See Lemma 2.25.

(5) Finally, we resolve the two analytic issues mentioned before, and complete the
proof of the theorem.

From now on until Theorem 2.22 is proved, the domain Ω, the point x0, the I =
[−T, T ] and the vector field F are all defined as in the statement of Theorem 2.22. The
sequence xn denotes the Picard’s iteration sequence associated to the IVP.

Furthermore, we denote Br(x0) to be the ball in Ω such that F is Lipschitz continuous
on Br(x0)× I. By shrinking the radius of the ball if necessary, we also assume that the
closed ball Br(x0) ⊂ Ω.

Lemma 2.24. Assume the hypotheses of Theorem 2.22. Then, there exists ε > 0 such
that [−ε, ε] ∈ I and xn(t) ∈ Br(x0) for all n ≥ 0 and t ∈ [−ε, ε]. In other words, the
trajectory of the Picard’s iteration sequence must stay inside the ball Br(x0) during the
time t ∈ [−ε, ε].

Proof. Since F is locally Lipschitz continuous on Ω, it is continuous on Ω afortiori. By the
extreme-value theorem, |F| is bounded on the closed and bounded set Br(x0)× [−T, T ].

Denote M := max{|F(x, t) : (x, t)| ∈ Br(x0) × [−T, T ]} which is finite. To show
xn(t) all lie in the ball Br(x0), we first investigate the first few terms:

Obviously, x0(t) = x0 ∈ Br(x0) at all time. Since

x1(t) = x0 +

∫ t

0

F(x0(s), s) ds,

we have:

|x1(t)− x0| =
∣∣∣∣∫ t

0

F(x0(s), s) ds

∣∣∣∣
≤
∫ t

0

|F(x0(s), s)| ds

≤
∫ t

0

Mds = M |t|.

Therefore, if one chooses ε such that Mε < r (and [−ε, ε] ⊂ I), then

|x1(t)− x0| ≤M |t| < r for any t ∈ [−ε, ε].
In other words, x1(t) ∈ Br(x0) for any t ∈ [−ε, ε]. We claim that for this choice of ε, i.e.
ε < min{ rM , T}, we have for any n ≥ 1,

xn(t) ∈ Br(x0) for any t ∈ [−ε, ε].
We have already proved this is true for n = 1. Assume it is true when n = k − 1, i.e.

|xk−1(t)− x0| < r for any t ∈ [−ε, ε].
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Then when n = k, we consider:

xk(t) = x0 +

∫ t

0

F(xk−1(s), s) ds

|xk(t)− x0| =
∣∣∣∣∫ t

0

F(xk−1(s), s) ds

∣∣∣∣
≤
∫ t

0

|F(xk−1(s), s)| ds

≤
∫ t

0

Mds = M |t|

≤Mε (since t ∈ [−ε, ε])

< M · r
M

= r (since ε < r/M)

Therefore, xk(t) ∈ Br(x0) when t ∈ [−ε, ε]. By induction, xn(t) ∈ Br(x0) for any
t ∈ [−ε, ε] and n ≥ 1. �

The next lemma shows that the sequence xn(t) are getting closer and closer to each
other as n becomes large.

Lemma 2.25. Assume the hypotheses of Theorem 2.22. As a consequence of Lemma 2.24,
there exists ε > 0 such that for all n ≥ 1, the Picard’s iteration sequence xn(t) ∈ Br(x0)
when t ∈ [−ε, ε]. Then, for all t ∈ [−ε, ε] and n ≥ 1, we have:

(2.8) |xn(t)− xn−1(t)| ≤ KLn−1|t|n

n!

for some constants K > 0 and L > 0.

Proof. We prove only the case t > 0, since the proof is similar for t < 0. First we
estimate:

|x1(t)− x0(t)| =
∣∣∣∣x0 +

∫ t

0

F(x0(s), s) ds− x0

∣∣∣∣
=

∣∣∣∣∫ t

0

F(x0(s), s) ds

∣∣∣∣
≤
∫ t

0

|F(x0(s) s)| ds.

Define K := max{|F(x0, t)| : t ∈ [−ε, ε]} which is finite by extreme-value theorem.
Then we have |x1(t)− x0(t)| ≤ K|t|. It verifies that (2.8) holds for n = 1. We let L
be a Lipschitz constant of F on Br(x0) × [−ε, ε], i.e. L is a constant such that for any
y, z ∈ Br(x0) and t ∈ [−ε, ε], we have:

|F(y, t)− F(y, t)| ≤ L |y − z| .
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Next we see if (2.8) holds when n = 2. Consider:

|x2(t)− x1(t)| =
∣∣∣∣∫ t

0

F(x1(s), s)− F(x0(s), s)ds

∣∣∣∣ (by definitions of x2 and x1)

≤
∫ t

0

|F(x1(s), s)− F(x0(s), s)|ds

≤
∫ t

0

L|x1(s)− x0(s)|ds (Lipschitz continuity)

≤
∫ t

0

KLsds (using (2.8) for n = 0)

=
KLt2

2
,

which verifies that (2.8) holds for n = 2. Note that we have implicitly used Lemma 2.24
in the third inequality above so as to guarantee that x1(s) lies in the ball Br(x0) on
which F is Lipschitz continuous.

We are going to prove (2.8) by induction. Suppose it holds when n = k, i.e.

|xk(t)− xk−1(t)| ≤ KLk−1tk

k!
for any t ∈ [−ε, ε].

Then for n = k + 1, we have:

|xk+1(t)− xk(t)| =
∣∣∣∣∫ t

0

F(xk(s), s)− F(xk−1(s), s) ds

∣∣∣∣
≤
∫ t

0

|F(xk(s), s)− F(xk−1(s), s)| ds

≤
∫ t

0

L |xk(s)− xk−1(s)| ds

≤
∫ t

0

L · KL
k−1sk

k!
ds

=
KLktk+1

(k + 1)!
,

and so (2.8) holds when n = k + 1. By induction, (2.8) holds for any n ≥ 1. �

The above lemma proves that the terms in the Picard’s iteration sequence are getting
closer and closer as n→∞. By mimicking the argument in the ‘map’ problem in Section
2.1, one can show xn(t) converges. In fact, the estimates proved in Lemma 2.25 assert
that this convergence is uniform on [−ε, ε]. Precisely, we have:

Lemma 2.26. Assume all hypothese of Theorem 2.22. The Picard’s iteration sequence xn
converges uniformly on [−ε, ε] to a limit function as n→∞. Here [−ε, ε] is the interval
obtained in Lemma 2.24.

Proof. By Lemma 2.25, we proved (2.8) for any n ≥ 1:

|xn(t)− xn−1(t)| ≤ KLn−1|t|n

n!
≤ KLn−1εn

n!
, t ∈ [−ε, ε],

and so ‖xn − xn−1‖∞ ≤
KLn−1εn

n! . Here the L∞-norm is taken over the interval [−ε, ε].

By ratio test,
∑∞
n=1

KLn−1εn

n! converges, so the Weierstrass’s M-test (applied with
an = xn − xn−1) shows

∑∞
n=1(xn − xn−1) converges uniformly on [−ε, ε].
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Note that:

xN = x0 + (x1 − x0) + . . .+ (xN − xN−1)

= x0 +

N∑
n=1

(xn − xn−1).

Since
∑N
n=1(xn − xn−1) →

∑∞
n=1(xn − xn−1) uniformly on [−ε, ε] as N → ∞, the

sequence xN converges uniformly on [−ε, ε] to x0 +
∑∞
n=1(xn − xn−1) as N →∞. �

Lemma 2.27. Assume all hypotheses of Theorem 2.22. Denote F(xn, ·) : [−ε, ε] → Rd
be a function that takes t ∈ [−ε, ε] to F(xn(t), t). Then, F(xn, ·) converges uniformly on
[−ε, ε] to F(x∞, ·), where x∞ is the uniform convergence limit of xn as guaranteed by
Lemma 2.26.

Proof. As before, let L be a Lipschitz constant of F is on Br(x0) × [−ε, ε], i.e. L is a
constant such that

|F(y, t)− F(z, t)| ≤ L |y − z| , for any y, z ∈ Br(x0) and t ∈ [−ε, ε].

Take an arbitrary t ∈ [−ε, ε], and subsitute y = xn(t) and z = x∞(t), we have:

|F(xn(t), t)− F(x∞(t), t)| ≤ L |xn(t)− x∞(t)| for any t ∈ [−ε, ε].

Taking the maximum over t ∈ [−ε, ε] on both sides of the inequality, we have:

‖F(xn, ·)− F(x∞, ·)‖∞ ≤ L ‖xn − x∞‖∞ .

Since x → x∞ uniformly on [−ε, ε] by Lemma 2.26, we have ‖xn − x∞‖∞ as n → ∞.
By squeezing principle, it implies ‖F(xn, ·)− F(x∞, ·)‖∞ → 0 and therefore F(xn, ·)
converges uniformly on [−ε, ε] to F(x∞, ·) as n→∞. �

Lemma 2.27 allows us to apply Theorem A.11 for switching the limit and integral
signs. Finally, we can make use of all these lemmas proven to establish the existence
theorem:

Proof of Theorem 2.22. Consider the definition of the Picard’s iteration sequence:

xn(t) = x0 +

∫ t

0

F(xn−1(s), s) ds.

Restrict t ∈ [−ε, ε]. Let n→∞ on both sides:

lim
n→∞

xn(t) = x0 + lim
n→∞

∫ t

0

F(xn−1(s), s) ds

x∞(t) = x0 +

∫ t

0

lim
n→∞

F(xn−1(s), s) ds (by Lemma 2.27 and Theorem A.11)

x∞(t) = x0 +

∫ t

0

F(x∞(s), s) ds (by continuity of F)

Therefore, x∞(t) solves the integral equation (2.4). As xn → x∞ uniformly on [−ε, ε],
the limit function x∞ must be continuous by Theorem A.11. Therefore, by Proposition
2.3, x∞(t) solves the IVP:

x′ = F(x, t), x(0) = x0

on t ∈ [−ε, ε], completing the proof. �

Remark 2.28. We will prove uniqueness of solution of this IVP in Section 2.7 using the
Grönwall’s Inequality. �
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Remark 2.29. It is also possible to prove existence of the IVP by just assuming F is
continuous (while Theorem 2.22 requires local Lipschitz continuity). The proof, which
is more complicated in terms of analysis, will be presented in Section 2.8 using Arzela-
Ascoli’s Theorem. This existence result, commonly called the Peano’s Existence Theorem,
do not require Lipschitz continuity but uniqueness is not guaranteed. �

2.4.0.1. Existence time interval. From the proof of Theorem 2.22, it is possible
to estimate the width ε of the time interval on which existence of solutions is guaran-
teed. Precisely, if |F| is bounded by M on Br(x0) × [−T, T ], then ε can be taken to
be min{ rM , T}. For an autonomous IVP, the ε′ can be simply taken to be r

M . However,
readers should be caution that the time interval [−ε, ε] is one that we can guarantee the
IVP has a solution. It is possible that the solution can be defined beyond this time interval.
For instance, consider the one-dimensional IVP:

x′ = x2︸︷︷︸
F (x)

x(0) = 1︸︷︷︸
x0

.

Then on the ball Br(x0) = (1− r, 1 + r) with |F (x)| = x2 is bounded by (1 + r)2 =: M ,
and so one can take ε′ = r

M = r
(1+r)2 .

Solving this IVP, one should get x(t) = 1
1−t . Therefore, the solution exists for

t ∈ (−∞, 1). However, no matter what r > 0 we pick, it is impossible for ε′ = r
(1+r)2 to

be 1 since it is at most 1
4 . To summarize, Theorem 2.22 gives us a time interval on which

a solution must exist, but it fails to tell us what is the maximal time interval for a solution
to be defined. In fact, it is usually impossible to find the exact maximal existence time
since most solutions of ODE systems cannot be written down explicitly. However, we will
see in the Section 2.5 that if Tmax > 0 is the maximal existence time, i.e. the solution
x(t) to an IVP exists on t ∈ [0, Tmax) but does not exist pass Tmax, then one can assert
what could happen on the spatial position of the trajectory x(t) when t→ T−max.

Theorem 2.22 requires the vector field F(x, t) to be locally Lipschitz continuous.
However, if the vector field is globally Lipschitz continuous, i.e. F is Lipschitz continuous
on the whole Rd × (−∞,∞), or for autonomous case Lipschitz continuous on the whole
Rd, then one can actually prove long-time existence, i.e. the solution x(t) obtained in
the proof is defined for all t ∈ (−∞,∞).

Exercise 2.17. Prove the following global existence theorem: Given x0 ∈ Rd and
suppose F(x, t) : Rd× (−∞,∞) is Lipschitz continuous on the whole Rd× (−∞,∞),
then the IVP:

x′ = F(x, t), x(0) = x0

has a global solution x(t) defined on t ∈ (−∞,∞).

You should modify the proof of Theorem 2.22. First go through and understand
the whole local existence proof, then write up a complete coherent proof for the
global existence theorem. Some part(s) in the local existence proof can be omitted,
while some part(s) need to be modified. As a hint, we are now dealing with an
infinite time interval. You will see that the K defined in the proof of Lemma 2.25
may be infinite if one replace [−ε, ε] by (−∞,∞). To overcome this issue, you may
first fix an arbitrary T > 0, and try to first show that the Picard’s iteration sequence
converges uniformly on [−T, T ] to a solution defined on [−T, T ]. Since T can be
taken arbitrarily large, the solution extends to (−∞,∞).
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Example 2.10. Let’s take a look at several examples about finding the existence
time interval [−ε, ε] as best as we can. Readers should be reminded that the intervals
found below may not be the maximal time interval.

(1) Consider the IVP:

x′1 = sinx2 + t x1(0) = 1

x′2 = cosx1 + t2 x2(0) = 2

In this case, F(x, t) =

[
sinx2 + t

cosx1 + t2

]
. Its first partial derivatives are:

∂F1

∂x1
= 0

∂F1

∂x2
= cosx2

∂F2

∂x1
= − sinx1

∂F2

∂x2
= 0

which are all bounded on R2× (−∞,∞). Therefore, F is Lipschitz continuous
on R2 × (−∞,∞). By Exercise 2.17, the IVP has a solution x(t) defined for
all t ∈ (−∞,∞).

(2) Consider the one dimensional autonomous IVP:

x′ = ex, x(0) = 1.

Take F (x) = ex, then ∂F
∂x = ex which is bounded on every bounded [a, b] ⊂ R.

Take an arbitrary r > 0, and consider the ball Br(1) = (1− r, 1 + r). Then for
x ∈ Br(1) we have:

|F (x)| = ex ≤ e1+r =: M.

The local existence theorem asserts that a solution exists on t ∈ [− r
e1+r ,

r
e1+r ],

which is the largest when r = 1 by elementary calculus. Therefore, the IVP
has a solution defined on [−e−2, e−2], but keep in mind that the solution can
extend beyond this time interval. In fact, this IVP can be solved explicitly by
separation of variables. The solution is given by:

x(t) = 1− ln(1− et)
which is defined on t ∈ (−∞, e−1).

(3) Consider the one dimensional non-autonomous IVP:

x′ = t2 + x2, x(0) = 0.

In this IVP, F (x, t) = t2 +x2 which is defined on R× (−∞,∞). Also, ∂F∂x = 2x
which is bounded on [a, b] × [−T, T ] for any finite a, b and T . Therefore,
F (x, t) is Lipschitz continuous on any such subset of R× (−∞,∞), but is not
globally Lipschitz continuous.

Take an arbitrary r > 0 and consider the ball Br(0) = (−r, r). Then for
(x, t) ∈ Br(0)× [−T, T ], we have

|F (x, t)| = t2 + x2 ≤ T 2 + r2 =: M.

Theorem 2.22 asserts that solution x(t) exists on t ∈ [− r
T 2+r2 ,

r
T 2+r2 ]∩[−T, T ].

From calculus, min{T, r
T 2+r2 } is the largest possible when r = T =

√
2/2.

Therefore, one can guarantee that a solution exists for t ∈ [−
√

2/2,
√

2/2].

�
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Exercise 2.18. For each of the following IVPs, show that a solution exists using
Theorem 2.22, and determine the largest existence time τ as guaranteed by the
theorem (which is not necessarily the actual maximal existence time Tmax of the
solution). If it is possible to find the solution of the IVP, compare τ and Tmax of the
solution.

(a) x′ = sin(sinx), x(0) = 1

(b) x′ = 1 + tanx, x(0) = 0

(c) x′ = 1 + x2, x(0) = 0

(d) x′ = t+ x3, x(0) = 1
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2.5. Finite-Time Singularity

Although it is not always possible to tell exactly what time a solution to an IVP ceases to
exist, there is something we can say about where the trajectory is at the time the solution
ceases to exist.

Definition 2.30 (Finite-Time Singularity). A solution x(t) to an ODE system x′ = F(x, t)
is said to have a forward finite-time singularity at Tmax <∞ if the solution x(t) exists
on [0, Tmax) but not on [0, Tmax + δ) for any δ > 0. Similarly, x(t) is said to have a
backward finite-time singularity at Tmin > −∞ if the solution x(t) exists on (Tmin, 0]
but not on (Tmin − δ, 0] for any δ > 0. The description backward or forward can be
omitted when it is clear from the context.

The following discussion will be mostly about forward finite-time singularity, i.e.
as t → T−max. Similarly results hold for backward finite-time singularity. Furthermore,
to avoid some complications with the time interval I, let’s focus only on autonomous
systems which will be sufficient for the rest of the course.

Theorem 2.31. Let Ω ⊂ Rd be an open domain. Suppose the vector field F(x) : Ω→ Rd
is locally Lipschitz continuous on Ω, and x(t) is a solution to x′ = F(x) with (forward)
finite-time singularity at Tmax <∞. Then, if x(t)→ y as t→ T−max for some y ∈ Rd, we
must have y ∈ Rd\Ω.

Remark 2.32. Heuristically, Theorem 2.31 asserts that if a finite-time singularity occurs
at some y, then y must be outside of Ω (most likely on ∂Ω). In other words, as long as
the solution x(t) stays in the interior of Ω, then solution must continue for a while before
it becomes singular. �

Example 2.11. An easy example to illustrate this scenario is the one-dimensional
ODE: x′ = − 1

x on x ∈ (0,∞). Using separation of variables, the solution with initial
data x(0) = x0 > 0 is given by: x(t) =

√
x2

0 − 2t, which cannot be continued when

t approach x2
0

2 =: Tmax. We can see that x(t)→ 0 as t→ Tmax, and 0 is a boundary
point of the domain (0,∞). �

In order to establish this result, we need two lemmas, one about the solution (Lemma
2.33) and another about the topology of open sets. The first lemma shows that for any
closed and bounded set K in Ω, one can always find a time τ < Tmax such that x(τ) is
outside K. Since the lemma holds for any closed and bounded set K inside Ω, one may
take larger and larger closed and bounded set K to cover up the domain Ω, then the
second lemma will ‘push’ the limit y out of the interior of Ω.

Lemma 2.33. Assume Ω, F and x(t) : [0, Tmax) → Rd as in Theorem 2.31. Let K be a
closed and bounded subset of Ω, then for any ε > 0 there exists a time τ ∈ [Tmax− ε, Tmax)
such that x(τ) 6∈ K.

Proof. We prove by contradiction: assume x(t) ∈ K for all t ∈ [Tmax − ε, Tmax). By the
Bolzano-Weierstrass’s Theorem, one can find a sequence tn → Tmax as n→∞ such that
x(tn) ∈ K converges to a limit z0 as n→∞. By the closedness of K, the limit z0 must
be in K.

Since K is closed and bounded and F is afortiori continuous by the local Lipschitz
continuity assumption, the extreme value theorem shows |F| must be bounded by some
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constant M on K. The solution x(t) satisfies the integral equation:

x(t) = x(ξ) +

∫ t

ξ

F(x(s))ds.

for any ξ, t ∈ [0, Tmax). By our assumption, x(s) ∈ K for any s ∈ [Tmax − ε, Tmax) and
therefore, we have:

|x(t)− x(ξ)| ≤
∣∣∣∣∫ t

ξ

F(x(s))ds

∣∣∣∣
≤
∫ t

ξ

|F(x(s))| ds

≤
∫ t

ξ

Mds = M |t− ξ|.

Substitute t = tn, we get: |x(tn)− x(ξ)| ≤M |tn − ξ| for any n ≥ 1. Letting n→∞, we
have |z0 − x(ξ)| ≤M |Tmax − ξ| since x(tn)→ z0.

Let ξ → T−max we have M |Tmax − ξ| → 0, and by applying the squeezing principle,
we have |z0 − x(ξ)| → 0 as ξ → T−max, or in other words, x(ξ) → z0. Since the limit
exists, one can decree x(Tmax) := z0.

Since z0 ∈ K ⊂ Ω, by the existence theorem, there exists a solution z(t) : [0, δ)→ Rd
of the IVP:

z′ = F(z), z(0) = x(Tmax).

Then, by ‘gluing’ the solution z(t) to x(t), one can extend the solution x(t) beyond Tmax.
Precisely, define:

x(t) := z(t− Tmax) for t ∈ [Tmax, Tmax + δ),

then x′ = d
dtz(t−Tmax) = F(z(t−Tmax)) = F(x) for t ∈ [Tmax, Tmax +δ), and x(Tmax) =

z(0) = x(Tmax). Therefore, the solution x(t) is defined on [0, Tmax +δ), which contradicts
the maximality of Tmax. Hence, our assumption that x(t) ∈ K for all t ∈ [Tmax − ε, Tmax)
does not hold, and so there exists τ ∈ [Tmax − ε, Tmax) such that x(τ) 6∈ K. �

Example 2.12. To illustrate the use of Lemma 2.33 and to give some motivations
of the next lemma, let’s look at the following system again: x′ = − 1

x . The function
F (x) = − 1

x is defined on Ω := (0,∞). Suppose x(t) is a solution with a finite-
time singularity at Tmax < ∞. For each n, consider the closed and bounded set
Kn = [ 1

n , n] ⊂ Ω. Lemma 2.33 asserts that there exists τn ∈ [Tmax − 1
n , Tmax) such

that x(τn) 6∈ Kn, i.e. x(τn) ∈ (−∞, 1
n ) ∪ (n,∞). If x(τn) converges to a limit y ∈ R

as n → ∞, then by x(τn) < 1
n or x(τn) > n, one must have y ≤ limn→∞

1
n = 0,

which is not in Ω. �

In the above example, we showed that if we can find a ‘good’ sequence of closed and
bounded set Kn to cover the open set Ω, then using Lemma 2.33 one can find τn such
that x(τn) 6∈ Kn for each n, then one can show that the limit of x(τn) as n→∞, must
be beyond any of the K ′ns, and hence must be outside Ω.
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Lemma 2.34 (Exhaustion Lemma of Open Sets). Let Ω be an open set in Rd. Then, there
exists a sequence of closed and bounded sets Ki ⊂ Ω with the following properties:

(1) For any i, we have Ki ⊂ K◦i+1 where K◦i+i denotes the interior of Ki+1. We call such
a sequence of sets {Ki} strictly increasing; and

(2) these closed and bounded sets Ki cover the open set Ω, i.e. Ω =

∞⋃
i=1

Ki.

Furthermore, these two properties implies
∞⋂
i=1

Rd\Ki = Rd\Ω.

This sequence of closed and bounded sets Ki is called an exhaustion of Ω.

Proof. Define

Ki := Bi(0)
⋂Rd\

⋃
x∈Rd\Ω

B1/i(x)


and we claim that it is the sequence {Ki} we need. Clearly each Ki is closed and
bounded.

Recall from basic point-set topology that (A ∩B)◦ = A◦ ∩B◦, so we have

K◦i+1 = Bi+1(0) ∩

Rd\
⋃

x∈Rd\Ω

B1/i(x)

◦ = Bi+1(0) ∩

Rd\
⋃

x∈Rd\Ω

B1/(i+1)(x)

 .

Hence, Ki ⊂ K◦i+1 follows directly from Bi(0) ⊂ Bi+1(0) and B1/(i+1)(x) ⊂ B1/i(x).
This proves (1).

For (2), we first rewrite using ∪i(Ai∩Bi) ⊂ (∪iAi)∩(∪iBi) and ∪i(A\Bi) = A\∩iBi:
∞⋃
i=1

Ki ⊂
∞⋃
i=1

Bi(0)
⋂ ∞⋃

i=1

Rd\
⋃

x∈Rd\Ω

B1/i(x)


= Rd

⋂Rd\
∞⋂
i=1

⋃
x∈Rd\Ω

B1/i(x)


⊂ Rd\

∞⋂
i=1

⋃
x∈Rd\Ω

{x} (as x ∈ B1/i(x))

= Rd\(Rd\Ω) = Ω.

To prove Ω ⊂
⋃∞
i=1Ki, we need to use the condition that Ω is open. For any y ∈ Ω, by

open-ness there exists a large i0 such that B1/i0(y) ⊂ Ω and |y| ≤ i0. We claim that
y ∈ Ki0 . To see this, clearly we have y ∈ Bi0(0). Suppose on the contrary that y 6∈ Ki0 ,
then one must have

y 6∈ Rd\
⋃

x∈Rd\Ω

B1/i0(x), or equivalently y ∈ B1/i0(x) for some x 6∈ Ω.

However, this means |x− y| < 1
i0

for some x 6∈ Ω, but that would contradict to the fact
that

x ∈ B1/i0(y) ⊂ Ω.

Therefore, y ∈ Ki0 ⊂
⋃∞
i=1Ki, proving Ω ⊂

⋃∞
i=1Ki and hence (2).
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To prove the last statement, we consider

Rd\Ω = Rd\
∞⋃
i=1

Ki =

∞⋂
i=1

Rd\Ki ⊂
∞⋂
i=1

Rd\Ki.

Moreover, we also have

Rd\Ki ⊂ Rd\K◦i = Rd\K◦i ⊂ Rd\Ki−1,

so we get
∞⋂
i=1

Rd\Ki =

∞⋂
i=2

Rd\Ki ⊂
∞⋂
i=2

(Rd\Ki−1) = Rd\
∞⋃
i=2

Ki−1 = Rd\Ω.

In the first equality we have used the fact that K1 ⊂ K2. �

Using these two lemmas, we are ready to give the proof of theorem:

Proof of Theorem 2.31. Using Lemma 2.34, there exists a sequence of closed and
bounded sets Ki ⊂ Ω with the properties stated in the lemma.

For each i, Lemma 2.33 shows there exists τi ∈ [Tmax− 1
i , Tmax) such that x(τi) 6∈ Ki.

In other words x(τi) ∈ Rd\Ki.

Since Ki is a strictly increasing sequence of sets, Ki ⊂ K◦i+1 ⊂ Ki+1, we have
Rd\Ki+1 ⊂ Rd\Ki for any i. Therefore, for any n ≥ i, we have

x(τn) ∈ Rd\Kn ⊂ Rd\Ki.

Given that x(t)→ y as t→ T−max, we know x(τn)→ y as n→∞. Therefore,

y = lim
n→∞

x(τn) ∈ Rd\Ki

for each i, i.e. y ∈
⋂∞
i=1 Rd\Ki. By the property of Ki’s, we have y ∈ Rd\Ω. �

Corollary 2.35. Suppose F is locally Lipschitz continuous on Rd, and x(t) is a solution of
the system x′ = F(x) with a finite-time singularity at Tmax. Then, x(t) must blow-up at
Tmax, i.e. x(t)→∞ as t→ T−max.

Moreover, if y(t) is a solution to the same system and y(t) is bounded for t > 0, then
y(t) must be defined for all t ∈ [0,∞).

Exercise 2.19. By modifying Lemma 2.33, and using Lemma 2.34, prove a ‘sequen-
tial’ version of Theorem 2.31: Assume Ω, F as in Theorem 2.31. Now suppose
x(t) is a solution to x′ = F(x) with (forward) finite-time singularity at Tmax <∞,
and there exists a sequence of times tn → Tmax as n → ∞ such that x(tn) → y as
n→∞, then we must have y ∈ Rd\Ω.

To summarize, if a vector field F is locally Lipschitz continuous on an open domain Ω,
and x(t) is a solution to x′ = F(x) with a finite-time singularity, then one of the following
cases will happen:

(1) As t→ T−max, the solution x(t) becomes unbounded.

(2) If x(t) is bounded on t ∈ [0, Tmax), then by the Bolzano-Weierstrass’s Theorem,
there is a sequence tn → Tmax as n→∞ such that x(tn) converges to some limit
y ∈ Rd. By Exercise 2.19 whose proof is a slight modification of Theorem 2.31, this
limit y must be outside Ω.

Furthermore, if Ω = Rd, only the first case can happen.
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2.6. Grönwall’s Inequality

In this section, we introduce a fundamental inequality in the theory of ODEs, the
Grönwall’s Inequality. It will be used to prove the uniqueness theorem in the next section.

The one dimensional IVP: x′ = Lx, x(t0) = C, where L > 0 is a constant, can be
written as an integral equation

x(t) = C +

∫ t

t0

Lx(s)ds.

Remark 2.36. We have been using the term IVP to refer an ODE system with initial
condition at t = 0. However, for the purpose of future discussion, we need to allow a
condition given at a time t0 other than 0. We will still call it an ‘initial condition’ even
though t0 may not be 0, and a problem of this sort will still be called an IVP. �

Now given a continuous function y(t) that satisfies the following integral inequality,

y(t) ≤ C +

∫ t

t0

Ly(s)ds.

We ask what one can say about the relation between x(t), a solution to the integral
equation, and y(t), a function satisfying the integral inequality? The Grönwall’s Inequality
tells us that one of them will act as a barrier of the other.

Theorem 2.37 (Grönwall’s Inequality). Let L > 0 be a positive constant, and C be
any real constant. Suppose y(t) is a continuous functions defined on a time interval I
containing t0 and it satisfies the following integral inequality:

(2.9) y(t) ≤ C +

∫ t

t0

Ly(s)ds

for all t ∈ I. Then, we have y(t) ≤ CeL|t−t0| for all t ∈ I.

Proof. We prove only the case when t > t0. The case t < t0 is similar and left as an
exercise for readers. The proof of the inequality is by the barrier method, which is very
common in the studies of PDEs too. When t > t0, x(t) := CeL(t−t0) is a solution to the
integral equation

(2.10) x(t) = C +

∫ t

t0

Lx(s)ds.

Graphically, the desired result y(t) ≤ x(t) for all t ≥ t0 (and t ∈ I) means that the
graph of y(t) always stays below that of x(t). We will prove that it is true by contradiction.
Heuristically, we assume there is a first time t1 > t0 at which y(t) overtakes x(t), we will
try that show that it will contradict (2.9) and (2.10). However, there is a subtle issue for
this idea but it can be resolved by a common ODE/PDE technique so-called the ‘ε-trick’.
We will explain why it is needed in Remark 2.38 after the proof.

Given any ε > 0, (2.9) implies that for all t ∈ I, the following holds:

(2.11) y(t) < (C + ε) +

∫ t

t0

Ly(s)ds.

Let xε(t) = (C + ε)eL(t−t0), which is clearly a solution to the integral equation:

(2.12) xε(t) = (C + ε) +

∫ t

t0

Lxε(s)ds.

Initially at t = t0, we see y(t0) < C + ε and xε(t0) = C + ε, and so y is strictly below xε.
We claim that y(t) stays below xε(t) at all time t ∈ I.
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We prove by contradiction: assume
that there is a time t1 > t0 such that
y(t1) = xε(t1), and that t1 is the first
such time, meaning that y(t) < xε(t) for
t ∈ [t0, t1), while y(t1) = xε(t1). Then,
the area bounded by y(t) and xε(t) for
t ∈ [t0, t1] must be positive, i.e.

(2.13)
∫ t1

t0

(xε(s)− y(s)) ds > 0.

t1

xε(0)

xε(t1) = y(t1)

y(0)

t

t = t0

positive area

However, by substituting t = t1 into (2.11) and (2.12), followed by a subtraction
(2.11) - (2.12), we get:

y(t1)− xε(t1) <

∫ t1

t0

L(y(s)− xε(s))ds.

Since L > 0 and y(t1) = xε(t1), we have

0 <

∫ t1

t0

(y(s)− xε(s))ds.

which contradicts (2.13).

This proves y(t) < xε(t) = (C + ε)eL(t−t0) for any t ∈ [t0,∞) ∩ I. Since ε > 0 is
arbitrarily small, letting ε→ 0+ shows

y(t) ≤ lim
ε→0+

(C + ε)eL(t−t0) = CeL(t−t0)

for any t ∈ [t0,∞) ∩ I. It completes the proof of the case t > t0, the other case is left for
readers. �

Exercise 2.20. Complete the proof of Theorem 2.37 for the case t < t0. As a hint,
compare y(t) with zε(t) = (C + ε)e−L(t−t0) which solves the integral equation:

zε(t) = (C + ε)−
∫ t

t0

Lzε(s)ds.

�

Remark 2.38. We need to invoke the ‘ε-trick’ in the proof but not directly compare y(t)
and x(t) = CeL(t−t0) because we can guarantee only y(t0) ≤ x(t0) but not y(t0) < x(t0),
so it may not be possible to produce a region of positive area that gives a result similar to
(2.13). �

Exercise 2.21. Let C be any real constant and v(t) : (−∞,∞)→ R is a continuous
and nonnegative function. Suppose u : [0, α] → R is a continuous function that
satisfies:

u(t) ≤ C +

∫ t

0

v(s)u(s)ds for all t ∈ [0, α].

Prove that:

u(t) ≤ C exp

(∫ t

0

v(s)ds

)
for all t ∈ [0, α].
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2.7. Uniqueness of Solutions

One important consequence of the Grönwall’s Inequalty (Theorem 2.37) is the uniqueness
theorem of ODEs with an initial condition. Recall in the linear case, uniqueness was
established as a Corollary 1.31 to Theorem 1.29. We showed that if both x1(t) and x2(t)
solve a linear system x′ = Ax, then the following inequality holds for all t ∈ (−∞,∞):

|x1(t)− x2(t)| ≤ |x1(0)− x2(0)| e‖A‖|t|.

Consequently, if they have the same initial conditions, i.e. x1(0) = x2(0), then this
inequality implies x1(t) = x2(t) for all time t ∈ (−∞,∞). Furthermore, this continuous
dependence inequality also gives an estimate of the two solutions to the same system but
with different initial conditions.

Now we move on to the nonlinear (possibly non-autonomous) systems. We will
establish a similar continuous dependence inequality for a system x′ = F(x, t) where F is
a vector field with sufficiently regularity, such as C1, or more generally, locally Lipschitz
continuous.

We first start with the Lipschitz continuous case:

Theorem 2.39 (Continuous Dependence Inequality for Nonlinear Systems). Let Ω ⊂ Rd
be an open domain and I be a time interval. Suppose F(x, t) : Ω × I → Rd is a vector
field which is Lipschitz continuous on Ω× I with a Lipschitz constant L. If x1(t) and x2(t),
are both solutions to the system x′ = F(x, t), and x1(t), x2(t) ∈ Ω for t in some interval
I ′ ⊂ I, then we have:

(2.14) |x1(t)− x2(t)| ≤ |x1(t0)− x2(t0)| eL|t−t0|

for any t0, t ∈ I ′.

Remark 2.40. In simpler terms, the inequality (2.14) holds as long as both solutions
stay inside Ω. �

Remark 2.41. The linear case (Theorem 1.29) is a special case of Theorem 2.39 since
for any square matrix A, the map x 7→ Ax is Lipschitz continuous on Rd with a Lipschitz
constant ‖A‖. �

Remark 2.42. Similar result holds for autonomous systems x′ = F(x) provided that F
is Lipschitz continuous on Ω. The proof is the same. �

Proof of Theorem 2.39. Define y(t) := |x1(t)− x2(t)| for t ∈ I ′. We are going to show
y(t) satisfies the integral inequality (2.9) for some suitable constant C. Since both x1(t)
and x2(t) solve the system x′ = F(x, t), they solve the following integral equations:

x1(t) = x1(t0) +

∫ t

t0

F(x1(s), s) ds

x2(t) = x2(t0) +

∫ t

t0

F(x2(s), s) ds

Subtracting the two integral equations, we have:

x1(t)− x2(t) = x1(t0)− x2(t0) +

∫ t

t0

(F(x1(s), s)− F(x2(s), s)) ds.
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Therefore,

|x1(t)− x2(t)| ≤ |x1(t0)− x2(t0)|+
∣∣∣∣∫ t

t0

(F(x1(s), s)− F(x2(s), s)) ds

∣∣∣∣
≤ |x1(t0)− x2(t0)|+

∫ t

t0

|F(x1(s), s)− F(x2(s), s)| ds

≤ |x1(t0)− x2(t0)|+
∫ t

t0

L |x1(s)− x2(s)| ds.

Here we have used the fact that F is Lipschitz continuous with a Lipschitz constant L,
and both x1(t), x2(t) ∈ Ω for t ∈ I ′. Therefore, for any t ∈ I ′, we have:

y(t) ≤ |x1(t0)− x2(t0)|︸ ︷︷ ︸
=:C

+

∫ t

t0

Ly(s) ds

for all t ∈ I ′. By the Grönwall’s Inequality (Theorem 2.37), we have:

y(t) ≤ |x1(t0)− x2(t0)| eL|t−t0|

for all t ∈ I ′, as desired. �

As in the linear case, if x1(t0) = x2(t0), then we must have x1(t) = x2(t) as long as
they are in Ω on which F is Lipschitz continuous. Thus we have the following corollary:

Corollary 2.43 (Uniqueness Theorem: Lipschitz). Suppose F(x, t) : Ω× I → Rd be a
vector field which is Lipschitz continuous on Ω × I and x0 is a point in Ω. If x1(t) and
x2(t), defined on t ∈ I ′ ⊂ I such that x1(t), x2(t) ∈ Ω for t ∈ I ′, are both solutions to
the IVP:

x′ = F(x, t), x(t0) = x0,

then we have x1(t) = x2(t) for all t ∈ I ′.

Remark 2.44. In simpler terms, the corollary asserts that the solution to an IVP is unique
as long as the solution lies in Ω. �

Note that both Theorem 2.39 and Corollary 2.43 require F to be Lipschitz continuous
on Ω × I (or on Ω for autonomous systems). This condition may be quite restrictive
because F is usually not Lipschitz continuous if Ω is taken to be Rd. However, with
a slightly extended argument, one can prove the IVP still has uniqueness if F is just
assumed to be locally Lipschitz continuous.

The key idea is as follows: suppose F is locally Lipschitz continuous on Ω× I, and
we have two solutions x1(t) and x2(t) to an IVP:

x′ = F(x, t), x(0) = x0.

One can choose a small ball Br(x0) such that F is Lipschitz continuous on Br(x0)× I.
Then apply Corollary 2.43 with Br(x0) in place of Ω, then the two solutions x1(t) and
x2(t) agree as long as they are inside the ball. At the time they leave the ball, we
draw another ball on which the vector field is Lipschitz continuous, and then one can
extend the uniqueness result for a little while. Heuristically, the uniqueness result can be
extended to the whole Ω by successively covering the trajectory by these balls. We will
give a proof for this in a more rigorous way:
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Corollary 2.45 (Uniqueness Theorem: Locally Lipschitz). Suppose F(x, t) : Ω× I → Rd
be a vector field which is locally Lipschitz continuous on Ω × I. Let x0 be a point in Ω.
If x1(t) and x2(t), defined on t ∈ I ′ ⊂ I such that x1(t), x2(t) ∈ Ω for t ∈ I ′, are both
solutions to the IVP:

x′ = F(x, t), x(t0) = x0,

then we have x1(t) = x2(t) for all t ∈ I ′.

Proof. We prove by contradiction. Initially, x1(t0) = x2(t0). Assume x1 and x2 start
branching out at a time T ∈ I ′. Then, x1(t) = x2(t) for any t ∈ [t0, T ]. Let p := x1(T ),
there exists a ball Br(p) ⊂ Ω such that F is Lipschitz continuous on Br(p)× I. However,
since x1(T ) = x2(T ), Corollary 2.43 asserts that x1(t) = x2(t) for t ∈ [T − δ, T + δ] for
some small δ > 0 as long as the solutions x1(t) and x2(t) stay inside the ball Br(p) for
t ∈ [T − δ, T + δ].

This shows x1(t) and x2(t) agree at least on the time interval [t0, T +δ], contradicting
to the fact that T is the time they start branching out.

Therefore, there is no such T ∈ I ′ and so x1(t) = x2(t) for all t ∈ I ′. Similar
argument applies to show uniqueness for backward time. �

Recall in Theorem 2.21 asserts that a vector field F ∈ C1(Ω× I), or F ∈ C1(Ω) on
an open domain Ω must also be locally Lipschitz continuous. Therefore, Corollary 2.45
applies to C1 vector fields.

The (local) Lipschitz continuous condition was used to establish the uniqueness of
solutions. Without this condition, the solution may not be unique as demonstrated by
the following counter-example:

Consider the IVP:
x′ = x2/3, x(0) = 0.

While x(0) ≡ 0 is an obvious solution to the IVP, there is an infinite family of non-zero
solutions {xα(t)}α>0 given by:

xα(t) =

{
0 if t ∈ (−∞, α];
(t−α)3

27 if t ∈ (α,∞).

Exercise 2.22. Verify that for each α > 0, xα(t) is a solution to the IVP

x′ = x2/3, x(0) = 0.

The uniqueness theorem does not apply to this IVP because the initial condition is x0 = 0.
Take any open interval Ω in R that contains 0, the function F (x) = x2/3 is not locally
Lipschitz continuous on Ω because F ′(x) = 2

3x
−1/3 is not bounded as x→ 0.

However, the uniqueness theorem applies if we take Ω = (0,∞), for instance.
F (x) = x2/3 is locally Lipschitz continuous on (0,∞). Take any x0 ∈ (0,∞) and then the
IVP

x′ = x2/3, x(0) = x0

has a unique solution as far as x(t) ∈ (0,∞). However, it is possible for x(t) to branch
out when it approaches 0 either in forward or backward time.

Exercise 2.23. Fix β ∈ (0, 1), show that the IVP:

x′ = xβ , x(0) = 0

has infinitely many solutions by explicitly constructing them.
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The continuity dependence inequality (2.14) can be generalized to allow the two
solutions which not only have different initial conditions but also satisfy two different
systems. See the exercise below:

Exercise 2.24. Let Ω be an open domain in Rd and I be an interval. Suppose
F : Ω× I → Rd and G : Ω× I → Rd are two continuous vector fields defined on Ω
such that

|F(z, t)−G(z, t)| < ε

for any (z, t) ∈ Ω× I. Suppose further that F is Lipschitz continuous on Ω× I with
a Lipschitz constant L > 0 (while G is not assumed to be Lipschitz continuous).
Suppose x(t) and y(t) be solutions to the systems x′ = F(x, t) and y′ = G(y, t)
respectively, show that:

(2.15) |x(t)− y(t)| ≤ |x(t0)− y(t0)|eL|t−t0| + ε

L
(eL|t−t0| − 1)

for any t0, t ∈ I as long as solutions exist. [Hint: Write the systems as two integral
equations, and use Grönwall’s Inequality at some point.]

2.7.0.1. Flow of autonomous systems. For linear systems x′ = Ax, the flow
Φt(·) : Rd → Rd is defined as a map whose input is a point x0 in Rd and output is a point
reached by flowing along the phase portrait from x0 for t unit time (forward if t > 0 and
backward if t < 0). In Section 1.3, we know that for linear systems the flow is given by
Φt(x0) = etAx0 where t is defined on (−∞,∞) for every x0.

We are going to define a similar flow for nonlinear systems. As an introductory course,
we focus on autonomous systems x′ = F(x) only because the flow, as we will prove, will
satisfies a nice property analogous to Φt ◦ Φs = Φt+s for the linear case. However, a
similar results does not hold if we define the flow for non-autonomous systems.

Let Ω be an open domain of Rd, and F is locally Lipschitz continuous on Ω. The
existence and uniqueness theorems we established earlier shows that the IVP

x′ = F(x), x(0) = x0

has a unique solution x(t) as long as it is inside Ω. This allows us to define the flow
ϕt(x0) to be the solution x(t). However, readers should be caution that the flow for a
nonlinear system may not define for all t. In fact, different initial conditions may give
different maximal existence times!

For example, consider the one dimensional system x′ = x2. If the initial condition is
x(0) = 0, then x(t) = 0 is the solution which is defined for all t ∈ (−∞,∞). However, if
the initial condition is x(0) = 1, then x(t) = 1

1−t which is defined for t ∈ (−∞, 1) only.

As per the above discussion, the flow of a nonlinear system may not be defined on
all of Ω× (−∞,∞) but only on a subset of it. Here we denote the set for which a flow
map of a nonlinear system can be defined by:

Σ(F) :=
⋃

x0∈Ω

{x0} × Ix0

where Ix0
is the maximal time interval of the IVP x′ = F(x), x(0) = x0.

Remark 2.46. Note that Σ(F) depends on the vector field F : Ω→ Rd. If the vector field
can be understood in the context, we can simply write Σ for the domain of flow. �

Example 2.13. Consider the one-dimensional system x′ = x2, i.e. F (x) = x2 which
is locally Lipschitz continuous on R. If the initial condition is x(0) = 0, then the
solution to the IVP is x(t) ≡ 0, and so I0 = (−∞,∞). If x0 6= 0 and the initial



2.7. Uniqueness of Solutions 75

condition is x(0) = x0, then a simple separation of variables shows that the solution
to the IVP is x(t) = x0

1−x0t
. Therefore,

Ix0
=

{
(x−1

0 ,∞) if x0 < 0;
(−∞, x−1

0 ) if x0 > 0.

To summarize, the domain of flow for this system is the open region bounded by
the hyperbolas xt = 1 in the (t, x)-plane. �

Exercise 2.25. Find the domain of flow Σ of the one-dimensional system x′ = 1+x2.
Sketch the domain of flow on the (t, x)-plane.

Definition 2.47 (Flow of Nonlinear Autonomous System). Let Ω be an open domain of
Rd, and F(x) : Ω→ Rd be a vector field which is locally Lipschitz continuous on Ω. The
flow of the system x′ = F(x) is a map ϕF(x, t) : Σ(F)→ Ω such that for each x0 ∈ Ω,
the curve ϕF(x0, t) is a solution to the IVP:

x′ = F(x), x(0) = x0.

Alternatively, the flow ϕF(x0, t) can be denoted by ϕF
t (x0). Furthermore, if the

vector field F of a flow can be understood from the context, we can omit the superscript
F and simply write ϕ(x0, t) or ϕt(x0).

Remark 2.48. Throughout the course, we will use Φt to denote the flow of a linear
system, and ϕt for nonlinear systems. �

Remark 2.49. The flow ϕt is well-defined on Σ by the existence and uniqueness theorems
(Theorem 2.22 and Corollary 2.45). �

Example 2.14. For ODE systems of more than one equations, the solution to an
IVP is often difficult (if not impossible) to find. Therefore, it is almost impossible to
write down an explicit domain of flow Σ and the flow ϕt of the system. However, it
is sometimes possible to do so in one dimension:

(1) Consider the system x′ = x2 which C1 on R. With an initial condition
x(0) = x0, the solution is given by x(t) = x0

1−x0t
. The flow, on its domain of

flow, is given by ϕt(x0) = x0

1−x0t
.

(2) The system x′ = 1 + x2 is C1 on R, and the solution with initial condition
x(0) = x0 is given by x(t) = tan(t + arctan(x0)). The flow is therefore
ϕt(x0) = tan(t+ arctan(x0)) wherever it is defined.

�

Exercise 2.26. Find the domain of flow Σ and the flow ϕt of the system x′ = x3.

2.7.0.2. Continuity of flow. The flow Φt of a linear system is a continuous function
on Rd for any fixed t ∈ (−∞,∞). It is a consequence of the continuous dependence
inequality (Theorem 1.29). For nonlinear systems, since we also have a similar continuous
dependence inequality (Theorem 2.39), one should expect ϕt is also continuous for each
fixed t.

However, there is a subtle issue we need to resolve for nonlinear systems on an open
set Ω, namely the domain of flow Σ may not be all of Ω × (−∞,∞). Therefore, for
each fixed t, the flow ϕt cannot be always regarded as a map from Ω to Ω. For instance,
consider the ODE x′ = x2, with Ω = R, where the domain of flow is the open region
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bounded hyperbolas tx = 1. Therefore, if we fix t = 1, the flow ϕ1 is only defined on
x0 ∈ (−∞, 1).

As per discussion of the previous paragraph, we will denote

Σt(F) := {x0 ∈ Ω : (x0, t) ∈ Σ(F)}
and call Σt(F) the t-slice of Σ(F). If the vector field F is clear from the context, it can be
omitted in the notation and we can simply write Σt.

Remark 2.50. Note that the domain of flow Σ(F) is a subset of Ω× (−∞,∞) while the
t-slice Σt(F) is a subset of Ω. �

Example 2.15. Here is an examples of finding Σt of one-dimensional systems. In
general, the t-slice of the domain of flow of a nonlinear system cannot be easily
found.

The system x′ = x2 has domain of flow Σ equal to the open region bounded by
hyperbolas tx = 1. In other words

Σ = {(t, x) : tx < 1}.
For each fixed t, the t-slice is given by:

Σt =


(t−1,∞) if t < 0;
R if t = 0;
(−∞, t−1) if t > 0.

�

Exercise 2.27. Find Σt for each fixed t of the system x′ = 1 + x2.

We are about to prove that the flow ϕt at each fixed time t is a continuous map.
The key ingredient is to apply the continuous dependence inequality (Theorem 2.39)
and rewrite it using the flow notations. However, the continuous dependence inequality
requires the vector field F to be Lipschitz continuous on the whole domain, but we
only assume local Lipschitz continuity here. Thanks to the Heine-Borel’s Theorem, one
can show local Lipschitz continuity on a closed and bounded set K implies Lipschitz
continuity on K (proof left as an exercise for readers). We will invoke this result in the
proof below.

Proposition 2.51 (Continuity of Flow). Suppose F : Ω→ Rd is a locally Lipschitz vector
field on an open set Ω ⊂ Rd. Then, for each t ∈ (−∞,∞), the t-slice Σt(F) is an open set
of Ω, and the flow ϕt : Σt(F)→ Rd of the system x′ = F(x) is a continuous map.

Proof. For each fixed t > 0 (similar for t < 0) and x0 ∈ Σt(F), the trajectory of the flow
{ϕs(x0)}s∈[0,t], as long as it stays in Ω, is a bounded since t 7→ ϕt(x0) is a continuous
function and [0, t] is closed and bounded. One can then find a bounded open set O
containing the trajectory {ϕs(x0)}s∈[0,t], and that O ⊂ Ω. Since F is locally Lipschitz
continuous on Ω (and hence on O as well), by the standard Heine-Borel’s argument there
exists a Lipschitz constant L such that |F(x)− F(y)| ≤ L |x− y| for any x,y ∈ O. Using
the continuous dependence inequality (Theorem 2.39) rewritten in flow notations, we
have:

|ϕt(x)− ϕt(x0)| ≤ |x− x0| eL|t|

provided that {ϕs(x)}s∈[0,t] is in O.

The continuity of ϕt follows directly from the continuous dependence inequality
(Theorem 2.39) which, using the notation of flows, is stated as |ϕt(x)− ϕt(x0)| ≤
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|x− x0| eL|t|. By letting x→ x0 (with t fixed), the squeezing principle implies ϕt(x)→
ϕt(x0), which is exactly what is meant by ϕt being continuous at x0 for each fixed t.

The open-ness of Σt(F) is also a consequence of the continuous dependence inequal-
ity, but in a slightly non-trivial way. Here we need to show that when x is sufficiently
close to x0, the flow ϕt(x) is defined at t. Since the trajectory from {ϕs(x0)}s∈[0,t] (keep
in mind t is fixed) is bounded in O, there exists d > 0 such that the distance from
any point on the boundary ∂O is at least distance d from the trajectory. We claim if
|x− x0| < d

2e
−Lt, then ϕt(x) must be defined at t. Suppose otherwise ϕs(x) is only

defined for s ∈ [0, t′) where t′ < t. Then the solution ϕs(x) encounter finite-time singu-
larity and by Theorem 2.31, ϕs(x) must go outside of Ω as s→ t′. There must be a time
τ ∈ [0, t′) at which ϕτ (x) leaves O the first time. Then ϕτ (x) is on the boundary of Ω
and so is at least distance d from the trajectory {ϕs(x0)}s∈[0,t]. Therefore, the continuous
dependence inequality shows:

d ≤ |ϕτ (x)− ϕτ (x0)| ≤ |x− x0| eLt <
d

2
e−Lt · eLt =

d

2

which is clearly a contradiction. Therefore, ϕt(x) must be defined at t for x ∈ B d
2 e
−Lt(x0),

proving that Σt is an open set. �

The continuity of ϕt, as we will see, will be crucial for studying stability in Chapter 3
and proving the Poincaré-Bendixson’s Theorem in Chapter 4.

One can also prove that ϕt is Ck on Ω whenever F is Ck on Ω. The proof is more
technical and hence omitted in the course. Interested reader may consult the lecture
notes by Brendle for the case k = 1.

2.7.0.3. Autonomous versus non-autonomous systems. For linear systems x′ =
Ax, the flow Φt has an intuitive property that Φt(Φs(x0)) = Φt+s(x0) for any t, s ∈
(−∞,∞) and x0 ∈ Rd. This turns out to be true for nonlinear autonomous systems
too, i.e. ϕt(ϕs(x0)) = ϕt+s(x0) provided that (x0, t), (x0, s) and (x0, s+ t) are all in Σ.
However, it is important to keep in mind that it is in general not true if one defines the
flow for non-autonomous systems in a similar fashion.

Proposition 2.52. Let Ω ⊂ Rd be an open domain. Suppose F : Ω → Rd is locally
Lipschitz continuous on Ω. Denote ϕ(x0, t) : Σ(F)→ Ω the flow of the autonomous system
x′ = F(x). Then, for any t, s and x0 such that (x0, t), (x0, s), (x0, t + s) ∈ Σ(F), we
have:

ϕt(ϕs(x0)) = ϕt+s(x0).

Proof. The proof follows mostly from the uniqueness theorem (Corollary 2.45). Regard-
ing s as a constant and t as the parameter, we will show both ϕt(ϕs(x0)) and ϕt+s(x0)
are solutions to the same system with the same initial data at t = 0. As they are given to
be inside Ω, it will then follow from the uniqueness theorem that they must be equal.

For any y0 ∈ Ω, the ϕ(y0, t) for t ∈ Iy0
is a solution to x′ = F(x). In other words,

we have:
∂ϕt(y0)

∂t
= F(ϕt(y0)).

Using this, we can deduce:

∂

∂t
ϕt(ϕs(x0)) = F(ϕt(ϕs(x0))) (substitute y0 = ϕs(x0))
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On the other hand, we have:
∂

∂t
ϕt+s(x0) =

∂ϕt+s(x0)

∂(t+ s)
· ∂(t+ s)

∂t
(chain rule)

= F(ϕt+s(x0)) (substitute y0 = ϕt+s(x0))

These show both ϕt(ϕs(x0)) and ϕt+s(x0) satisfies the system x′ = F(x). Initially at
t = 0, we have:

[ϕt(ϕs(x0))]t=0 = ϕs(x0) (using ϕ0 = id)

[ϕt+s(x0)]t=0 = ϕs(x0)

Therefore, they have the same initial data! By the uniqueness theorem, we have

ϕt(ϕs(x0)) = ϕt+s(x0),

as desired. �

Remark 2.53. Note that the same argument does not apply to non-autonomous systems
x′ = F(x, t) if ϕt is defined in a similar way. Since then

∂

∂t
ϕt(ϕs(x0)) = F(ϕt(ϕs(x0)), t)

but,
∂

∂t
ϕt+s(x0) =

∂ϕt+s(x0)

∂(t+ s)
· ∂(t+ s)

∂t
= F(ϕt+s(x0), t+ s︸︷︷︸

not the same!

).

Even for a simple non-autonomous system like x′ = 2t, the solution with initial condition
x(0) = x0 is x(t) = t2 + x0. The “flow” is given as ϕt(x0) = t2 + x0. It can be easily
verified that:

ϕt(ϕs(x0)) = ϕt(s
2 + x0)

= t2 + (s2 + x0) = t2 + s2 + x0

ϕt+s(x0) = (t+ s)2 + x0

= t2 + 2ts+ s2 + x0.

So ϕt ◦ ϕs 6= ϕt+s! �

Exercise 2.28. Let ϕt be the flow of a C1 vector field F : Rd → Rd, i.e. autonomous.
Suppose ϕt(x0) is defined for all t ∈ [0,∞) and as t→∞, we have ϕt(x0)→ y ∈ Rd.
Show that y0 is an equilibrium point, i.e. ϕs(y0) = y0 for any s ∈ (−∞,∞).
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2.8. Peano’s Existence Theorem

Lipschitz continuity is a fundamental assumption in all results we have discussed in
this chapter. If the vector field F is not (local) Lipschitz continuous, we have seen that
uniqueness is not guaranteed. A quick counterexample is

x′ = x2/3, x(0) = 0.

The function F (x) = x2/3 is not Lipschitz continuous on any domain containing 0, and
we have seen there are infinitely many solutions to this IVP.

It is natural to ask whether we still have existence of solutions if F is not (local)
Lipschitz continuous? The answer is positive, provided that F is continuous (which is
not necessarily Lipschitz continuous). In this section, we will give a proof of existence of
solutions by assuming F is continuous only. This proof is a bit more technical than the
Picard-Lindelöf’s Existence proof. It uses a famous theorem in analysis, the Arzelá-Ascoli’s
Theorem.

In order to state the theorem, we need to give a new definition.

Definition 2.54 (Equicontinuity). Let I = [a, b] be a closed and bounded interval.
Suppose xn(t) : I → Rd is sequence of continuous functions defined on I. This
sequence is said to be equicontinuous on I if for any given ε > 0, there exists a δ > 0
which depends only on ε, such that whenever |t− s| < δ and t, s ∈ I, we have

|xn(t)− xn(s)| < ε

for every n.

Remark 2.55. The key difference between “all xn(t)’s are continuous on I” and “the
sequence xn(t) is equicontinuous on I” is about how δ depends on other quantities. We
say that all xn(t)’s are continuous on I if for any ε > 0, any t0 ∈ I and any n ∈ N, there
exists a δ > 0 which may depend on ε, t0 and n, such that whenever |t − t0| < δ, we
have |xn(t)− xn(t0)| < ε. However, when we say the sequence xn(t) is equicontinuous
on I, this δ can only depend on ε. �

Example 2.16. Let xn(t) = t
n on I = [0, 1]. Then {xn(t)} is an equicontinuous

sequence on I because for any ε > 0, one can find δ = ε > 0 (of course depends
only on ε), such that whenever t, s ∈ [0, 1] and |t− s| < δ, we have:

|xn(t)− xn(s)| =
∣∣∣∣ tn − s

n

∣∣∣∣ =
1

n
|t− s| ≤ |t− s| < δ = ε.

However, yn(t) = nt on I = [0, 1] is not an equicontinuous sequence on I. Take
ε0 = 1, for any δ > 0, one can take t = 0 and s = δ

2 , and we have t, s ∈ I and
|t− s| < δ. However, then

|yn(t)− yn(s)| = n|t− s| = nδ

2
≥ ε

when n ≥ 2ε
δ .

Nonetheless, for each n, the function yn(t) is continuous on I. �

Exercise 2.29. Let I = [0, 2π]. Show that the sequence of functions xn(t) := sin t
n

is equicontinuous on I, but yn(t) := sin(nt) is not.
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Exercise 2.30. Suppose {xn(t)}∞n=1 is a sequence of differentiable functions on
t ∈ [a, b] such that x′n(t) is uniformly bounded on [a, b]. Show that {xn(t)} is a
equicontinuous family on [a, b].

Theorem 2.56 (Arzelà-Ascoli’s Theorem). Let I = [a, b] be a closed and bounded interval.
Let xn(t) : I → Rd be a sequence of functions such that:

(1) there exists a constant M > 0 (independent of t and n) such that |xn(t)| ≤M for any
n and t ∈ I (in other words, we say the sequence xn(t) is uniformly bounded); and

(2) the sequence {xn(t)} is equicontinuous on I.

Then, there exists a subsequence xnk(t) that converges uniformly on I to a limit function
y(t) as k →∞.

We omit the proof here. The proof is essentially by a diagonalization argument. Using
the Arzelà-Ascoli’s Theorem, Peano gave the following ingenious proof of an existence
theorem in 1890.

Theorem 2.57 (Peano’s Existence Theorem). Let Ω be an open domain in Rd and
I = [−T, T ] be a closed and bounded time interval. Suppose F(x, t) : Ω × I → Rd is a
continuous vector field on Ω× I. Then for any x0 ∈ Ω, the IVP

x′ = F(x, t), x(0) = x0

has a solution x(t) defined on t ∈ [−ε, ε] for some small ε > 0.

Proof. We will only prove that there is a solution defined on t ∈ [0, ε] for some ε > 0,
since to show there is a solution on [−ε, 0] is similar.

Let Br(x0) be an open ball in Ω such that Br(x0) ⊂ Ω. By continuity of the vector
field F, there exists M > 0 such that |F(x, t)| ≤ M for any (x, t) ∈ Br(x0) × I. Let
ε < min{ rM , T} > 0. We define a sequence of functions xn(t) : [0, ε] → Rd in the
following way:

Denote J = [0, ε]. For each n, divide J into n-subintervals (each has width ε
n):

J1
n = [0, ε/n]

J2
n = [ε/n, 2(ε/n)]

...

Jnn = [(n− 1)(ε/n), ε],

or in short, Jkn = [(k − 1)(ε/n), k(ε/n)] for each 1 ≤ k ≤ n.

Unlike the Picard’s iteration sequence whose n-th term is defined by the previous
(n−1)-th term, we define xn(t) on each subinterval Jkn successively by its previous values
on Jk−1

n . We first define:

xn(t) := x0 for t ∈ J1
n.

Then on the next subinterval J2
n, we define:

xn(t) := x0 +

∫ t− ε
n

0

F( xn(s)︸ ︷︷ ︸
not a typo!

, s)ds for t ∈ J2
n.
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When t ∈ J2
n which is an interval of width ε

n , then t− ε
n is in the previous subinterval J1

n.
Therefore, the integral ∫ t− ε

n

0

F(xn(s), s)ds

is well-defined since s ∈ [0, t− ε
n ] ⊂ J1

n on which we have already defined xn.

Now that we have already defined xn(t) for t ∈ J1
n ∪ J2

n, next we move on to J3
n in a

same fashion. Define:

xn(t) := x0 +

∫ t− ε
n

0

F(xn(s), s)ds for t ∈ J3
n.

It is again well-defined since t ∈ J3
n implies t− ε

n ∈ J
2
n, and xn(s) is already defined for

s ∈ J1
n ∪ J2

n.

By successive definition of xn(t) on each Jkn via the relation:

(2.16) xn(t) = x0 +

∫ t− ε
n

0

F(xn(s), s)ds for t ∈ J2
n ∪ . . . ∪ Jnn ,

we get a sequence of functions {xn(t)}∞n=1 defined on J := [0, ε].

Next we show that xn(t) ∈ Br(x0) for t ∈ J . Obviously, this is true when t ∈ J1
n. If

this is true for t ∈ J1
n ∪ . . . ∪ Jk−1

n , then for t ∈ Jkn , the relation (2.16) implies:

|xn(t)− x0| ≤
∫ t− ε

n

0

|F( xn(s)︸ ︷︷ ︸
∈Br(x0)

, s)|ds ≤M
∣∣∣t− ε

n

∣∣∣ ≤M · ε < M · r
M

= r.

By induction, we have xn(t) ∈ Br(x0) for any t ∈ J . In particular, the sequence of
functions xn(t) is uniformly bounded on J since by triangle inequality, we have:

|xn(t)| = |xn(t)− x0 + x0| ≤ |xn(t)− x0|+ |x0| ≤ r + |x0|︸ ︷︷ ︸
finite constant

for any t ∈ J and n ∈ N. It verifies the first condition of the Arzelà-Ascoli’s Theorem.

Next we argue that the sequence xn(t) is equicontinuous on J :

We first show that for any t, s ∈ J , we have |xn(t)− xn(s)| ≤ M |t − s|, then the
equicontinuity will follow easily.

When t, s ∈ J2
n ∪ . . . ∪ Jnn , by (2.16), we have (without loss of generality assuming

s < t):

|xn(t)− xn(s)| =

∣∣∣∣∣
∫ t− ε

n

0

F(xn(τ), τ)dτ −
∫ s− ε

n

0

F(xn(τ), τ)dτ

∣∣∣∣∣
=

∣∣∣∣∣
∫ t− ε

n

s− ε
n

F(xn(τ), τ)dτ

∣∣∣∣∣
≤
∫ t− ε

n

s− ε
n

|F(xn(τ), τ)| dτ

≤M
∣∣∣(t− ε

n

)
−
(
s− ε

n

)∣∣∣ = M |t− s|.

We leave it as an exercise for readers to verify this is also true if at least one of t, s is in
J1
n.

For any ε′ > 0 (we use ε′ here because ε was already used to denote the width of the
interval), let δ < ε′

M , then given any t, s ∈ J and |t− s| < δ, we have:

|xn(t)− xn(s)| ≤M |t− s| ≤Mδ < ε′.

Therefore, the sequence xn(t) is equicontinuous on J .
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Now the sequence xn(t) is both uniformly bounded and equicontinuous on J . By
Arzelà-Ascoli’s Theorem, there exists a subsequence xni(t) which converges uniformly on
J to a limit function x∞(t) as ni →∞.

Finally, we are going to show that this x∞(t) is a solution to the given IVP. Clearly,
xn(0) = x0 for all n ∈ N, and so x∞(0) = x0, which verifies the initial condition. For
any t > 0, we and choose ni sufficiently large so that t 6∈ J1

ni which has width ε
ni
→ 0 as

ni →∞. By (2.16), we have:

xni(t) = x0 +

∫ t− ε
ni

0

F(xni(s), s)ds

= x0 +

∫ t

0

F(xni(s), s)ds−
∫ t

t− ε
ni

F(xni(s), s)ds︸ ︷︷ ︸
≤M · εni→0 as ni→∞

.

As ni →∞, we have:

x∞(t) = x0 + lim
ni→∞

∫ t

0

F(xni(s), s)ds.

Since F is continuous on the compact set Br(x0)× J , it is also uniformly continuous
on Br(x0) × J . For any ε′ > 0, there exists δ > 0 depending only on ε′, such that
whenever y, z ∈ Br(x0) and |y − z| < δ, we have

|F(y, t)− F(z, t)| < ε′

for any t ∈ J .

As xni converges uniformly on J to x∞ as ni → ∞, there exists N > 0 such that
whenever ni > N , we have ‖xni − x∞‖∞,J < δ, which implies

|F(xni(t))− F(x∞(t))| < ε′

for any t ∈ J . Therefore, F(xni , ·) converges uniformly on J to F(x∞, ·), thus allow
switching between limit and integral signs, i.e.

lim
ni→∞

∫ t

0

F(xni(s), s)ds =

∫ t

0

lim
ni→∞

F(xni(s), s)ds =

∫ t

0

F(x∞(s), s)ds.

Therefore, the continuous function x∞(t) on J satisfies the integral equation:

x∞(t) = x0 +

∫ t

0

F(x∞(s), s)ds

and so it is a solution to the given IVP. �

To summarize, given an IVP x′ = F(x, t), x(0) = x0:

• if F is (globally) Lipschitz continuous on Rd × (−∞,∞), then the IVP has a unique
global solution x(t) defined on t ∈ (−∞,∞);

• if F is Lipschitz continuous on Ω× [−T, T ] where Ω is an open set in Rd containing
x0, then the IVP has a unique solution defined at least for short-time t ∈ [−ε, ε].
• if F is only continuous near x0, the IVP still has a solution defined at least for

short-time t ∈ [−ε, ε], but it may not be unique.



Chapter 3

Stability

An equilibrium solution of an ODE system is a special solution which is stationary in the
phase portrait. Precisely, it is a solution of the form x(t) = x∗ for all t where x∗ ∈ Rd is
fixed. For an autonomous system x′ = F(x), an equilibrium solution x(t) = x∗ can only
happen when F(x∗) = 0.

In the rest of the course, we will focus exclusively on autonomous systems. The
central theme of this chapter is about whether an equilibrium solution is stable or not,
which is an important concept to be defined. Heuristically, a stable equilibrium is one
that if you move slightly away from the equilibrium point, it will stay close or even flow
towards to the equilibrium point as time goes. An unstable equilibrium, as the name
implies, will move away from the equilibrium point.

For linear systems x′ = Ax, the general solution suggested that if the eigenvalues
of A are all negative, then the origin, which is an equilibrium solution, will tend to be
stable, while if A has a positive eigenvalue, the solution will tend away from the origin if
one moves slightly away from it along the eigenvector direction.

In this chapter, we will first give the rigorous definition of stability, and verify that
the stability of a planar linear system is determined by the eigenvalues of the matrix.
Then, we will work with nonlinear systems using linear approximations (i.e., compare
them with their linear counterparts). One neat and elegant fact is that phase portrait of
the a nonlinear system effectively resembles its approximated linear systems near the
equilibrium point1. Since the stability of the approximated linear system can be studied
by solving for its eigenvalue, one can then determine the stability of the nonlinear system
by looking at its linear approximation.

3.1. Definitions of Stability

We begin by defining several notions of stability.

Definition 3.1 (Equilibrium Point). A point x∗ ∈ Rd is an equilibrium point, or an
equilibrium solution, of an autonomous system x′ = F(x) if F(x∗) = 0.

83

1There are some exceptions though. We will discuss that later.
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Example 3.1. To find equilibrium point(s), we can set F(x) = 0 and solve for x.
For instance, equilibrium points of the system[

x′1
x′2

]
=

[
x2

1 + x2

x1 − x2
2

]
can be found by solving:

x2
1 + x2 = 0

x1 − x2
2 = 0.

The second equation implies x1 = x2
2 and substitute it into the first, we have

x4
2 + x2 = 0, or equivalently x2(x3

2 + 1) = 0. Therefore, x2 = 0 or x2 = −1. The
former case gives (x1, x2) = (0, 0), the second case gives (x1, x2) = (1,−1).

Therefore, there are two equilibrium points (0, 0) and (1,−1). �

Definition 3.2 (Stable and Unstable Equilibria). Let Ω be an open domain in Rd and
F : Ω→ Rd is a C1 vector field. Consider an autonomous system x′ = F(x). Suppose
x∗ ∈ Ω is an equilibrium point of the system, i.e. F(x∗) = 0, then

(1) We say x∗ is stable if for any open ball Bε(x∗) ⊂ Ω, there exists an open ball Bδ(x∗)
such that whenever x0 ∈ Bδ(x∗), we have ϕt(x0) ∈ Bε(x∗) for all t ∈ [0,∞).

(2) We say x∗ is asymptotically stable if for any open ball Bε(x∗) ⊂ Ω, there exists an
open ball Bδ(x∗) such that whenever x0 ∈ Bδ(x∗), we have ϕt(x0) ∈ Bε(x∗) for
all t ∈ [0,∞) and ϕt(x0)→ x∗ as t→∞. [Therefore, asymptotically stable implies
stable.]

(3) We say x∗ is unstable if it is not stable. Precisely, x∗ is an unstable equilibrium if
there exists an open ball Bε(x∗) ⊂ Ω, such that for any open ball Bδ(x∗), there
exist a point x0 ∈ Bδ(x∗) and a time τ ∈ [0,∞) with ϕτ (x0) 6∈ Bε(x∗).

x

y

Bδ(0)

Bε(0)

Figure 3.1. For a stable equilibrium point 0: one can find a small δ such that for any
x0 ∈ Bδ(0), the forward flow ϕt(0), t ≥ 0, always stays inside Bε(0).

Example 3.2. Suppose the flow ϕt of a nonlinear system x′ = F(x) with an
equilibrium point x∗ satisfies:

(*) |ϕt(x0)− x∗| ≤ C |x0 − x∗| e−t

for all t ∈ [0,∞) and any x0 ∈ Rd, where C > 0 is a constant. We are going to
verify from the definition that x∗ is asymptotically stable.
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x

y

Bδ(0)

Bε(0)

Figure 3.2. For an unstable equilibrium point 0: no matter how small δ is, one can
always find x0 ∈ Bδ(0) such that it flows outside the ε-ball after some finite time.

Given any ε > 0, we need to find δ = (which is left blank for a while),
such that whenever |x0 − x∗| < δ, we have |ϕt(x0)− x∗| < ε for any t ∈ [0,∞). In
order to achieve this, we consider:

|ϕt(x0)− x∗| ≤ C |x0 − x∗| e−t (by the given condition)

≤ C |x0 − x∗| (since e−t ≤ 1 for t ≥ 0)

< Cδ (whenever |x0 − x∗| < δ)

To ensure |ϕt(x0)− x∗| < ε, one can choose δ equal to anything smaller than εC−1.

To recap the whole argument: given any ε > 0, pick δ = 1
2εC

−1, then whenever
|x0 − x∗| < δ, we have

|ϕt(x0)− x∗| ≤ C |x0 − x∗| < Cδ = C · 1

2
εC−1 =

ε

2
< ε

for any t ∈ [0,∞). In other words, whenever x0 ∈ Bδ(x∗), we have ϕt(x0) ∈ Bε(x∗)
for all t ∈ [0,∞). From the definition, x∗ is stable.

To show x∗ is in fact asymptotically stable, we apply the squeezing princi-
ple on (*). Let t → +∞, the right-hand side C |x0 − x∗| e−t → 0. Therefore
|ϕt(x0)− x∗| → 0 as well. In other words, ϕt(x0)→ x∗ for any x0 ∈ Rd. Therefore
x∗ is asymptotically stable. �

Exercise 3.1. Suppose ϕt is the flow of a nonlinear system which satisfies:

|ϕt(x0)| ≤ f(t) |x0|
for any t ∈ [0,∞) and any x0 ∈ Rd, where f : [0,∞) → R is some positive-valued
function. First, show that 0 is an equilibrium point.

Show, from the definitions, that:

• if there exists a constant C such that f(t) < C for all t ≥ 0, then 0 is stable.

• furthermore, if f(t)→ 0 as t→ +∞, then 0 is asymptotically stable.

Exercise 3.2. Let ϕt be the flow of a nonlinear system with an equilibrium point
x∗. Suppose for any x0 ∈ Rd, the magnitude |ϕt(x0)− x∗| is always decreasing as t
increases. Show that x∗ is a stable equilibrium.

3.1.0.1. Stability of Planar Linear Systems. We next discuss the stability of planar
linear systems whose phase portraits and general solutions are well understood.
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As in the previous example and exercise, in order to prove stability from the definition,
it is crucial to establish some inequalities on the flow ϕt(x0) so that its magnitude can
be controlled by the magnitude of x0 − x∗. The flow of a linear system is given by
Φt(x0) = etAx0. In view of that, we will first derive several inequalities concerning etA

which will be helpful for us later to pick the right δ for each given ε.

Lemma 3.3. Let D, Q and J be the following canonical matrices:

D =

[
λ1 0
0 λ2

]
, Q =

[
α β
−β α

]
, J =

[
λ 1
0 λ

]
where λ1, λ2, α, β and λ are all real and β 6= 0. Then, for all t ≥ 0:∥∥etD∥∥ ≤ emax{λ1, λ2}t,

∥∥etQ∥∥ ≤ eαt, ∥∥etJ∥∥ ≤ (1 + t)eλt.

Proof. Given any x = (x1, x2) ∈ R2 such that |x| = 1, we have:

∣∣etDx∣∣2 =

∣∣∣∣[eλ1t 0
0 eλ2t

] [
x1

x2

]∣∣∣∣2 =

∣∣∣∣[eλ1tx1

eλ2tx2

]∣∣∣∣2
= e2λ1tx2

1 + e2λ2tx2
2

≤ max{e2λ1t, e2λ2t}(x2
1 + x2

2)

= max{e2λ1t, e2λ2t} = e2 max{λ1,λ2}t.

Therefore,
∣∣etDx∣∣ ≤ emax{λ1,λ2}t whenever |x| = 1. In other words, we have∥∥etD∥∥ ≤ emax{λ1,λ2}t.

For etQ where Q =

[
αt βt
−βt αt

]
=

[
αt 0
0 αt

]
+

[
0 βt
−βt 0

]
︸ ︷︷ ︸

commute

, we have:

etQ = exp

([
αt 0
0 αt

]
+

[
0 βt
−βt 0

])
= exp

[
αt 0
0 αt

]
· exp

[
0 βt
−βt 0

]
= exp

[
αt 0
0 αt

]
·
[

cosβt sinβt
− sinβt cosβt

]
Note that

[
cosβt sinβt
− sinβt cosβt

]
is a rotation matrix. If x is unit, then

[
cosβt sinβt
− sinβt cosβt

]
x

is also unit. Therefore,
∥∥∥∥[ cosβt sinβt
− sinβt cosβt

]∥∥∥∥ = 1 which implies:

∥∥etQ∥∥ ≤ ∥∥∥∥exp

[
αt 0
0 αt

]∥∥∥∥ ∥∥∥∥[ cosβt sinβt
− sinβt cosβt

]∥∥∥∥
≤ eαt︸︷︷︸

from previous part

·1 = eαt.

For etJ where J =

[
λ 1
0 λ

]
, we have

etJ =

[
eλt teλt

0 eλt

]
= eλt

[
1 t
0 1

]
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Consider x = (x1, x2) with |x| = 1, then[
1 t
0 1

] [
x1

x2

]
=

[
x1 + tx2

x2

]
∣∣∣∣[1 t

0 1

] [
x1

x2

]∣∣∣∣2 = (x1 + tx2)2 + x2
2

= x2
1 + 2tx1x2 + t2x2

2 + x2
2

= 1 + 2tx1x2 + t2x2
2

≤ 1 + t(x2
1 + x2

2) + t2(x2
1 + x2

2) (since 2x1x2 ≤ x2
1 + x2

2)

= 1 + t+ t2 ≤ 1 + 2t+ t2 = (1 + t)2.

Therefore,
∥∥∥∥[1 t

0 1

]∥∥∥∥ ≤ (1 + t), and so
∥∥etJ∥∥ ≤ (1 + t)eλt. �

Exercise 3.3. Suppose A is a d × d real matrix with distinct real eigenvalues
λ1, . . . , λd. Show that

∥∥etA∥∥ ≤ emax{λ1,...,λd}t for any t > 0.

Exercise 3.4. Suppose A is a d × d real matrix whose real eigenvalues are all
negative, and whose complex eigenvalues all have negative real parts. Prove that
there exists δ > 0 such that ∥∥etA∥∥ ≤ e−δt
for any t > 0.

Let A be a 2 × 2 real matrix and consider the planar linear system x′ = Ax. We
are going to argue that the stability of the origin is determined by the real parts of the
eigenvalues of A according to the following table:

Eigenvalues of A Signs The origin is:
distinct real (λ1, λ2) (−, −) asymptotically stable

(−, 0) or (0, −) stable
(+, ∗) or (∗, +) unstable

complex α± βi α < 0 asymptotically stable
α = 0 stable
α > 0 unstable

repeated real λ − asymptotically stable
0 and A 6= 0 unstable
0 and A = 0 stable
+ unstable

Table 1. Stability of planar linear systems (∗ can be any real number)

We split the proof into two cases. One part assumes A has distinct real eigenvalues
or complex eigenvalues, another assumes A has repeated real eigenvalues. The latter
case is a bit more subtle.

Case 1: A has distinct real or complex eigenvalues

Depending on whether A has real or complex eigenvalues, there exists a matrix K
and an invertible matrix P such that A = PKP−1, where K is either a diagonal matrix
or a complex canonical form with the same eigenvalues as A. The flow of the system is
given by Φt(x0) = etAx0 = etPKP

−1

x0 = PetKP−1x0.
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When the real parts of the eigenvalues of K are all non-positive, from the estimate
proved in Lemma 3.3, we have

∥∥etK∥∥ ≤ e−µt for some −µ ≤ 0 (where −µ is either
max{λ1, λ2} or α depending on whether eigenvalues of A, and hence of K, are real or
complex). Therefore:

|Φt(x0)| =
∣∣PetKP−1x0

∣∣
≤ ‖P‖‖etK‖‖P−1‖ |x0|
≤ ‖P‖‖P−1‖ |x0| e−µt.

To show that the origin is stable, we first note that e−µt ≤ 1 for any t ∈ [0,∞), and so

|Φt(x0)| ≤ ‖P‖‖P−1‖ |x0| .
Given any ε > 0, one can find a δ < ε

‖P‖‖P−1‖ such that whenever x0 ∈ Bδ(0), we have:

|Φt(x0)| ≤ ‖P‖‖P−1‖ |x0| ≤︸︷︷︸
x0∈Bδ(0)

‖P‖‖P−1‖δ <︸︷︷︸
by choice of δ

ε.

In other words, Φt(x0) ∈ Bε(0) for any t ∈ [0,∞). By the definition of stability, the origin
is stable.

When the real parts of the eigenvalues of A (and hence of K) are all negative, then
we further have

|Φt(x0)| ≤ ‖P‖‖P−1‖x0|e−µt → 0

as t→∞. In other words, Φt(x0)→ 0 as t ∈ ∞. Therefore, the origin is asymptotically
stable.

To show that the origin is unstable if one of the eigenvalues of A has positive real
part, it is easier to use some particular solutions instead of matrix exponentials. From
Theorems 1.9 and 1.16, by letting c2 = 0, either one of the following is a solution to the
system (depending on whether A has distinct real or complex eigenvalues):

x(t) = c1e
λ1tv1 (real)

x(t) = c1e
αt

[
cosβt
− sinβt

]
(complex)

where c1 ∈ R, and for the real case, λ1 > 0 is an eigenvalue of A, v1 is a unit eigenvector
of A; and for the complex case, α > 0 is the real part of the eigenvalue and β ∈ R is the
imaginary part. To show instability from the definition, we fix ε = 1 and take an arbitrary
small δ > 0, and we need to find an initial condition x0 ∈ Bδ(0) such that Φt(x0) will
eventually leave Bε(0). We argue only the real case since the complex case is similar.
Recall that v1 is unit, given any δ > 0, we consider the solution x(t) = δ

2e
λ1tv1. Then

|x(0)| = δ
2 < δ and so x(0) ∈ Bδ(0). However, when t > 1

λ1
log 2

δ ,

|x(t)| > δ

2
eλ1· 1

λ1
log 2

δ |v1| = 1 = ε

and so x(t) 6∈ Bε(0). By the definition, 0 is unstable.

Case 2: A has a repeated real eigenvalue

This case is more subtle than the distinct real or complex cases because the estimate∥∥etJ∥∥ ≤ (1 + t)eλt, where J is a Jordan canonical form, is not as sharp as those for the
diagonal or complex canonical form. Denote λ the only eigenvalue of A.

When λ < 0, then A = PKP−1 where K is either D :=

[
λ 0
0 λ

]
or J :=

[
λ 1
0 λ

]
, P

is some invertible matrix. The former case was settled in Case 1. Assuming we have
K = J , then by Lemma 3.3, we have:∣∣etAx0

∣∣ ≤ ‖P‖‖P−1‖ |x0| · (1 + t)eλt.
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The subtlety here is that the upper bound for (1 + t)eλt is not as trivial as in Case 1. Let
f(t) = (1 + t)eλt. From elementary calculus, one can show f is increasing on (−∞, λ+1

−λ ]

and is decreasing on [λ+1
−λ ,∞). Therefore, f(t) has an absolute maximum and so it is

bounded from above by a constant C. Thus, we have:

|Φt(x0)| ≤ C‖P‖‖P−1‖ |x0|
for any t ∈ [0,∞). Given any ε > 0, choose δ < ε

C‖P‖‖P−1‖ , then whenever x0 ∈ Bδ(0),
we have:

|Φt(x0)| ≤ C‖P‖‖P−1‖ · ε

C‖P‖‖P−1‖
= ε.

Hence Φt(x0) ∈ Bε(0) for any t ∈ [0,∞). Also, by l’Hopital’s rule:

lim
t→+∞

(1 + t)eλt = lim
t→+∞

1 + t

e−λt
= lim
t→+∞

1

−λe−λt
= 0.

Therefore, Φt(x0)→ 0 as t→ +∞, and hence 0 is asymptotically stable.

If λ = 0, there are two possibilities. If A = 0 then all solutions to the system are
stationary, which is clearly stable (but not asymptotically stable). For the other case, the
phase portrait is a family of parallel lines as shown in Figure 1.14. The general solution
is of the form:

x(t) = P

(
c1

[
1
0

]
+ c2

[
t
1

])
, c1, c2 ∈ R,

where P is some invertible matrix. In particular, x(t) = c2P

[
t
1

]
is a solution to the

system with initial condition x(0) = c2P

[
0
1

]
for any c2 ∈ R. To show the origin is

unstable, we again fix ε = 1, and consider an arbitrarily small δ > 0, choose |c2| < δ
‖P‖ ,

then |x(0)| ≤ |c2| ‖P‖ < δ and so the initial condition x(0) ∈ Bδ(0). However, as

t→ +∞, x(t) = c2P

[
t
1

]
is unbounded and must leave the ball Bε(0) after some finite

time. Therefore, the origin is unstable.

If λ > 0, then the fact that the origin is unstable can be proved similarly as in the
distinct real case. Let v be a unit eigenvector of A (with eigenvalue λ), then

x(t) = ceλtv

is a solution to the system for any c ∈ R. The rest of the argument is exactly the same as
in the distinct real case.

Exercise 3.5. Suppose A is a d× d matrix with distinct real eigenvalues λ1, . . . , λd.
Consider the system x′ = Ax. Show that:

• If λi’s are all non-positive, then the origin is stable.

• If λi’s are all (strictly) negative, then the origin is asymptotically stable.

• If at least one of the λi’s is positive, then the origin is unstable.

Exercise 3.6. Let ϕt be the flow of a nonlinear autonomous system on Rd with an
equilibrium point x∗. Suppose there exists a x0 ∈ Rd such that ϕt(x0) → x∗ as
t→ −∞ and ϕt(x0) is unbounded as t→ +∞. Show that x∗ is unstable.
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3.2. Linearization

In the previous section, we have completely understood the stability of the origin for
planar linear systems. The results can be easily extended to the higher dimensional
cases where the matrix A has distinct real or complex eigenvalues, although the case for
repeated real or complex eigenvalues in higher dimensions will involve some sophisticated
linear algebra (Jordan decomposition).

One important way to study the stability of a nonlinear system is by comparing them
with an approximated linear system. As an illustration, let’s consider the following system

x′ = x+ y2

y′ = −y

Clearly, (0, 0) is an equilibrium point. Near (0, 0), the quadratic term y2 is considerably
smaller than the linear terms x and −y. Therefore, it is expected that the phase portrait
will resemble the linear system

x′ = x

y′ = −y

where the quadratic term y2 is dropped. Sketches of their phase portraits reveal that they
do look similar around (0, 0) and both are of saddle types, but they deviate more and
more away from (0, 0). See Figures 3.3 and 3.4.
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Figure 3.3. The phase portrait of the system: x′ = x+ y2, y′ = −y.
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Figure 3.4. The phase portrait of the system: x′ = x, y′ = −y.
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Let’s look at another example:

x′ = −x+ y + y2

y′ = −2y + x3

Similarly, (0, 0) is an equilibrium point near which the nonlinear terms y2 and x3 are very
small compared to the linear terms. Therefore, we expect its phase portrait near (0, 0)
should look similar to the linear system

x′ = −x+ y

y′ = −2y

Figures 3.5 and 3.6 illustrate that this prediction is indeed true.
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Figure 3.5. The phase portrait of the system: x′ = −x+ y + y2, y′ = −2y + x3.
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Figure 3.6. The phase portrait of the system: x′ = −x+ y, y′ = −2y.

However, there are non-examples where dropping nonlinear terms will change the
phase portrait substantially. Let’s consider the system

x′ = x2

y′ = −y

and after dropping the nonlinear term x2, we get the linear system:

x′ = 0

y′ = −y
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You may see Figures 3.7 and 3.8 that their phase portraits look substantially different
even around (0, 0). In particular, the origin in the nonlinear system is unstable whereas
in the linear system is stable.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3.7. The phase portrait of the system: x′ = x2, y′ = −y.
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Figure 3.8. The phase portrait of the system: x′ = 0, y′ = −y.

It turns out that the reason this is a “bad” example is because of the eigenvalues of
the linear system, which are 0 and −1. In the two “good” examples we have previously
seen, the eigenvalues of the linear systems all have non-zero real parts. We will call
the origin in the “bad” example as a non-hyperbolic equilibrium whereas in the “good”
examples as a hyperbolic equilibrium. In the next few sections, we will see why this
hyperbolicity issue matters.

3.2.0.1. Differentiability. The process of dropping higher order terms is called
linearization. We will define linearization in a more rigorous way soon so that we can
deal with more complicated systems such as x′ = sinx+ tan y, y′ = tanx+ sin y where
the meaning of “dropping nonlinear terms” is not as obvious as in previous examples.

In order to make sense of linearization formally, we need to introduce the concept
of differentiability in a rigorous way. In single-variable calculus, a function f(x) is
differentiable at x = x0 if the limit:

lim
x→x0

f(x)− f(x0)

x− x0

exists, and if this limit exists, it is called the derivative of f at x0 and is denoted by f ′(x0).
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Before we introduce the concept of differentiability for multivariable functions, we
first reformulate the differentiability of single-variable functions in an alternative, but
equivalent, way. Suppose f ′(x0) exists, then:

lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0)

lim
x→x0

f(x)− f(x0)

x− x0
− f ′(x0) = 0

lim
x→x0

f(x)− f(x0)− f ′(x0) · (x− x0)

x− x0
= 0.

If one defines L(x) = f(x0) + f ′(x0) · (x− x0), which is the tangent line to the graph of
f(x) at x0, then:

lim
x→x0

f(x)− L(x)

x− x0
= 0.

In other words, f(x)− L(x) goes to 0 faster than x− x0 does, and so the tangent line at
x0 is an ‘effective’ approximation of f(x) provided that x is near x0.

Conversely, if f(x) can be ‘effectively’ approximated near x0 by a straight-line L(x) =
f(x0) +m(x− x0) through the point (x0, f(x0)), then one can show that f ′(x0) exists
and the slope m of the line must be f ′(x0). By ‘effective’ we mean:

lim
x→x0

f(x)− L(x)

x− x0
= 0

and so: lim
x→x0

f(x)− f(x0)−m(x− x0)

x− x0
= 0

lim
x→x0

f(x)− f(x0)

x− x0
−m = 0.

Therefore, the limit lim
x→x0

f(x)− f(x0)

x− x0
exists and is equal to m.

From the above discussion, we see that one can restate the definition of differentia-
bility of single-variable functions as:

f(x) is differentiable at x0 if and only if there exists a straight-line L(x) = f(x0) +
m(x− x0) through (x0, f(x0)) such that:

lim
x→x0

f(x)− L(x)

x− x0
= 0.

This equivalent form of differentiability can be easily generalized to higher dimen-
sions. As we will mostly work with two dimensional systems for the rest of the course,
we will only state the definition of two-variable functions.

Definition 3.4 (Differentiability). A two-variable function f(x, y) is a differentiable at
(x0, y0) if and only if there exists a function of the form L(x, y) = f(x0, y0) + a(x −
x0) + b(y − y0) such that:

lim
(x,y)→(x0,y0)

|f(x, y)− L(x, y)|
|(x, y)− (x0, y0)|

= 0.

�
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If such an L(x, y) exists, it is necessary that a = ∂f
∂x (x0, y0) and b = ∂f

∂y (x0, y0). To
show the former, we fix y = y0 and consider:

lim
x→x0

|f(x, y0)− L(x, y0)|
|(x, y0)− (x0, y0)|

= 0

lim
x→x0

|f(x, y0)− f(x0, y0)− a(x− x0)|
|x− x0|

= 0

lim
x→x0

∣∣∣∣f(x, y0)− f(x0, y0)

x− x0
− a
∣∣∣∣ = 0

By the definition of partial derivatives:
∂f

∂x
(x0, y0) := lim

x→x0

f(x, y0)− f(x0, y0)

x− x0

it exists and is equal to a. Similarly, one can also show b = ∂f
∂y (x0, y0).

If such an L exists, we must have

L(x, y) = f(x0, y0) +
∂f

∂x
(x0, y0) · (x− x0) +

∂f

∂y
(x0, y0) · (y − y0).

From your multivariable calculus class, the graph of L is the tangent plane to the function
f(x, y) at the point (x, y) = (x0, y0). Therefore, a two-variable function f(x, y) is said
to be differentiable at (x0, y0) if the tangent plane at (x0, y0) ‘effectively’ approximates
the function around (x0, y0), in a sense that the gap between the graph and the tangent
plane is going to zero faster than

√
(x− x0)2 + (y − y0)2 does.

Although it may be complicated to check differentiability for multivariable functions
since it involves evaluation of a multivariable limit, fortunately one can show all C1

functions are differentiable (but not vice versa):

Theorem 3.5 (C1 implies Differentiability). Let Ω be an open domain in R2. If a function
f : Ω → Rm is C1 on Ω, then it is differentiable at every point on Ω (or one can simply
say differentiable on Ω).

Proof. Take an arbitrary point (x0, y0) ∈ Ω. We consider:

f(x, y)− f(x0, y0) = f(x, y)− f(x0, y) + f(x0, y)− f(x0, y0)

=
∂f

∂x
(ξ, y) · (x− x0) +

∂f

∂y
(x0, ζ) · (y − y0) (mean-value theorem)

Here ξ is some number between x and x0, and ζ is some number between y and y0.

Define

L(x, y) := f(x0, y0) +
∂f

∂x
(x0, y0) · (x− x0) +

∂f

∂y
(x0, y0) · (y − y0),

then
|f(x, y)− L(x, y)|
|(x, y)− (x0, y0)|

=

∣∣∣(∂f∂x (ξ, y)− ∂f
∂x (x0, y0)

)
· (x− x0) +

(
∂f
∂y (x0, ζ)− ∂f

∂y (x0, y0)
)
· (y − y0)

∣∣∣
|(x, y)− (x0, y0)|

≤

∣∣∣∂f∂x (ξ, y)− ∂f
∂x (x0, y0)

∣∣∣ |x− x0|+
∣∣∣∂f∂y (x0, ζ)− ∂f

∂y (x0, y0)
∣∣∣ |y − y0|√

(x− x0)2 + (y − y0)2

≤
∣∣∣∣∂f∂x (ξ, y)− ∂f

∂x
(x0, y0)

∣∣∣∣+

∣∣∣∣∂f∂y (x0, ζ)− ∂f

∂y
(x0, y0)

∣∣∣∣ .
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The last inequality follows from the fact that |x− x0| ≤
√

(x− x0)2 + (y − y0)2 and
|y − y0| ≤

√
(x− x0)2 + (y − y0)2.

As x→ x0, the quantity ξ which is between x and x0 also approaches x0. Similarly,
ζ → y0 as y → y0. By continuity of the partials ∂f

∂x and ∂f
∂y , we have ∂f

∂x (ξ, y)→ ∂f
∂x (x0, y0)

and ∂f
∂y (x0, ζ) → ∂f

∂y (x0, y0) as (x, y) → (x0, y0). By squeezing principle applied to the
above inequality, we proved:

lim
(x,y)→(x0,y0)

|f(x, y)− L(x, y)|
|(x, y)− (x0, y0)|

= 0.

Therefore, f is differentiable at (x0, y0). Since (x0, y0) is arbitrarily chosen, f is differen-
tiable on Ω.

�

Remark 3.6. C1 implies differentiability, but not all differentiable functions are C1.
Readers may consult the classic book Calculus on Manifolds by Spivak for counter-
examples and for more thorough discussions about differentiability. �

Remark 3.7. C1 functions are commonly called continuously differentiable functions. �

Next we express the definition differentiability using little-o notations.

Definition 3.8 (Big-O and little-o). Given two real-valued multivariable functions g, h
defined around a point x0, we say:

• g = O(h) if there exist constants C, ε > 0 such that |g(x)| ≤ C|h(x)| for any
x ∈ Bε(x0).

• g = o(h) if g(x)
h(x) → 0 as x→ x0.

Alternatively, g = O(h) and g = o(h) can be denoted by g ∈ O(h) and g ∈ o(h)
respectively. �

When we say k = f + o(h), we mean k = f + g for some g ∈ o(h). Similar for
k = f +O(h).

Using the little-o notation, one can then restate the differentiability definition in the
following equivalent way:

A real-valued multivariable function f(x, y) is differentiable at (x0, y0) if and only if
both ∂f

∂x and ∂f
∂y exist at (x0, y0) and:

f(x, y)

= f(x0, y0) + fx(x0, y0) · (x− x0) + fy(x0, y0) · (y − y0)︸ ︷︷ ︸
L(x,y)

+o
(√

(x− x0)2 + (y − y0)2
)
.

3.2.0.2. Linearized systems. A vector field F : R2 → R2 is said to be differentiable
at (x0, y0) if each component of F is differentiable at (x0, y0). Denote the components of

F by: F(x, y) =

[
u(x, y)
v(x, y)

]
. Suppose F(x, y) is differentiable at (x0, y0). For simplicity, we

denote x = (x, y) and x0 = (x0, y0) then:

u(x) = u(x0) + ux(x0) · (x− x0) + uy(x0) · (y − y0) + o (|x− x0|)
v(x) = v(x0) + vx(x0) · (x− x0) + vy(x0) · (y − y0) + o (|x− x0|)

Rewrite them in a vector form:

F(x) = F(x0) +

[
ux uy
vx vy

]
x=x0

· (x− x0) +

[
o (|x− x0|)
o (|x− x0|)

]
.
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When x is very close to x0, the little-o terms can be neglected and the vector field F
is approximately equal to:

F(x) ≈ F(x0) +

[
ux uy
vx vy

]
x=x0

· (x− x0).

If we let x0 = x∗ which is an equilibrium point of the system x′ = F(x), then near
the equilibrium point x∗, the nonlinear system can be approximated by the linear system:

(x− x∗)′︸ ︷︷ ︸
=x′

=

[
ux uy
vx vy

]
x=x∗︸ ︷︷ ︸

a constant matrix

·(x− x∗).

In this connection, we define:

Definition 3.9 (Jacobian Matrix). Let F : R2 → R2 be a differentiable vector field

whose components are given by F(x, y) =

[
u(x, y)
v(x, y)

]
. The Jacobian matrix of F at a

point x0 is defined as:

DFx0 :=

[
ux uy
vx vy

]
x=x0

.

�

Definition 3.10 (Linearization). Given an autonomous system x′ = F(x) in Rd with
x∗ as one of the equilibrium points, its linearization at x∗, or its linearized system at
x∗, is the system:

X′ = (DFx∗)X
where X := x− x∗, and DFx∗ is the Jacobian matrix at x∗. �

The linearized system at an equilibrium point x∗ of a nonlinear system reveals the
local behaviors of the phase portrait near x∗. The linearized system is much easier to
study since its stability is determined by the eigenvalues of the matrix DFx∗ . In the next
few sections, we will prove, with rigorous proofs, that a nonlinear system does resemble
its linearization near the equilibrium points in a number of ways including stability and
the phase portrait type. However, this resemblance is subject to one crucial condition,
namely the equilibrium point x∗ has to be hyperbolic:

Definition 3.11 (Hyperbolic Equilibrium Point). An equilibrium point x∗ of a system
x′ = F(x) is said to be hyperbolic if all eigenvalues of the Jacobian matrix DFx∗ at x∗

have non-zero real parts. �

Example 3.3. The system

x′ = y

y′ = cosx

has infinitely many equilibrium points, namely (kπ + π
2 , 0) for any integer k.

The Jacobian matrix of the vector field F(x, y) =

[
y

cosx

]
at an arbitrary point

(x, y) is given by:

DF(x,y) =

[
0 1

− sinx 0

]
,
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and so at the equilibrium points (kπ + π
2 , 0) it is given by:

DF(kπ+π
2 ,0) =

[
0 1

(−1)k−1 0

]
.

When k is odd, the eigenvalues of DF(kπ+π
2 ,0) are −1 and 1. Therefore, (kπ +

π
2 , 0) are hyperbolic equilibrium points when k is odd.

However, when k is even, the eigenvalues of DF(kπ+π
2 ,0) are ±i, whose real

parts are both 0. Therefore, (kπ+ π
2 , 0) are non-hyperbolic equilibrium points when

k is even. �

Exercise 3.7. For each of the following systems, find all equilibrium point(s) and
determine whether they are hyperbolic or not.

(1) x′ = sinx, y′ = cos y

(2) x′ = x+ y2, y′ = 2y

(3) x′ = log(1 + y2), y′ = ex − 1

Exercise 3.8. Consider the system

x′ = x2 + y

y′ = x− y + a

where a is a parameter.

(1) Find all equilibrium point(s). Express your answers in terms of a.

(2) Determine whether each equilibrium point is hyperbolic.
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3.3. Poincaré-Lyapunov’s Theorem

A linear system x′ = Ax is asymptotically stable if and only if all eigenvalues of A have
strictly negative real parts. In this section, we will show that a nonlinear system has an
asymptotically stable equilibrium if its linearized system at this point is asymptotically
stable (or equivalently, the eigenvalues of the Jacobian matrix all have negative real
parts). On the other hand, if all eigenvalues of the Jacobian matrix have (strictly) positive
real parts, one can also show that the nonlinear system is unstable. This result is known
as the Poincaré-Lyapunov’s Theorem.

As such, linearization is a very effective method to test whether a nonlinear system
is stable or not. However, this test has a limitation, as it fails when any one of the
eigenvalues of the Jacobian matrix has zero real part.

Theorem 3.12 (Poincaré-Lyapunov’s Theorem: stable case). Let F : R2 → R2 be a C1

vector field. Consider the autonomous system x′ = F(x). Suppose x∗ is an equilibrium
point of the system and that all eigenvalues of DFx∗ have (strictly) negative real parts,
then the equilibrium point x∗ of the nonlinear system x′ = F(x) is asymptotically stable.

To prepare for the proof of the theorem, we first perform a linear change of variables
such that the matrix of the linearized system becomes one of the canonical forms. We
will show that the stability of the transformed system is equivalent to the stability of the
original system. As such, it suffices to consider the case when the Jacobian matrix is in a
canonical form.

Given a differentiable vector field F : R2 → R2 with an equilibrium point x∗, then
the differentiability condition asserts that F(x) = (DFx∗)(x− x∗) + o (|x− x∗|) where
o (|x− x∗|) represents a vector field whose components are all in o (|x− x∗|).

From Chapter 1, the 2× 2 matrix DFx∗ admits a canonical decomposition:

DFx∗ = PKP−1

where P is invertible and K is a one of the following canonical forms:[
λ1 0
0 λ2

]
,

[
α β
−β α

]
,

[
λ 1
0 λ

]
Therefore, the system x′ = F(x) can be written as:

x′ = PKP−1(x− x∗) + o (|x− x∗|)
P−1x′ = KP−1(x− x∗) + P−1 · o (|x− x∗|)(

P−1(x− x∗)
)′

= K
(
P−1(x− x∗)

)
+ P−1 · o (|x− x∗|)

y′ = Ky + P−1 · o (|x− x∗|) (Let y := P−1 (x− x∗))

As x→ x∗, y→ 0, and it can be verified that:

P−1 · o (|x− x∗|) = P−1 · o (|Py|)
= P−1 · o (‖P‖ |y|) (since |Py| ≤ ‖P‖ |y|)
= o (|y|) (see exercise below)

Exercise 3.9. Show, from the definition, that P−1 · o (|x− x∗|) = o (|y|).

Therefore, the nonlinear system x′ = F(x) is equivalent to y′ = Ky + o (|y|) via the
change of variable y = P−1(x − x∗). Needless to say, the system y′ = Ky + o (|y|) is
easier to work with since the matrix K is a canonical form. The following lemma shows
that the stability of x∗ of the x-system is equivalent to the stability of 0 of the y-system.
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Therefore, it suffices to study systems whose linearization is in one of the canonical
forms. The transformation y = P−1(x− x∗) consists of a translation followed by a linear
map represented by P−1. Clearly, translation preserves stability and asymptotic stability
(Exercise 3.10). We next show that an invertible linear map transforms an asymptotically
stable 0 to an asymptotically stable 0 in the new system as well.

Lemma 3.13. Let 0 be an equilibrium point of a system x′ = F(x) where F is differen-
tiable. Suppose P is an invertible matrix, then via the change of variables y = P−1x, the
equilibrium point 0 is asymptotically stable in the x-system if and only if 0 is asymptotically
stable in the y-system y′ = P−1F(Py).

Proof. First suppose 0 is asymptotically stable in the x-system. We want to show 0 is
asymptotically stable in the y-system. Given any ε > 0, then P (By

ε (0)) is an open ellipse
in the x-plane containing 0. Here the superscript y of By

ε (0) means the ball is in the
y-plane. Then, there exists another ε′ > 0 such that the ball Bx

ε′(0) ⊂ P (By
ε (0)). By

the asymptotic stability of 0 in the x-system, there exists δ′ > 0 such that whenever
x0 ∈ Bx

δ′(0), we have ϕx
t (x0) ∈ Bx

ε′(0) for any t ≥ 0, and as t → +∞, we have
ϕx
t (x0) → 0. Here ϕx

t denotes the flow of the x-system. Transform the ball Bx
δ′(0)

to the y-system: one get an open ellipse P−1 (Bx
δ′(0)) in the y-plane containing 0.

Then, there exists δ > 0 such that By
δ (0) ⊂ P−1 (Bx

δ′(0)). Whenever, y0 ∈ By
δ (0), we

have y0 ∈ P−1 (Bx
δ′(0)) and so Py0 ∈ Bx

δ′(0). Therefore, by the choice of δ′ we have
ϕx
t (Py0) ∈ Bx

ε′(0) for all t ≥ 0, and as t → +∞, we have ϕx
t (Py0) → 0. Since Py0

in the x-plane corresponds to y0 in the y-plane, ϕx
t (Py0) in the x-plane corresponds

to ϕy
t (y0) in the y-plane. In other words, ϕy

t (y0) = P−1 (ϕx
t (Py0)) for all t ≥ 0.

Since ϕx
t (Py0) ∈ Bx

ε′(0) ⊂ P (By
ε (0)), we have ϕy

t (y0) = P−1 (ϕx
t (Py0)) ∈ By

ε (0). It
completes the part that 0 is stable in the y-system. To show it is asymptotically stable,
we let t→ +∞, then by ϕx

t (Py0)→ 0, we have ϕy
t (y0) = P−1 (ϕx

t (Py0))→ 0.

The proof of the converse is almost the same by considering x = Py. �

Exercise 3.10. Let x∗ be an equilibrium point of a system x′ = F(x), and consider
the translation X := x− x∗. Show that x∗ is asymptotically stable in the x-system if
and only if 0 is asymptotically stable in the X-system X′ = F(X + x∗).

Combining Lemma 3.13 and Exercise 3.10, we have proved:

Corollary 3.14. Let x∗ be an equilibrium point of a system x′ = F(x), and consider the
affine linear transformation y = P−1(x − x∗). Then, x∗ is asymptotically stable in the
x-system if and only if 0 is asymptotically stable in the y-system y′ = P−1F(x∗ + Py).

Now we get back to the discussion of linearizations. Given a differentiable vector
F : R2 → R2 with equilibrium point x∗. The system x′ = F(x) has the following
asymptotic form:

x′ = (DFx∗) (x− x∗) + o (|x− x∗|) .
The 2 × 2 Jacobian matrix DFx∗ admits a canonical decomposition DFx∗ = PKP−1

where P is invertible and K is one of the canonical forms, then under the affine linear
transformation y = P−1(x− x∗), the system is transformed into the form:

y′ = Ky + o(|y|)
as per the discussion preceding Lemma 3.13.

Since x∗ is asymptotically stable in the x-system if and only if 0 is asymptotically
stable in the y-system, from now on we can focus on the y-system (whose linearization
at 0 is given by K).
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Proof of Theorem 3.12. Suppose the Jacobian matrix of F at x∗ has a canonical form
decomposition:

DFx∗ = PKP−1

where P is invertible and K is one of the canonical forms. The matrix K has the
same eigenvalue as DFx∗ and is one of the following forms according to whether the
eigenvalues of DFx∗ is distinct real, complex or repeated:[

−λ1 0
0 −λ2

]
,

[
−α β
−β −α

]
,

[
−λ 1
0 −λ

]
.

By our assumption in the theorem, λ1, λ2, α and λ are all positive real numbers. We
divide the proof into three cases, each of which correspond to K being one of the above
canonical forms.

Recall that to show x∗ is asymptotically stable, it suffices to show 0 is asymptotically
stable in the system of the form:

y′ = Ky + o(|y|).

Case 1: K =

[
−λ1 0

0 −λ2

]
We assume without loss of generality that −λ1 < −λ2 < 0. We first show 0 is stable

in the y-system. We first show that Consider:
d

dt
|y|2 = 2y · y′

= 2y · (Ky + o(|y|))
= −2(λ1y

2
1 + λ2y

2
2) + 2y · o(|y|)

≤ −2λ2(y2
1 + y2

2) + o(|y|2)

= −2λ2 |y|2 + o(|y|2)

= (−2λ2 + o(1)) |y|2 .
Hence, by the definition of little-oh, there exists δ > 0, such that whenever |y| < δ, we
have

−2λ2 + o(1) < −2λ2 + λ2 = −λ2 < 0.

Therefore, when y0 ∈ Bδ(0), we have d
dt |ϕt(y0)|2 ≤ −λ2 |ϕt(y0)|2 < 0 and so |ϕt(y0)| is

strictly decreasing for t ≥ 0. In other words, ϕt(y0) ∈ Bδ(0) for all t ≥ 0 and Bδ(0) is a
‘trapping set’ of the system in a sense that solution curves that start inside the ball will be
trapped inside the ball forever. It follows immediately from the definition that 0 is stable.

The fact that 0 is asymptotically stable follows from:
d

dt
|ϕt(y0)|2 ≤ −λ2 |ϕt(y0)|2

d

dt

(
eλ2t |ϕt(y0)|2

)
= eλ2t

d

dt
|ϕt(y0)|2 + λ2e

λ2t |ϕt(y0)|2

= eλ2t

(
d

dt
|ϕt(y0)|2 + λ2 |ϕt(y0)|2

)
≤ eλ2t · 0 = 0

eλ2t |ϕt(y0)|2 ≤ eλ2·0 |ϕ0(y0)|2 = |y0|2

for any t ≥ 0. Therefore,

|ϕt(y0)| ≤ |y0| e−
λ2
2 t → 0 as t→ +∞.
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Case 2: K =

[
−α β
−β −α

]
Similar to the previous case, we show that 0 in the y-system:

y′ = Ky + o (|y|)

is asymptotically stable.

d

dt
|y|2 = 2y · y′ = 2y · (Ky + o (|y|))

= −2α
(
y2

1 + y2
2

)
+ 2y · o (|y|)

≤ −2α |y|2 + o(|y|2) = (−2α+ o(1)) |y|2 .

Using this inequality, one can proceed as in Case 1 (with α in place of λ2) to show 0 is
asymptotically stable.

Case 3: K =

[
−λ 1
0 −λ

]
In this case, we make a further change of variables. Let:

z :=

[
1 0

0
√
λ

]
y.

Denote the components of z by z :=

[
z1

z2

]
. Then, it can be directly verified that:

d

dt
|z|2 =

d

dt

(
y2

1 + λy2
2

)
= −2λ

(
y2

1 + λy2
2

)
+ o(|y|2)

= −2λ |z|2 + o(|z|2).

Again, one apply a similar argument as in Cases 1 and 2 to show 0 is asymptotically
stable in the z-system. Finally, Lemma 3.13 shows 0 is also asymptotically stable in the
y-system.

�

Let F : R2 → R2 be a C1 vector field. Consider the two systems:

x′(t) = F(x(t)), y′(t) = −F(y(t)).

Graphically, the vector fields of the x- and y-systems are in the opposite direction,
and so the flow of the y-system should be the backward flow of the x-system. We will use
this observation to establish the linearization test when the Jacobian matrix has positive
real parts. Precisely, given that x∗ is an equilibrium point of the x-system and that all
eigenvalues of DFx∗ have positive real parts. Then, all eigenvalues of D(−F)x∗ have
negative real parts, and by Theorem 3.12, the y-system is asymptotically stable around
the equilibrium point x∗. Solution curves near x∗ in the y-system are tending towards
x∗, and so those in the x-system are tending away from x∗. This establish instability of
x∗ in the x-system. Let’s state and prove this result rigorously:

Theorem 3.15 (Poincaré-Lyapunov’s Theorem: unstable case). Let F : R2 → R2 be a
C1 vector field. Consider the autonomous system x′ = F(x). Suppose x∗ is an equilibrium
point of the system and that all eigenvalues of DFx∗ have (strictly) positive real parts,
then the equilibrium point x∗ of the nonlinear system x′ = F(x) is unstable.
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Proof. Let ϕt be the flow of the system x′ = F(x), and ψt be the flow of the system
y′(t) = −F(y(t)), i.e. the backward flow of ϕt. Then, for any t ∈ R and x0 ∈ R2 such
that ϕt(x0) is defined, we have ψ−t(x0) = ϕt(x0).

The linearization of the y-system at x∗ is given by the matrix −DFx∗ , whose eigen-
values have negative real parts by the given condition. Therefore, by Theorem 3.12, the
equilibrium point x∗ is asymptotically stable in the y-system. In particular, one can pick
a x0 ∈ R2, sufficiently close to x∗ (but x0 6= x∗), such that |ψt(x0)− x∗| → 0 as t→∞.

Next we verify that x∗ is unstable in the x-system from the definition. Fix an ε > 0
such that x0 6∈ Bε(x∗). For any δ > 0, since ψt(x0) → x∗ as t → +∞, there exists a
sufficiently large T > 0 such that ψT (x0) ∈ Bδ(x∗). Then, by flowing along the x-system
from ψT (x0) for T unit time forward, one should expect to get back to x0 which is outside
the ε-ball Bε(x∗). Precisely, we have:

ϕT (ψT (x0)) = ψ−T (ψT (x0)) = ψ−T+T (x0) = ψ0(x0) = x0.

To summarize, there exists an ε > 0 such that for any δ > 0, one can find a point
z0 := ψT (x0) ∈ Bδ(x∗) such that ϕT (z0) = x0 6∈ Bε(x∗), which is exactly the definition
of instability of x∗ for the x-system.

�

To sum up, given a planar nonlinear system x′ = F(x) with a hyperbolic equilibrium
point x∗, one can determine the stability of x∗ by finding eigenvalues of DFx∗ . If they
are both negative, then x∗ is asymptotically stable. If they are both positive, then it is
unstable. It is natural to ask whether the phase portrait will resemble a saddle near x∗ if
one of the eigenvalues is positive and another is negative, as one saw in the linear case.
The answer is affirmative, but with a much more delicate proof than Theorems 3.12 and
3.15. It is a consequence of the Stable Curve Theorem which will be discussed in the
next section.
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3.4. Stable Curve Theorem

In this section, we will settle the last (and the most difficult) case of hyperbolic equilibrium
point, namely the case when the Jacobian matrix has a mix of eigenvalue signs. We
will prove that the phase portrait resembles a saddle and hence is unstable. It is a
consequence of the following celebrated theorem:

Theorem 3.16 (Stable Curve Theorem). Let F : R2 → R2 be a C1 vector field. Consider
the nonlinear planar system x′ = F(x) with ϕt as its flow. Suppose x∗ is an equilibrium
point and the Jacobian matrix DFx∗ has a positive eigenvalue λ and a negative eigenvalue
−µ. Then:

• there exists a point xs near x∗ such that ϕt(xs)→ x∗ as t→ +∞; and
• there exists a point xu near x∗ such that ϕt(xu)→ x∗ as t→ −∞.

Corollary 3.17. Under the same assumption as in Theorem 3.16, the equilibrium point
x∗ is unstable.

Exercise 3.11. Prove Corollary 3.17 using the Stable Curve Theorem.

Proof of Theorem 3.16. We first outline the proof, and then give the delicate detail.
Similar to the proof of Theorem 3.12, one can transform the system, via a translation
and a linear map, the system x′ = F(x) becomes2.[

x′

y′

]
=

[
−µ 0
0 λ

] [
x
y

]
+ o

(√
x2 + y2

)
,

or equivalently,

x′ = −µx+ h1(x, y)

y′ = λy + h2(x, y).

where h1, h2 ∈ o
(√

x2 + y2
)

as (x, y)→ (0, 0). Therefore, we can assume without loss

of generality that x′ = F(x) is in this form.

It can be verified that this system is equivalent to the integral system:

x(t) = e−µt
(
x(0) +

∫ t

0

eµsh1(x(s), y(s))ds

)
y(t) = eλt

(
y(0) +

∫ t

0

e−λsh2(x(s), y(s))ds

)
.

In order to find a suitable initial condition (x(0), y(0)) to give a stable solution such that
x(t) → 0 and y(t) → 0 as t → ∞, we need to pick y(0) very judiciously. It is because

y(t) = eλt
(
y(0) +

∫ t
0
e−λsh2(x(s), y(s))ds

)
and eλt →∞ as t→∞. In hopes of having

limt→∞ y(t) = 0, we require:

lim
t→∞

(
y(0) +

∫ t

0

e−λsh2(x(s), y(s))ds

)
= 0

to compensate the growth of the eλt term. In other words, we require:

y(0) := −
∫ ∞

0

e−λsh2(x(s), y(s))ds.

2Here we denote (x, y) as the components of x instead of (x1, x2) since we will deal with sequences
x1(t), x2(t), x3(t), · · · in the proof and we will use subscripts for the sequence index.
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With this choice of y(0), the integral system can be rewritten as

x(t) = e−µt
(
x(0) +

∫ t

0

eµsh1(x(s), y(s))ds

)
y(t) = −eλt

∫ ∞
t

e−λsh2(x(s), y(s))ds.

To prove the stable part of the theorem, we will show the above system has a so-
lution provided that the initial-value x(0) is sufficiently small, and that this solution
(x(t), y(t))→ (0, 0) as t→∞.

Similar to the existence of ODEs, we define the following coupled iteration sequence:

x0(t) ≡ 0

y0(t) ≡ 0

xn(t) = e−µt
(
x(0) +

∫ t

0

eµsh1(xn−1(s), yn−1(s))ds

)
yn(t) = −eλt

∫ ∞
t

e−λsh2(xn−1(s), yn−1(s))ds.

The goal is now to prove both xn(t) and yn(t) converges uniformly on t ∈ [0,∞) as
n → ∞, then the limit functions x∞(t) and y∞(t) will solve the integral system, and
therefore the equivalent differential system has a solution (x∞(t), y∞(t)). An additional
argument will show x∞(t) → 0 and y∞(t) → 0 as t → ∞, and therefore the solution
(x∞(t), y∞(t)) traces out a stable curve near (0, 0).

The analysis part for showing xn(t) and yn(t) converges uniformly on t ∈ [0,∞)
goes as follows: we will find ε > 0 small enough such that whenever the initial-value
|x(0)| < ε/4, we have both

|xk(t)− xk−1(t)| ≤ 1

2k−1
e−µt/2|x(0)|

|yk(t)− yk−1(t)| ≤ 1

2k−1
e−µt/2|x(0)|

for any integer k > 0. Then it will follow from Weierstrass’ M-test that both
∑∞
k=1(xk(t)−

xk−1(t)) and
∑∞
k=1(yk(t)−yk−1(t)) converges uniformly on t ∈ [0,∞). By the telescoping

method (similar to the existence theorem of ODEs), it implies xn(t) and yn(t) converge
uniformly on t ∈ [0,∞) as n→∞. The proof consists of four steps:

Step 1: Restrict the domain to a small ball
√
x2 + y2 < ε for some ε > 0, such

that the Lipschitz constants of h1(x, y) and h2(x, y) are not so large:

First we claim that

∂h1

∂x
,

∂h1

∂y
,

∂h2

∂x
,

∂h2

∂y
→ 0

as (x, y)→ (0, 0). We give the proof for ∂h1

∂x only since the other three can be proved in
exactly the same way. As the vector field is C1, the component f1(x, y) := −µx+ h1(x, y)
has continuous first partial derivatives. Therefore, we have.

∂h1

∂x
(x, y)→ ∂h1

∂x
(0, 0)
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as (x, y)→ (0, 0). It suffices to show ∂h1

∂x (0, 0) = 0, which is equivalent to ∂f1
∂x (0, 0) = −µ.

To verify this:
∂f1

∂x
(0, 0) = lim

s→0

f1(s, 0)− f1(0, 0)

s

= lim
s→0

−µs+ h1(s, 0)

s

= −µ+ lim
s→0

h1(s, 0)

s
= −µ.

The last step uses the fact that h1(x, y) = o
(√

x2 + y2
)

and so h1(s, 0) = o(|s|).

Therefore, we have ∂h1

∂x → 0 as (x, y) → (0, 0), and similarly, ∂h1

∂y ,
∂h2

∂x ,
∂h2

∂y → 0 as
(x, y)→ (0, 0).

As a result, there exists ε > 0 such that whenever (x, y) ∈ Bε(0), we have3∣∣∣∣∂h1

∂x
(x, y)

∣∣∣∣ , ∣∣∣∣∂h1

∂y
(x, y)

∣∣∣∣ , ∣∣∣∣∂h2

∂x
(x, y)

∣∣∣∣ , ∣∣∣∣∂h2

∂y
(x, y)

∣∣∣∣ < µ

4
√

2
.

By the mean value theorem, for any (x, y) and (x, y) in the ball Bε(0), we have (for
i = 1, 2):

|hi(x, y)− hi(x, y)| ≤ µ

4
√

2

√
(x− x)2 + (y − y)2.

Step 2: Next we prove the “core” part by induction. Pick |x(0)| < ε/4, we claim:

|xk(t)− xk−1(t)| ≤ 1

2k−1
e−µt/2|x(0)|

|yk(t)− yk−1(t)| ≤ 1

2k−1
e−µt/2|x(0)|

for any k > 0.

For k = 1, note that x0(t) = 0 and y0(t) = 0, we have:

|x1(t)− x0(t)| =
∣∣∣∣e−µtx(0) + e−µt

∫ t

0

eµsh1(x0(s), y0(s))|ds
∣∣∣∣

≤ e−µt|x(0)|+ e−µt
∫ t

0

eµs|h1(0, 0)|ds

= e−µt|x(0)|+ 0

≤ e−µt/2|x(0)| = 1

21−1
e−µt/2|x(0)|

|y1(t)− y0(t)| =
∣∣∣∣eλt ∫ ∞

t

e−λth2(x0(s), y0(s))

∣∣∣∣
= eλt

∣∣∣∣∫ ∞
t

e−λth2(0, 0)ds

∣∣∣∣ = 0

Therefore, the claim is true when k = 1.

3It may not be clear at this stage why we want the Lipschitz constants to be less than µ

4
√

2
, but you will see why later. As

in many other analysis proofs, things have to be understood backward.
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Now assume the claim is true when k = 1, 2, · · · , j. One consequence is that

|xj(t)| = |xj(t)− x0(t)|

=

∣∣∣∣∣
j∑

k=1

(xk(t)− xk−1(t))

∣∣∣∣∣ (telescoping)

≤
j∑

k=1

|xk(t)− xk−1(t)| (triangle inequality)

≤
j∑

k=1

1

2k−1
e−µt/2|x(0)| (induction assumption)

≤ e−µt/2|x(0)|
∞∑
k=1

1

2k−1

≤ 2e−µt/2|x(0)| (sum of the geometric series)

≤ 2|x(0)| < ε/2.

Similarly, we have |yj(t)| < ε/2. Therefore, the point (xj(t), yj(t)) lies in the ball Bε(0)
so that we can apply the Lipschitz continuity of h1 and h2 later in the proof.

Now, consider the case k = j + 1:

|xj+1(t)− xj(t)| =
∣∣∣∣e−µt ∫ t

0

eµs(h1(xj(s), yj(s))− h1(xj−1(s), yj−1(s)))ds

∣∣∣∣
≤ e−µt

∫ t

0

eµs|h1(xj(s), yj(s))− h1(xj−1(s), yj−1(s))|ds

≤ e−µt
∫ t

0

eµs
µ

4
√

2

√
|xj(s)− xj−1(s)|2 + |yj(s)− yj−1(s)|2ds,

where the last step follows from the Lipschitz continuity of h1 and that (xj(s), yj(s)) and
(xj−1(s), yj−1(s)) are in the ball Bε(0).

By the induction assumption, |xj(s) − xj−1(s)| < 1
2j−1 e

−µs/2|x(0)| and |yj(s) −
yj−1(s)| < 1

2j−1 e
−µs/2|x(0)|, and so:

|xj+1(t)− xj(t)| ≤ e−µt
∫ t

0

µeµs

4
√

2
·
√

2

2j−1
e−µs/2|x(0)|ds

≤ e−µt · µ|x(0)|
4 · 2j−1

∫ t

0

eµs/2ds

= e−µt · µ|x(0)|
4 · 2j−1

· 2

µ
(eµt/2 − 1)

< e−µt · µ|x(0)|
4 · 2j−1

· 2

µ
eµt/2 =

1

2j
e−µt/2|x(0)|
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Similarly,

|yj+1(t)− yj(t)| =
∣∣∣∣eλt ∫ ∞

t

e−λs(h2(xj(s), yj(s))− h2(xj−1(s), yj−1(s)))ds

∣∣∣∣
≤ eλt

∫ ∞
t

e−λs|h2(xj(s), yj(s))− h2(xj−1(s), yj−1(s))|ds

≤ eλt
∫ ∞
t

e−λs · µ

4
√

2

√
|xj(s)− xj−1(s)|2 + |yj(s)− yj−1(s)|2ds

≤ eλt
∫ ∞
t

e−λs · µ

4
√

2
·
√

2

2j−1
e−µs/2|x(0)|ds

= eλt · µ|x(0)|
4 · 2j−1

∫ ∞
t

e−(λ+µ
2 )sds

= eλt · µ|x(0)|
4 · 2j−1

1

λ+ µ
2

(e−(λ+µ
2 )t − 1)

< eλt · µ|x(0)|
4 · 2j−1

1

λ+ µ
2

e−(λ+µ
2 )t =

µ

λ+ µ
2

· 1

4 · 2j−1
· |x(0)|e−µt/2

≤ µ

µ/2
· 1

4 · 2j−1
· |x(0)|e−µt/2 =

1

2j
e−µt/2|x(0)|.

Hence the claim is true for k = j + 1. By induction, the claim holds for any integer k > 0.

Step 3: Show uniform convergence and complete the proof (of the stable part).

From Step 2 we have

|xk(t)− xk−1(t)| ≤ e−µt/2

2k−1
|x(0)| ≤ |x(0)|

2k−1

for any k > 0 and t ∈ [0,∞). The geometric series test implies
∑∞
k=1

|x(0)|
2k−1 converges.

Therefore, the Weierstrass’s M-test shows the series
∑∞
k=1(xk(t) − xk−1(t)) converges

uniformly on t ∈ [0,∞). Since

xn(t) =

n∑
k=1

(xk(t)− xk−1(t)) (recall that x0(t) = 0),

the sequence xn(t) converges uniformly on t ∈ [0,∞) to some function x∞(t) as n→∞.
Exactly the same argument proves yn(t)→ y∞(t) uniformly on t ∈ [0,∞) as n→∞.

Given that we have uniform convergence, one can switch the integral sign and the
limit. Let n→∞ on both sides of:

xn(t) = e−µt
(
x(0) +

∫ t

0

eµsh1(xn−1(s), yn−1(s))ds

)
yn(t) = −eλt

∫ ∞
t

e−λsh2(xn−1(s), yn−1(s))ds,

one can get

x∞(t) = e−µt
(
x(0) +

∫ t

0

eµsh1(x∞(s), y∞(s))ds

)
y∞(t) = −eλt

∫ ∞
t

e−λsh2(x∞(s), y∞(s))ds.

Therefore (x∞(t), y∞(t)) solves the integral system, and hence the differential system.
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The last thing to check is that this particular solution is indeed a stable solution. In
fact, it follows from the inequalities:

|xk(t)− xk−1(t)| ≤ 1

2k−1
e−µt/2|x(0)|

|yk(t)− yk−1(t)| ≤ 1

2k−1
e−µt/2|x(0)|.

Again use the fact that

xn(t) =

n∑
k=1

(xk(t)− xk−1(t)),

we get

|xn(t)| ≤
n∑
k=1

|xk(t)− xk−1(t)|

≤
∞∑
k=1

|xk(t)− xk−1(t)|

≤
∞∑
k=1

1

2k−1
e−µt/2|x(0)| = 2e−µt/2|x(0)|.

Let n → ∞, we have |x∞(t)| ≤ 2e−µt/2|x(0)| for any t ∈ [0,∞). Clearly it implies
x∞(t)→ 0 as t→∞. Similarly, one can show |yn(t)| ≤ 2e−µt/2|x(0)| and the same result
holds for y∞(t).

Now that (x∞(t), y∞(t)) → (0, 0) as t → ∞, so they form a stable solution. Take
xs = (x∞(0), y∞(0)), then ϕt(xs) = (x∞(t), y∞(t))→ (0, 0) as t→∞.

Step 4: Finally, mimic the above with −t in place of t to prove the existence of
an unstable curve.

�

3.4.0.1. Summary. To summarize, given a nonlinear system x′ = F(x) with an
equilibrium point x∗, if all eigenvalues of the Jacobian matrix DFx∗ have non-zero real
parts, then the point x∗ is said to be hyperbolic, and the stability of the point x∗ is the
same as the stability of 0 of the linearized system X′ = (DFx∗)X. However, this is not
necessarily true if one of the eigenvalues of DFx∗ has zero real parts, i.e. non-hyperbolic.
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3.5. Lyapunov Functions

When an equilibrium point is not hyperbolic, the linearization method fails to conclude
whether the point is stable or not. In this section, we introduce the Lyapunov’s Second
Method which can be used to determine the stability of a non-hyperbolic equilibrium
point.

Definition 3.18 (Lyapunov Functions). Let F : Rd → Rd be a C1 vector field, and the
system x′ = F(x) has an equilibrium point x∗. Let L : U → R be a C1 function defined
on an open set U containing x∗. Suppose all of the following holds:

(1) L(x∗) = 0; and

(2) L(x) > 0 for any x ∈ U\{x∗}; and

(3) For any solution curve x(t) in U , we have
d

dt
L(x(t)) ≤ 0 for any t ≥ 0 such that x(t) 6= x∗,

then L is called a Lyapunov function for x∗.

If the function L further satisfies:

3’. For any solution curve x(t) in U , we have
d

dt
L(x(t)) < 0 for any t ≥ 0 such that x(t) 6= x∗,

then L is called a strict Lyapunov function for x∗. �

The following theorem showcases the significance of Lyapunov functions:

Theorem 3.19 (Lyapunov’s Second Method). Let F : Rd → Rd be a C1 vector field, and
the system x′ = F(x) has an equilibrium point x∗. Then,

• If there exists a Lyapunov function L for x∗, then x∗ is stable.
• If there exists a strict Lyapunov function L for x∗, then x∗ is asymptotically stable.

Before we learn the proof of Theorem 3.19, let’s first look at a couple of examples
of Lyapunov Functions and how Theorem 3.19 can be used to show stability of an
equilibrium point.

Example 3.4. Consider the ODE system:

x′ = −x+ y + xy

y′ = x− y − x2 − y3.

Clearly, (0, 0) is an equilibrium point. The linearization at 0 is represented by the
matrix [

−1 1
1 −1

]
which has eigenvalues 0 and −2. Therefore, 0 is not hyperbolic and so the lin-
earization method discussed in the previous section fails to conclude the stability of
0.

Let L(x, y) = x2 + y2. We are about to show that it is a strict Lyapunov function
for 0 and so Theorem 3.19 concludes 0 is asymptotically stable:
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Clearly conditions (1) and (2) hold since L(0, 0) = 0 and L(x, y) > 0 when
(x, y) 6= (0, 0). To check condition (3’), we consider:
d

dt
L(x, y) =

d

dt
(x2 + y2)

= 2x · x′ + 2y · y′

= 2x · (−x+ y + xy) + 2y · (x− y − x2 − y3)

= −2x2 + 4xy − 2y2 − 2y4

= −2(x− y)2 − 2y4 (factorization)

< 0 (when (x, y) 6= (0, 0))

Therefore, L is a strictly Lyapunov function and 0 is asymptotically stable. �

Example 3.5. Consider the system:

x′ = y

y′ = −kx− y3(1 + x2)

where k > 0 is a constant. We are going to show that

L(x, y) := kx2 + y2

is a Lyapunov function for the equilibrium point 0.

Clearly, conditions (1) and (2) are satisfied. To show it satisfies condition (3),
we consider:

d

dt
L(x, y) =

d

dt
(kx2 + y2)

= 2kx · x′ + 2y · y′

= 2kxy + 2y(−kx− y3(1 + x2))

= −y4(1 + x2) ≤ 0.

Therefore, L(x, y) is a Lyapunov function and so (0, 0) is stable.

Note that L(x, y) is not a strict Lyapunov function since dL
dt = −y4(1 + x2) can

be zero even when (x, y) 6= (0, 0). In fact, dLdt = 0 whenever y = 0 and x is any real
number. �

Next we give the proof of the Lyapunov’s Second Method. The key idea of the stable
part of the method is that the level region of the form {x ∈ Rd : L(x) ≤ α} will “trap”
the trajectory inside the region, i.e. if the trajectory starts there initially, it will remain
so along the flow. Figure 3.9 shows the trajectories of the system in Example 3.4 on the
level set diagram of the Lyapunov function L(x, y) = x2 + y2.

Proof of Theorem 3.19. First suppose there exists a Lyapunov’s function L : U → R
defined on an open set U containing x∗. Given any ε > 0, by the continuity of L
and the fact that the boundary of the ball Bε(x∗), denoted by ∂Bε(x∗), is closed and
bounded, the extreme-value theorem shows L attains a minimum α on the boundary
set ∂Bε(x∗). By Property 2 of Lyapunov’s functions, we must have α > 0. Then, the
region O = {x ∈ Rd : L(x) < α} is in the interior of the ball Bε(x∗), and by Property
1 of Lyapunov’s function and the fact that α > 0, we know x∗ ∈ O. Given any x0 ∈ O,
Property 3 of Lyapunov’s function asserts that L(ϕt(x0)) must be decreasing as t increases,
thus ϕt(x0) must stay in the region O. This shows x∗ is stable.
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Figure 3.9. The phase portrait of the system: x′ = −x+ y+xy, y′ = x− y−x2− y3
on the level sets of L(x, y) = x2 + y2. The solution curves travel in a direction which
decreases the value of L. Therefore, each ball bounded by a circle contour is a trapping
region of the trajectories.

Now assume further that L : U → R is a strict Lyapunov’s function. We need to show
x∗ is asymptotically stable, i.e. given any x0 sufficiently close to x∗, we have ϕt(x0)→ x∗

as t→∞.

In order to prove
lim
t→∞

ϕt(x0) = x∗,

one common approach is to show that if tn is a sequence of times such that tn →∞ as
n → ∞ and that ϕtn(x0) converges to a limit z, then the limit z must be x0. To prove
this, we take an arbitrary s > 0, and we will show L(ϕs(z)) = L(z) for any s > 0. Then,
it will imply

d

ds
L(ϕs(z)) = 0

for any s > 0. By Property 3’ of strict Lyapunov’s function, the only chance it can happen
is that z = x∗.

Here we give the proof of L(ϕs(z)) = L(z): given any s > 0, consider a new sequence
of times {s+ tn}∞n=1. Pick a subsequence {tkn}∞n=1 of {tn}∞n=1 such that s+ tn ≤ tkn for
each n, then we have ϕtkn (x0)→ z as n→∞. By the continuity of L and ϕs, we have:

L(z) = lim
n→∞

L(ϕtkn (x0)) (continuity of L)

≤ lim
n→∞

L(ϕs+tn(x0)) (since s+ tn ≤ tkn)

= lim
n→∞

L(ϕs(ϕtn(x0))) (since ϕs ◦ ϕtn = ϕs+tn)

= L(ϕs(z)) (by continuity of L and ϕs)

≤ L(z) (by Property 3’)

Overall, we proved L(ϕs(z)) = L(z) for any s > 0. By the discussion above, we proved
z = x∗. This shows x∗ is asymptotically stable.

�

The key idea for establishing asymptotic stability in the above proof is to show
L(ϕs(z)) = L(z) for any s > 0 where z is the limit of ϕtn(x0). Property 3’ of strict
Lyapunov functions forces z must be the equilibrium point x∗. In fact, in order to
show z = x∗, L does not have to be a strict Lyapunov function, but simply a Lyapunov
function, provided that the equilibrium solution x(t) ≡ x∗ is the only solution such that
d
dtL(x(t)) = 0.
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Theorem 3.20 (LaSalle’s Principle). Let F : Rd → Rd be a C1 vector field, and the
system x′ = F(x) has an equilibrium point x∗. If there exists a Lyapunov function L for
x∗ such that the only possible solution x(t) for d

dtL(x(t)) = 0 for any t ∈ [0,∞) is the
equilibrium solution x∗, then x∗ is asymptotically stable.

Proof. The proof is almost identical to the proof of Theorem 3.19. After establishing
L(ϕs(z)) = L(z) for any s > 0 (and hence d

dsL(ϕs(z)) = 0), the hypothesis of this
theorem implies ϕs(z) must be the equilibrium solution ϕs(z) = x∗ for any s > 0.

�

Example 3.6 (Revisited). Consider the system

x′ = y

y′ = −kx− y3(1 + x2)

where k > 0. This system was considered in Example 3.5 and we showed L =
kx2 + y2 is a Lyapunov function for (0, 0):

d

dt
L(x, y) = −y4(1 + x2).

L is merely a Lyapunov function and so Theorem 3.19 can only concludes that
(0, 0) is stable. However, one can use the LaSalle’s Principle to show in fact (0, 0) is
asymptotically stable:

Whenever d
dtL(x(t), y(t)) = 0 for any t ≥ 0, we have −y(t)4(1 + x(t)2) = 0 for

any t. Therefore, y(t) ≡ 0, and by substituting it to the system, we get:

x′ = 0

0 = −kx
which implies x(t) ≡ 0 as well. Therefore, x(t) ≡ 0 is the only possible solution for
L(x(t)) ≡ constant. By LaSalle’s Principle, 0 is asymptotically stable. �

3.5.0.1. Tips of finding a Lyapunov function. Finding a Lyapunov function may
sometimes be a challenging task that may require trial-and-error. The following example
demonstrates some tips of finding a suitable Lyapunov function.

Example 3.7. Consider the system:

x′ = −x3 + y

y′ = −2(x3 + y3)

Clearly (0, 0) is an equilibrium point. We want to determine whether it is stable. We
guess a Lyapunov function is of the form L(x, y) = Axm +Byn. In order for L to
satisfy Properties 1 and 2, we need:

A, B > 0, and

m, n are even.

We compute:
dL

dt
= mAxm−1 · x′ + nByn−1 · y′

= mAxm−1(−x3 + y)− 2nByn−1(x3 + y3)

= −mAxm+2 +mAxm−1y − 2nBx3yn−1 − 2nByn+2
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As far as A, B > 0, m and n are even, the terms −mAxm+2 and −2nByn+2 are
negative as desired. However, the terms mAxm−1y and −2nBx3yn−1 are neither
positive or negative definite, so we want to choose some suitable A, B, m and n so
that they cancel out each other. Namely, we require:

m− 1 = 3

1 = n− 1

mA = 2nB

Clearly, m = 4, n = 2, A = B = 1 is a solution. With this choice, L(x, y) = x4 + y2

is a strict Lyapunov function since
dL

dt
= −4x6 − 4y4 < 0 whenever (x, y) 6= (0, 0).

Therefore, (0, 0) is asymptotically stable. �

Exercise 3.12. For each of the following systems, show that (0, 0) is asymptotically
stable. Note that some of them can be handled by linearization.

(1) x′ = −4x− y, y′ = −2x− 5y − 2y sinx

(2) x′ = x+ y + x2y, y′ = −x+ y cosx

(3) x′ = xy − 2x2y3 − x3, y′ = −y − 1
2x

2 + x3y2

(4) x′ = −2(x3 + y3), y′ = x− 2y3

Theorem 3.19 asserts that if there exists a strict Lyapunov function for an equilibrium
point x∗, then x∗ is asymptotically stable. It is natural to answer whether the converse is
true, i.e. if x∗ is asymptotically stable, does it always exist a strict Lyapunov function?
The answer is yes, which was proved by Massera in 1950s. The proof is beyond the
scope of this lecture note, but it is much easier to prove a partial converse by imposing a
condition on the flow ϕt. See the following exercise:

Exercise 3.13. Consider a system x′ = F(x) with flow denoted by ϕt. Suppose 0 is
an asymptotically stable equilibrium point and assume ϕt satisfies:

|ϕt(x)| ≤ f(t) |x| for all t ≥ 0

where f(t) : [0,∞)→ R is a continuous function satisfying:∫ ∞
0

|f(t)|2 dt <∞.

For example, f(t) = e−t satisfies this condition.

Define

L(x) :=

∫ ∞
0

|ϕs(x)|2 ds.

(1) Check that L is well-defined, i.e. the integral defining L is finite.

(2) Show that for t > 0 and x ∈ Rd, we have:

L(ϕt(x)) =

∫ ∞
t

|ϕs(x)|2 ds.

(3) Show that
d

dt
L(ϕt(x)) = − |ϕt(x)|2

and that L is a strict Lyapunov function for 0.
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3.6. Gradient and Hamiltonian Systems

Using Lyapunov’s Second Method (Theorem 3.19) to determine the stability of an
equilibrium point is effective in a sense that one does not need to know the solution
to the ODE system. However, it may sometimes be challenging to come up with a
suitable Lyapunov function, and sometimes it is a matter of experience and trial-and-
error. However, there are two types of ODE systems, gradient and Hamiltonian systems,
which always come along with possible candidates of Lyapunov functions.

3.6.1. Gradient Systems. Let’s begin with gradient systems:

Definition 3.21 (Gradient System). A gradient system is an ODE system of the form:

x′ = −∇f(x)

where f : Rd → R is a C2-function. The function f is often called a potential function of
the system. �

Remark 3.22. Recall that ∇f is defined as the following vector field:

∇f(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xd
(x)

)
.

�

Remark 3.23. A system of the form x′ = ∇f(x) is also a gradient system since one
rewrite it as x′ = −∇ (−f(x)). However, it is a convention to take the form x′ =
−∇f(x) since then the potential function f , as we will see, will be decreasing along
trajectories. �

The equilibrium points of a gradient system x′ = −∇f(x) are the critical points
of the function f . The significance of gradient systems in terms of stability is that the
potential function is a possible candidate of a Lyapunov function, in a sense that Property
3 of Lyapunov functions always hold, although Properties 1 and 2 may not.

Lemma 3.24. The potential function f(x) of the gradient system x′ = −∇f(x) satisfies:
d

dt
f(x(t)) = − |∇f(x(t))|2 ≤ 0

for any solution curve x(t). Therefore, f must satisfy Property 3 of Lyapunov functions.

Proof. As always, we denote the components of x by (x1, . . . , xd), then f is a function
of x1, . . . , xd and each of xi’s is a function of t when traveling along any trajectory. By
chain rule, we have:

d

dt
f(x(t)) =

d∑
i=1

∂f

∂xi
· dxi
dt

=

(
∂f

∂x1
, . . . ,

∂f

∂xd

)
· (x′1, . . . , x′d)

= ∇f(x) · x′

= ∇f(x) · (−∇f(x))

= − |∇f(x)|2 .

�
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The following result tells us when the potential function f is truly a Lyapunov
function:

Theorem 3.25. Consider the gradient system x′ = −∇f(x) with an equilibrium point
x∗, i.e. a critical point of the function f . Suppose x∗ is an isolated local minimum point
of f , then L(x) := f(x) − f(x∗) is a strict Lyapunov function for x∗ and hence x∗ is
asymptotically stable.

Proof. Since x∗ is an isolated local minimum point of f , there exists a small ball Bε(x∗)
such that:

f(x) > f(x∗) for any x ∈ Bε(x∗) and x 6= x∗.

Then, L(x∗) = 0 and L(x) = f(x) − f(x∗) > 0 for any x ∈ Bε(x
∗) and x 6= x∗.

Furthermore, by Lemma 3.24, we have:

d

dt
L(x(t)) =

d

dt
f(x(t)) = − |∇f(x(t))|2 .

Since x∗ is the only critical point of f on the ball Bε(x∗), ∇f(x) 6= 0 unless x = x∗. It
shows

d

dt
L(x(t)) < 0 for any x ∈ Bε(x∗) and x 6= x∗.

Therefore, L : Bε(x
∗)→ R is a strict Lyapunov function for x∗.

�

Example 3.8. Consider the system

x′ = −2x(x− 1)(2x− 1)

y′ = −2y

It is a gradient system as one can verify that the potential function can be taken
to be f(x, y) = x2(x− 1)2 + y2. There are three equilibrium points, namely (0, 0),
( 1

2 , 0) and (1, 0).

Both (0, 0) and (1, 0) are isolated local minimum points of f , since f(0, 0) = 0
and f(x, y) > 0 for any (x, y) ∈ B1/2(0, 0), and likewise f(1, 0) = 0 and f(x, y) > 0
for any (x, y) ∈ B1/2(1, 0). Therefore, f(x, y) is a strict Lyapunov function for both
(0, 0) and (1, 0), and hence (0, 0) and (1, 0) are both asymptotically stable.

However, ( 1
2 , 0) is not a local minimum point of f as f(x, 0) = x2(x− 1)2 has

a maximum point at x = 1
2 and f( 1

2 , y) = 1
16 + y2 has a minimum point at y = 0.

Therefore, f(x, y) − f( 1
2 , 0) is not a Lyapunov function for ( 1

2 , 0). In fact, by the
linearization at ( 1

2 , 0) is given by the matrix:[
1 0
0 −2

]
whose eigenvalues have mixed signs. By Theorem 3.16 (Stable Curve Theorem),
the phase portrait near ( 1

2 , 0) resembles a saddle and hence is unstable. �

3.6.1.1. Criterion for gradient systems. Consider the following system:

x′ = −y + 10x5

y′ = x+ 3y6
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One can show it is not a gradient system by attempting to solve the equations:

−y + 10x5 = −∂f
∂x

x+ 3y6 = −∂f
∂y

The first equation implies f(x, y) = −xy+ 5
3x

6 + g(y) where g(y) is an arbitrary function
of y. Differentiating f with respect to y, we get:

∂f

∂y
= −x+ g′(y).

However, comparing with the second equation above, we get:

x+ 3y6 = −x+ g′(y) ⇒ 2x = g′(y)− 3y6.

The LHS is a function of x while the RHS is a function of y. It is impossible. Therefore,
there is no f to make the ODE system a gradient system.

In some systems such as:

x′ = x2ex
2+y2

y′ = y2ex
2+y2 ,

it may not be feasible to solve x2ex
2+y2 = −∂f∂x and y2ex

2+y2 = −∂f∂y for f since it

involves integrating x2ex
2

by x. Prior experience of single variable calculus should have
told you that it is not possible. Fortunately, one can still show whether it is a gradient
system or not using the following elegant test:

Proposition 3.26. Given a C1 vector field F defined everywhere on Rd, there exists a
potential function f : Rd → R such that F = −∇f if and only if the Jacobian matrix DFx

is symmetric for any x ∈ Rd.

Proof. (⇒) Suppose F = −∇f , then Fi = − ∂f
∂xi

for each i = 1, . . . , d. The (i, j)-th
component of the Jacobian matrix DF is:

∂Fi
∂xj

= − ∂

∂xj

(
∂f

∂xi

)
= − ∂2f

∂xj∂xi
.

From multivariable calculus, we know the second derivatives commute, i.e. ∂2f
∂xi∂xj

=

∂2f
∂xj∂xi

, so ∂Fj
∂xi

= ∂Fi
∂xj

and the (i, j)-th and (j, i)-th components of DF are equal. There-
fore, DF is symmetric.

(⇐) Given DFx is symmetric for any x ∈ Rd, we need to find the potential function
f such that F = −∇f . We define f as the following line integral:

f(x) := −
∫
L

F · dr

where L is the straight line segment from 0 to x, i.e. L is parametrized by r(t) = tx,
0 ≤ t ≤ 1. We will show that f indeed satisfies F = −∇f .

Precisely, f is given by:

f(x1, . . . , xd) = −
d∑
i=1

∫ 1

0

xiFi(tx1, . . . , txd)dt.
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We need to show Fj = − ∂f
∂xj

for any j = 1, . . . , j, so we consider:

− ∂f

∂xj
=

∂

∂xj

d∑
i=1

∫ 1

0

xiFi(tx1, . . . , txd)dt

=

d∑
i=1

∫ 1

0

∂

∂xj
(xiFi(tx1, . . . , txd)) dt

=

d∑
i=1

∫ 1

0

δijFi(tx1, . . . , txd)dt

+

d∑
i=1

∫ 1

0

xi
∂

∂xj
Fi(tx1, . . . , txd)dt (product rule)

=

∫ 1

0

Fj(tx1, . . . , txd)dt+

d∑
i=1

∫ 1

0

xit(∂jFi)(tx1, . . . , txd)dt (chain rule)

For simplicity we denote ∂Fi
∂xj

as ∂jFi. Since DF is symmetric, its (i, j)-th and (j, i)-
th components are equal, i.e. ∂jFi = ∂iFj . Therefore, the latter term of the above
computation becomes:

d∑
i=1

∫ 1

0

xit(∂jFi)(tx1, . . . , txd)dt

=

d∑
i=1

∫ 1

0

xit(∂iFj)(tx1, . . . , txd)dt

=

∫ 1

0

t
∂

∂t
Fj(tx1, . . . , txd)dt (chain rule, reversed)

= [tFj(tx1, . . . , txd)]
t=1
t=0 −

∫ 1

0

Fj(tx1, . . . , txd)dt (integration by parts)

= Fj(x1, . . . , xd)−
∫ 1

0

Fj(tx1, . . . , txd)dt.

Therefore, we have shown − ∂f
∂xj

(x1, . . . , xd) = Fj(x1, . . . , xd) for any (x1, . . . , xd) ∈ Rd.
In other words, F(x) = −∇f(x) for any x ∈ Rd.

�

Let’s try to apply Proposition 3.26 to the vector field:

F(x, y) =

[
x2ex

2+y2

y2ex
2+y2

]
.

By direct computation, the Jacobian matrix of F is:

DF(x, y) =

[
∗ 2x2yex

2+y2

2xy2ex
2+y2 ∗

]

where we omit the diagonal entries marked with ∗’s – since they do not affect whether
DF is symmetric or not.
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Clearly, DF is not a symmetric matrix, so Proposition 3.26 asserts that F cannot be
written as −∇f for some potential function f . In other words, the system

x′ = x2ex
2+y2

y′ = y2ex
2+y2

is not a gradient system. Therefore, one should not waste time to find the potential
function f by integration, since it is not possible!

Exercise 3.14. Determine whether each of the following systems is a gradient
system. If so, find a potential function f and determine whether it is a strict
Lyapunov function for (0, 0).

(1) x′ = x+ 2y, y′ = −y
(2) x′ = x2 − 2xy, y′ = y2 − x2

(3) x′ = − sin2 x sin y, y′ = −2 sinx cosx cos y

3.6.2. Hamiltonian Systems. Hamiltonian systems, to be defined below, often arise
in classical mechanics. While a gradient system is associated with a potential function
(or potential energy) f , a Hamiltonian system is often associated with the total energy
H, called the Hamiltonian function of the system. To ease our discussion, we will only
deal with two dimensional Hamiltonian systems in this note.

Definition 3.27 (Hamiltonian System). A two dimensional Hamiltonian system is of
the form:

p′ = −∂H
∂q

q′ =
∂H

∂p

where H(p, q) : R2 → R is a C2 function, called a Hamiltonian function.

Remark 3.28. Here we use (p, q) to denote the coordinates of R2 instead of the usual
(x, y) because of the physics origin of Hamiltonian systems. In classical mechanics, p
represents momentum and q represents position. �

The significance of a Hamiltonian function H in terms of stability is that H is a
possible candidate of a (non-strict) Lyapunov function.

Lemma 3.29. The Hamiltonian function H(p, q) of the system:

p′ = −∂H
∂q

q′ =
∂H

∂p

satisfies:
d

dt
H(x(t)) = 0

for any solution curves x(t). In other words, the value of H is constant along any trajectory
in the phase portrait.
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Proof. Let x(t) = (p(t), q(t)). By chain rule,
d

dt
H(p(t), q(t)) =

∂H

∂p
· dp
dt

+
∂H

∂q
· dq
dt

=
∂H

∂p
·
(
−∂H
∂q

)
+
∂H

∂q
· ∂H
∂p

= 0.

�

Therefore, H always satisfies Property 3 of Lyapunov functions. In order for H to be
a Lyapunov function, we need the following conditions stated in the following theorem:

Theorem 3.30. Consider the Hamiltonian system

p′ = −∂H
∂q

q′ =
∂H

∂p

Suppose x∗ is an equilibrium point of the system and is an isolated local minimum point of
H, then L(x) := H(x)−H(x∗) is a Lyapunov function for x∗ and hence x∗ is stable.

Proof. The proof is almost identical to the gradient system case (Theorem 3.25) and so
it is omitted here.

�

Example 3.9. The following is a classic example (undamped harmonic oscillator)
of a Hamiltonian system:

p′ = −kq

q′ =
p

m

where m, k > 0 are constants. It can be easily verified that H(p, q) = 1
2mp

2 + k
2 q

2

is a Hamiltonian function (which represents the total energy of the system). Clearly,
H is a Lyapunov function for (0, 0) and so the origin is a stable equilibrium. �

Example 3.10. Consider the system:

p′ = q − q2

q′ = p

By setting q−q2 = −∂H∂q and p = ∂H
∂p , one can easily find that H(p, q) = p2

2 + q3

3 −
q2

2

is a Hamiltonian function for the system.

The system has two equilibrium points: (0, 0) and (0, 1). The linearization at
(0, 0) is given by the matrix: [

0 1
1 0

]
whose eigenvalues are 1 and −1. Therefore, the Stable Curve Theorem asserts that
(0, 0) is unstable.
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However, the linearization method fails to conclude the stability of (0, 1) at
which the linearized system is given by the matrix:[

0 −1
1 0

]
that has eigenvalues 0± i. Therefore, (0, 1) is not a hyperbolic equilibrium point.
Fortunately, the system is a Hamiltonian system and so L(p, q) := H(p, q)−H(0, 1)
is a possible candidate for a Lyapunov function.

Let’s verify that L(p, q) = p2

2 + q3

3 −
q2

2 + 1
6 is indeed a Lyapunov function for (0, 0).

Clearly, p
2

2 ≥ 0 and equality holds if and only if p = 0. We let f(q) = q3

3 −
q2

2 + 1
6 ,

then one can verify that f(1) = 0, f ′(1) = 0 and f ′′(1) = 2 > 0. Therefore, q = 1 is
a local minimum point for f(q). In other words, one can find a small ε > 0 such
that f(q) > f(0) = 0 for q ∈ (1− ε, 1 + ε) and q 6= 0.

Combining with the p-term, we have L(p, q) ≥ 0 when (p, q) is close to (0, 1),
and equality holds when (p, q) = (0, 1). Therefore L is a Lyapunov function for
(0, 1) and hence (0, 1) is stable. �

3.6.2.1. Criterion for two-dimensional Hamiltonian systems. Similar to gradient
systems, there is a convenient way to determine whether a given two dimensional system
is a Hamiltonian system.

Proposition 3.31. Given a C1 vector field F defined everywhere on R2, the system
x′ = F(x) is a Hamiltonian system if and only if the trace of the Jacobian matrix DFx is
zero for any x ∈ R2.

We sketch the proof in the exercise below and let readers complete the detail:

Exercise 3.15. Consider a C1 vector field F(p, q) =

[
F1(p, q)
F2(p, q)

]
defined everywhere

on R2, and the system:

p′ = F1(p, q)

q′ = F2(p, q)

Complete the proof of Proposition 3.31 based on the following outline:

(1) Prove the (⇒)-part, i.e. assume there exists a Hamiltonian function H(p, q)
such that F1 = −∂H∂q and F2 = ∂H

∂p , show that the trace of DF is zero.

(2) For the (⇐)-part, we assume the trace of DF is zero, i.e. ∂F1

∂p + ∂F2

∂q = 0. Define
H as the following line integral:

H(p, q) :=

∫
L

−F1dq + F2dp

where L is the straight-line segment from (0, 0) to (p, q), parametrized by
r(t) = (tp, tq), 0 ≤ t ≤ 1. Show that H is explicitly given by:

H(p, q) =

∫ 1

0

(−F1(tp, tq)q + F2(tp, tq)p) dt.

(3) Prove that ∂H
∂p (p, q) = F2(p, q) and −∂H∂q (p, q) = F1(p, q) for any (p, q) ∈ R2,

hence completing the proof of the (⇐)-part. You may need to use the chain
rule twice. Look at the proof of Proposition 3.26 as a reference.
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Exercise 3.16. For each of the following systems, determine whether it is a Hamil-
tonian system or not. If so, find the Hamiltonian function and determine whether it
is a Lyapunov function for (0, 0).

(1) p′ = p+ 2q, q′ = −q
(2) p′ = p2 − 2pq, q′ = q2 − 2pq

(3) p′ = − sin2 p sin q, q′ = −2 sin p cos p cos q





Chapter 4

Periodicity

A solution x(t) to an ODE system x′ = F(x) is said to be periodic if the trajectory goes
back to the original position after some finite time. While it is easy to determine periodic
solutions in some systems, it is in general difficult to find an explicit expression of periodic
solutions in many systems.

In this chapter, we introduce an important theorem (the Poincaré-Bendixson’s The-
orem) which can be used to show the existence of periodic solutions. The Poincaré-
Bendixson’s Theorem is significant in both pure and applied mathematics. It is a con-
sequence of the Jordan Curve Theorem, a celebrated result in topology. Practically, it
not only tells us whether a periodic solution exists, but also suggests where it is located.
Furthermore, the Poincaré-Bendixson’s Theorem is significant in chaotic theory in a sense
that it shows there is no chaotic behavior on the plane. It prompted mathematicians to
consider non-planar or higher dimensional systems when studying chaotic behavior.

4.1. Periodic Solutions

Definition 4.1 (Periodic Solutions). Given an autonomous system x′ = F(x), a solution
x(t) of the system is said to be a periodic solution, or a closed orbit, if there exists a
time T > 0 such that x(t+ T ) = x(t) for any t ∈ R.

Remark 4.2. If one denotes ϕt the flow of the system, then in terms of flow notations, a
periodic solution is a trajectory ϕt(x0) satisfying ϕt+T (x0) = ϕt(x0) for all t ∈ R. �

Remark 4.3. Assume the vector field F is C1 so that the uniqueness theorem holds for
the system x′ = F(x) and hence we have ϕt ◦ϕs = ϕt+s for any legitimate t and s. Then,
in order for ϕt(x0) to be periodic, it suffices to have a time T > 0 such that ϕT (x0) = x0,
since it automatically implies ϕt+T (x0) = ϕt(x0) for any t ∈ R. �

Remark 4.4. An equilibrium solution is a fortiori periodic since T can be taken to be
any positive number. A non-equilibrium periodic solution can be called a non-trivial
periodic solution. �

As mentioned in the introduction of this chapter, it is in general difficult to solve
for periodic solutions explicitly. However, there are some exceptions. The planar linear
systems that give a center phase portrait are clear examples. Another is the following
example due to Hopf:

123
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Example 4.1 (Hopf). Consider the system:

x′ = x− y − x(x2 + y2)

y′ = x+ y − y(x2 + y2)

While it seems difficult to solve the system using Cartesian coordinates, it is much
nicer if one converts it into polar coordinates. Under the transformation rule
r2 = x2 + y2 and tan θ = y

x , we leave it as an exercise for readers to verify that the
above system can be rewritten as:

r′ = r(1− r2)

θ′ = 1

Therefore, if the initial data x0 is on the unit circle r = 1, then it will stay on it
for all time. In polar coordinates, this solution can be explicitly written as r(t) = 1
and θ(t) = t+ θ0 where θ0 is the initial angle from the positive x-axis. Convert this
solution back to Cartesian coordinates, it is written as: x(t) = (cos(t+ θ0), sin(t+
θ0)). Clearly, T = 2π is the period of the solution, i.e. x(t + 2π) = x(t) for any
t ∈ R.

In general, if the initial data has polar coordinates (r0, θ0), then the solution to
the system is given by

r(t) =
et√(

1
r20
− 1
)

+ e2t

, θ(t) = t+ θ0.

Therefore, the trajectories off the unit circle are never periodic since r(t) is either
strictly decreasing (when r0 > 1) or strictly increasing (when 0 < r0 < 1). In either
case, the radius r(t)→ 1 as t→ +∞. Therefore, these trajectories are approaching
to the unit circle. See Figure 4.1 for the phase portrait. �
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Figure 4.1. The phase portrait of the system in Example 4.1: r′ = r(1− r2), θ′ = 1

Unlike the Hopf’s system (Example 4.1), there are many systems whose solution
are difficult to solve, let alone finding periodic solutions. Many of these systems are
nonetheless of important scientific significance. The following is such an example.
Consider the system:

x′ = −x+ ay + x2y

y′ = b− ay − x2y

where a, b > 0 are two parameters.
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This system governs the glycolysis inside a human body. Here x is the concentration
of ADP (adenosine diphosphate) and y is the concentration of F6P (fructose 6-phosphate).
The rate of change of each of the two chemicals are governed by the above ODE system.
For instance, one can see that the increase of y will lead to slower growth rate of y and
higher growth rate of x. In order to maintain a sustainable metabolism, it will be ideal
if the concentrations of these two chemicals exhibit a periodic pattern. Mathematically
speaking, one hopes that the solution curves to the system are periodic, or at least
“asymptotically periodic” just like the trajectories near the unit circle in the Hopf’s system.
The phase portrait of the glycolysis system (with a = 1

10 and b = 1
2) is shown in Figure

4.2. The phase portrait suggests that there should be a periodic solution. However, due to
some unavoidable numerical errors of the plotting software, the periodic solution cannot
be clearly shown in the diagram. We will show that such a periodic solution indeed exists
using the Poincaré-Bendixson’s Theorem in the next section.

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

Figure 4.2. The phase portrait of the system: dx
dt

= −x+ 1
10
y + x2y dy

dt
= 1

2
− 1

10
y − x2y.

Before we get to the above-mentioned Poincaré-Bendixson’s Theorem, let’s look at
the flip side of the coin that some systems never have (non-trivial) periodic solutions.

Gradient systems are such examples:

Proposition 4.5. The only periodic solutions for any gradient system x′ = −∇f are the
equilibrium solutions.

Proof. Suppose x(t) is a periodic solution of the system x′ = −∇f with period T > 0.
Then,

f(x(T ))− f(x(0)) =

∫ T

0

d

dt
f(x(t))dt (Fundamental Theorem of Calculus)

=

∫ T

0

d∑
i=1

∂f

∂xi

dxi
dt
dt (chain rule)

=

∫ T

0

d∑
i=1

∂f

∂xi

(
− ∂f
∂xi

)
dt (since x′ = −∇f)

= −
∫ T

0

d∑
i=1

(
∂f

∂xi

)2

dt

= −
∫ T

0

|∇f |2 dt.
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Since we assume x(t) is periodic with period T , we have x(T ) = x(0), and so we have

0 =

∫ T

0

|∇f |2 dt

which implies ∇f(x(t)) = 0 for any t ∈ [0, T ]. In other words, x(t) is an equilibrium
solution of the system.

�

Another result to rule out the periodic solutions of some systems is the following:

Theorem 4.6 (Bendixson-Dulac’s Theorem). Let F : R2 → R2 be a C1 vector field on
R2. Denote the components of F by:

F(x, y) =

[
F1(x, y)
F2(x, y)

]
.

If there exists a C1 scalar function h(x, y) : Ω→ R defined on a simply-connected region
Ω ⊂ R2, such that

∂(hF1)

∂x
+
∂(hF2)

∂y

is positive in Ω, then the system x′ = F(x) does not have any non-trivial periodic solution
inside Ω.

Proof. Suppose x(t) is a periodic solution with period T > 0. We will use the Green’s
Theorem to derive a contradiction.

The solution curve x(t), 0 ≤ t ≤ T forms a closed loop. Denote this closed curve by
C and the region enclosed by R, then the Green’s Theorem shows:∫

C

−hF2dx+ hF1dy =

∫∫
R

∂(hF1)

∂x
+
∂(hF2)

∂y
dA

which is positive by the hypothesis of the theorem.

However, under the system x′ = F(x), we have dx = x′dt = hF1dt and dy = y′dt =
hF2dt. Therefore,∫

C

−hF2dx+ hF1dy =

∫
C

(−h2F1F2 + h2F1F2)dt = 0.

Clearly, it is a contradiction.

�

Example 4.2. The following system is a modified predator-prey model:

x′ = x(1− ax− by)

y′ = y(1 + cx− dy)

where a, b, c, d > 0 are parameters, and x and y represent the population of two
species. Think about which species is the predator and which is the prey! Using the
Bendixson-Dulac’s Theorem, one can show this system does not have non-trivial
periodic solutions:

Let Ω = {(x, y) ∈ R2 : x > 0 and y > 0} which is a simply-connected region.
Define h(x, y) = − 1

xy , then

∂(h · x(1− ax− by))

∂x
+
∂(h · y(1 + cx− dy))

∂y
=
a

y
+
d

x
> 0

for any (x, y) ∈ Ω. �
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Remark 4.7. There is no general tip on the choice of a suitable h. The use of Bendixson-
Dulac’s Theorem requires some trial-and-errors and experience. �

Exercise 4.1. For each of the following systems, determine whether it has a non-
trivial periodic solution. If so, find a periodic solution explicitly. If not, prove that it
does not have any periodic solution. (Hint: for second order systems, rewrite them
into first-order systems first)

(1) x′′ = −ω2
1x where ω1 is a constant.

(2) x′′ = −ω2
1x, y′′ = −ω2

2y where ωi’s are constants such that ω1

ω2
is rational.

(3) x′′ = −ω2
1x, y′′ = −ω2

2y where ωi’s are constants such that ω1

ω2
is irrational.

(4) x′ = x2 − 4x3y, y′ = y2 − x4

(5) x′ = sin y, y′ = cosx+ y

(6) x′ = 1
1+x2+y2 , y′ = y

1+x2+y2

Exercise 4.2. Let F : Rd → Rd be a C1 vector field. Suppose f : Rd → R is a C1

scalar function such that for any solution curve x(t) of the system x′ = F(x), we
have

d

dt
f(x(t)) ≤ 0 for any t ∈ R.

Prove that any periodic solution (if there is any) must lie on a level set of f .
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4.2. Poincaré-Bendixson’s Theorem: applications

While the periodic solution in the Hopf’s system (Example 4.1) is easy to find once the
system is converted into polar coordinates, it is usually extremely difficult to do so in
most systems. Even for scientific relevant systems such as the glycolysis model (shown in
Figure 4.2 of Chapter 1) where periodic solutions are of practical importance, the closed
orbit can be roughly seen in the phase portrait but it cannot be well illustrated there. It
is due to numerical errors which unavoidably appear in the graph plotting process by the
software.

In this section, we will use an important result in qualitative theory of ODEs, the
Poincaré-Bendixson’s Theorem, to prove that a periodic solution really exists in some
planar ODE systems including the glycolysis model. While the theorem cannot tell what
is the explicit expression of the periodic solution, it gives us an idea of where the closed
orbit is located in the phase portrait. Theoretically speaking, the proof of the theorem by
itself is a beautiful one too.

The statement and the proof of the Poincaré-Bendixson’s Theorem involve some
topological concepts such as openness and closedness. It is recommended for readers to
review these concepts discussed in Chapter 2 before going ahead.

Theorem 4.8 (Poincaré-Bendixson’s Theorem). Let F : R2 → R2 be a C1 vector field in
R2 and consider the system x′ = F(x). Suppose K is a set in R2 such that:

(1) K is closed and bounded;
(2) the system has no equilibrium point in K; and
(3) K contains a forward trajectory of the system, i.e. there exists x0 ∈ K such that

ϕt(x0) ∈ K for any t ≥ 0. Here ϕt denotes the flow of the system.

Then, the system has a non-trivial closed orbit in K.

Yes! The theorem seems to good to be true. In order to guarantee a periodic solution,
one simply needs to exhibit a forward trajectory which is trapped inside K. This forward
trajectory by itself needs not be periodic, but the theorem shows that if such a trajectory
exists, then it will warrant a closed orbit for the system provided that K fulfills the
assumption of the theorem!

We will give the proof of the Poincaré-Bendixson’s Theorem in the next subsection.
Meanwhile let’s go through some examples to illustrate the use of the theorem.

One typical technique for applying the Poincaré-Bendixson’s Theorem is to construct
a trapping region in the phase portrait, so that trajectories starting from any point in
the region will stay there for any positive time.

Example 4.3. The Hopf’s system in Example 4.1 has an explicit periodic solution,
namely the unit circle. Let’s pretend we don’t know this and try to use the Poincaré-
Bendixson’s Theorem to prove that a periodic solution exists!

Let K be the following closed and bounded subset of R2:

K =

{
x ∈ R2 :

1

2
≤ |x| ≤ 2

}
which is an annular region with outer radius 2 and inner radius 1

2 . The boundary
of K consists of a circle of radius 1

2 and a circle of radius 2, both centered at the
origin. See Figure 4.3.
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Under the Hopf’s system, r′ = r(1 − r2). Therefore, on the boundary circle
{r = 2}, we have r′ = r(1−r2) = −6 < 0, and hence trajectories hitting {r = 2}will
decrease it’s distance from the origin as t increases. On the other hand, on another
boundary circle {r = 1

2}, we have r′ = r(1 − r2) = 3
8 > 0, and hence trajectories

hitting {r = 1
2} will increase r as t increases. These show any trajectories in the

annular region K will stay in K for any future time. Also, as the system is C1,
by Theorem 2.31 there will not be any finite-time singularity, so the trajectories
trapped inside must be defined for all time t ∈ [0,∞).

Now that K is closed and bounded. The only equilibrium point of the system,
the origin, is not in K. From the above discussion, K contains many forward
trajectories (in particular it contains at least one). All these fulfill the conditions of
the Poincaré-Bendixson’s Theorem, so the system has a non-trivial closed orbit in
K. Of course, the closed orbit as we figured out before is the unit circle. �

x

y

Figure 4.3. The trapping region K, shaded in gray, of the Hopf’s system in Example 4.3
with sample of vectors on the boundaries.

Example 4.4. Consider the system:

x′ = y

y′ = −x+ y(1− x2 − 1.01y2)

Unlike the Hopf’s system, this system is not easy to be solved explicitly. However,
its phase portrait looks like a slightly distorted Hopf’s system portrait, and it seems
the same annular region K = { 1

2 ≤ r ≤ 2} we considered before should also be a
trapping region for this system. We will verify that it is indeed the case:

Under this system, one can easily verify that:
d

dt
(x2 + y2) = y2(1− x2 − 1.01y2).

On the boundary circle {r = 2}, we have
d

dt
(x2 + y2) ≤ y2(1− x2 − y2) = y2(1− (x2 + y2)) = y2(1− 22) ≤ 0.

Note that we used the fact that −1.01y2 ≤ −y2.

On another boundary circle {r = 1
2}, we have

d

dt
(x2 + y2) ≥ y2(1− 1.01x2 − 1.01y2) = y2(1− 1.01× (0.5)2) ≥ 0.
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Therefore, K is a trapping region and it is closed and bounded. An easy
calculation shows the origin is the only equilibrium point for the system, and it is
not inside K. The Poincaré-Bendixson’s Theorem shows there is a closed orbit in
K. See Figure 4.4 for the diagram showing the phase portrait inside the trapping
region K. �
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Figure 4.4. The solution curves inside the trapping region K in Example 4.4.

Example 4.5. Here we give an example where the trapping region is not an annular
region. It is the glycolysis model we mentioned at the beginning of this chapter:

x′ = −x+ ay + x2y

y′ = b− ay − x2y

where a, b > 0 are two parameters.

The phase portrait with a specific choice of (a, b) was shown in Figure 4.2. We
will show the quadrilateral region K with vertex (0, 0), (b+ b

a , 0), (b, ba ) and (0, ba )
is a trapping region for the system. See Figure 4.5 for the sketch of the region.

To show it is a trapping region, we need to show the vector field F(x, y) =[
−x+ ay + x2y
b− ay − x2y

]
is pointing into the region near the boundary, or equivalently,

F · n > 0 where n is an inward normal vector of the boundary.

There are four boundary components, three of which are either horizontal or
vertical. Let’s verify two of them and the other two are left as an exercise.

On the boundary segment joining (0, 0) and (b+ b
a , 0), we have y = 0 (when x

is varying) and the inward normal vector n is
[
0
1

]
, and we have:

F(x, 0) · n = (−x, b) · (0, 1) = b > 0.

Hence F is pointing inward on this boundary component.

The boundary component joining (b + b
a , 0) and (b, ba ) can be expressed as

y = −x + b + b
a , with x ∈ [b, b + b

a ], and the inward normal vector n is (−1,−1).
Therefore,

F(x, y) · n = −(−x+ ay + x2y)− (b− ay − x2y) = x− b ≥ 0

since x ≥ b.
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After verifying the other two boundary components, we can conclude K is a
trapping region. K is closed and bounded. Unfortunately, there is an equilibrium
point (b, b

a+b2 ) which is inside K! One cannot apply the Poincaré-Bendixson’s
Theorem with this K directly. However, it is still possible to show existence of
periodic solution if (b, b

a+b2 ) can be shown to be unstable, since then one can drill a
small open ball Bε((b, b

a+b2 )) inside K and K\Bε((b, b
a+b2 )) is a closed and bounded

trapping region for the system not containing any equilibrium point. The Poincaré-
Bendixson’s Theorem hence shows there is a periodic solution inside the region
K\Bε((b, b

a+b2 )).

Unfortunately, the equilibrium is unstable only for some pairs of (a, b), for
instance a = 1

10 and b = 1
2 (as you should verify as an exercise). There are many

other good pairs, but it is quite tedious (yet possible) to figure out all possible pairs
for which the equilibrium point is unstable. See Figure 4.6 for the phase portrait
inside the trapping region for this pair of (a, b). �

(0, 0) (b+ b
a , 0)

(b, ba )(0, ba )

Figure 4.5. The trapping region in Example 4.5.
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Figure 4.6. The phase portrait inside the trapping region in Example 4.5 when (a, b) = ( 1
10
, 1
2
).
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Exercise 4.3. Complete the verification that K defined in Example 4.5 is a trapping
region for the system for any pair of a, b > 0. Find another pair of (a, b), other than
( 1

10 ,
1
2 ), such that K satisfies all conditions of the Poincaré-Bendixson’s Theorem.

Exercise 4.4. Show that the system has a (non-trivial) periodic solution:

x′ = −x(x2 + y2 − 3x− 1) + y

y′ = −y(x2 + y2 − 3x− 1)− x
[Hint: first convert the system into polar coordinates, then find a suitable pair of r1

and r2 such that K = {r1 ≤ |x| ≤ r2} is a trapping region for the system.]

Exercise 4.5. Show that if a (two-dimensional) Hamiltonian system with a Hamil-
tonian function H has the property that the set K = {(p, q) : a ≤ H(p, q) ≤ b} is
non-empty, closed and bounded for some a and b, then K contains an equilibrium
or a closed orbit (or both).
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4.3. Poincaré-Bendixson’s Theorem: the proof

This section is devoted to the proof of the Poincaré-Bendixson’s Theorem. The key
idea follows closely from Chapter 10 in Hirsch-Smale-Devaney’s book but here we will
minimize the technicality in the exposition while keeping the proof rigorous.

4.3.1. Limit Sets. An important concept in the proof of the Poincaré-Bendixson’s
Theorem is the α− and ω− limit sets to be defined below.

Let ϕt be the flow of the Hopf’s system discussed in Example 4.1. Consider the
trajectory ϕt(x0) for some point x0 ∈ R2 with polar coordinates (r0, 0). As we computed
before, the trajectory is given in polar coordinates by:

r(t) =
et√(

1
r20
− 1
)

+ e2t

, θ(t) = t,

or equivalently in (x, y)-coordinates:

ϕt(x0) = (x(t), y(t)) =
et√(

1
r20
− 1
)

+ e2t

(cos t, sin t).

Although the scaling factor et√(
1

r20
−1

)
+e2t

approaches to 1 as t→ +∞, the limit limt→+∞ ϕt(x0)

does not exist because the trigonometric functions cos t and sin t are oscillating between
−1 and 1 rather than converging to specific numbers.

However, if one substitute t by a suitable time sequence {tn}∞n=1 which approaches
to +∞ as n→∞, then one can possibly talk about convergence of ϕtn(x0) as n→∞.
For example, if we let tn = 2πn, then

ϕtn(x0) =
e2πn√(

1
r20
− 1
)

+ e4πn

(cos(2πn), sin(2πn))

=
e2πn√(

1
r20
− 1
)

+ e4πn

(1, 0).

Letting n→∞ gives ϕtn(x0)→ (1, 0) as n→∞.

That says, although we do not have convergence for ϕt(x0) when t is regarded
as a continuous parameter, we can still talk about a discrete notion of convergence by
substituting t by a suitable sequence tn. The cost is that now the “limit” may not be
unique. For instance, if one choose tn = 2πn+ θ0 where θ0 is any fixed angle, then one
should verify that ϕtn(x0)→ (cos θ0, sin θ0) as n→ +∞, which is another point on the
unit circle.

Under this generalized notion of limits, we no longer say ϕt(x0) converges to a
particular point, but rather say ϕt(x0) approaches to a set. This motivates the following
definition:
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Definition 4.9 (Limit Points and Limit Sets). Let ϕt be the flow of an ODE system on
Rd. A point y ∈ Rd is called an ω-limit point of x0 if there exists a time sequence
tn → +∞ as n→∞ such that ϕtn(x0)→ y as n→∞. The ω-limit set of x0, denoted
by ω(x0), is the set of all possible ω-limit points of x0. Precisely,

ω(x0) = {y ∈ Rd : ∃tn → +∞ as n→∞ such that ϕtn(x0)→ y as n→∞}.

A point z ∈ Rd is called an α-limit point of x0 if there exists a time sequence
tn → −∞ as n→∞ such that ϕtn(x0)→ y as n→∞. The α-limit set of x0, denoted
by α(x0), is the set of all possible α-limit points of x0. Precisely,

α(x0) = {z ∈ Rd : ∃tn → −∞ as n→∞ such that ϕtn(x0)→ z as n→∞}.
�

Remark 4.10. The letters α and ω are chosen because they are the first and the last
Greek alphabet respectively. �

Example 4.6. Recall that the flow of the Hopf’s system is given by

ϕt(x0) = (x(t), y(t)) =
et√(

1
r20
− 1
)

+ e2t

(cos t, sin t),

where x0 = (r0, 0) in (x, y)-coordinates and r0 > 0.

As discussed before, there exists a sequence of times tn = 2πn+ θ0 → +∞ as
n → ∞ such that ϕtn(x0) → (cos θ0, sin θ0). One can pick θ0 to be any angle , so
any point on the unit circle is an ω-limit point of x0. Conversely, any ω-limit point
of x0 must be on the unit circle since |ϕtn(x0)| → 1 as n → ∞ for any sequence
tn → +∞. Therefore, the ω-limit set of x0 is the unit circle. Symbolically, we denote
it by:

ω(x0) = {y ∈ R2 : |y| = 1}.

The α-limit points of x0 is bit more subtle than their ω-counterparts. If x0 =

(r0, 0) is chosen such that 0 < r0 < 1, then 1
r20
−1 is positive and so

√(
1
r20
− 1
)

+ e2t

is defined for all time t. Therefore it makes sense to talk about ϕtn(x0) for sequences
tn → −∞. One can verify that in this case ϕtn(x0) → (0, 0) for any sequence
tn → −∞, and so 0 is the only α-limit point of x0 = (r0, 0). Symbolically, it is
defined by:

α(x0) = {0} when 0 < r0 < 1.

However, x0 = (r0, 0) with r0 > 1. The square-root
√(

1
r20
− 1
)

+ e2t is undefined

when t is sufficiently negative. It is therefore forbidden to substitute t by a sequence
tn that goes to −∞. Therefore, there is no α-limit point for this x0, and symbolically
we say:

α(x0) = ∅ when r0 > 1.

�

Exercise 4.6. If x0 lies on the unit circle, then what are the limit sets ω(x0) and
α(x0) under the Hopf’s system? How about ω(0) and α(0)?
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Exercise 4.7. Show that if ϕt(x0) is a periodic solution, then both ω(x0) and α(x0)
are equal to the trajectory {ϕt(x0)}t∈(−∞,∞) itself.

If x∗ is an equilibrium point, then what are ω(x∗) and α(x∗)?

We will mostly deal with ω-limits in the rest of the chapter. While it is possible to
determine the limit sets for the Hopf’s system where the flow map can be explicitly stated,
it is in general difficult to determine limit sets for most nonlinear systems. In the rest of
the chapter, we will deal with limit sets in a qualitative way rather than finding them
explicitly.

The following lemma presents some important facts about ω-limit sets. They will be
used often when establishing the Poincaré-Bendixson’s Theorem.

Lemma 4.11. Let ϕt be the flow of a C1-system on Rd. Suppose y ∈ ω(x) for some
x ∈ Rd, then we have:

(1) ϕs(y) ∈ ω(x) for any s (as long as ϕs(y) exists).
(2) If z = ϕs(y) for some fixed s, i.e. z is on the trajectory through y, then z ∈ ω(x).
(3) If w ∈ ω(y), i.e. w is an ω-limit point of y, then we also have w ∈ ω(x). [In other

words, w ∈ ω(y) and y ∈ ω(x) imply w ∈ ω(x).]

Proof. Given that y ∈ ω(x), there exists a sequence of times tn → +∞ such that
limn→∞ ϕtn(x) = y.

Parts 1 and 2 are easy consequences of the continuity of ϕs proved in Proposition
2.51 in Chapter 2:

To prove (1), we consider ϕs+tn(y) = ϕs(ϕtn(y)). Since ϕs is continuous, we have:

lim
n→∞

ϕs+tn(x) = lim
n→∞

ϕs(ϕtn(x)) = ϕs

(
lim
n→∞

ϕtn(x)
)

= ϕs(y).

Therefore, ϕs(y) ∈ ω(x) and the associated time sequence is s+ tn.

For (2), we consider:

z = ϕs(y) (given)

= ϕs

(
lim
n→∞

ϕtn(x)
)

(given)

= lim
n→∞

ϕs(ϕtn(x)) (ϕs is continuous)

= lim
n→∞

ϕtn+s(x).

Therefore, z is an ω-limit point of x since there exists a time sequence tn + s→ +∞ such
that ϕtn+s(x)→ z. It completes the proof of (2).

For (3), since w ∈ ω(y) there exists a sequence of times sk →∞ such that ϕsk(y)→
w as k → ∞. Given that limn→∞ ϕtn(x) = y and by the continuity of ϕsk , we have
limn→∞ ϕsk+tn(x) = ϕsk(y) for each fixed k. We pick a subsequence tnk of tn such that
for each k, we have ∣∣∣ϕsk+tnk

(x)− ϕsk(y)
∣∣∣ < 1

k
.
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Consider the sequence of times sk + tnk , we then have:∣∣∣ϕsk+tnk
(x)−w

∣∣∣ =
∣∣∣ϕsk+tnk

(x)− ϕsk(y) + ϕsk(y)−w
∣∣∣

≤
∣∣∣ϕsk+tnk

(x)− ϕsk(y)
∣∣∣+ |ϕsk(y)−w|∣∣∣ϕsk+tnk

(x)−w
∣∣∣ ≤ 1

k︸︷︷︸
→0

+ |ϕsk(y)−w|︸ ︷︷ ︸
→0

.

As k → +∞, we have
∣∣∣ϕsk+tnk

(x)−w
∣∣∣ → 0, or in other words ϕsk+tnk

(x) → w.

Therefore, w ∈ ω(x) and its associated time sequence is sk + tnk .

�

4.3.1.1. Closedness and boundedness of the trapping region. Recall there are
two conditions for the trapping region K in the statement of the Poincaré-Bendixson’s
Theorem, namely K has to be closed and bounded. These two conditions have important
implications in terms of limit sets.

Suppose ϕt(x0) is a forward trajectory contained in K entirely. If K were not
bounded, then ϕt(x0) may diverge to infinity as t→ +∞ then there is no ω-limit point
to talk about. The boundedness of K guarantees there is at least one ω-limit point of x0.
In fact, it is a consequence of the following famous theorem in analysis:

Theorem 4.12 (Bolzano-Weierstrass’s Theorem). If S is a bounded infinite set in Rd,
then there exists a sequence sn ∈ S such that sn converges to a limit s0 in Rd as n→∞.

We omit the proof here. A standard proof can be found in any basic analysis textbook,
and is normally taught in the first course of analysis.

Now applying the Bolzano-Weierstrass’s Theorem to our scenario. The forward
trajectory ϕt(x0) is an infinite set (unless x0 is an equilibrium point, but then ω(x0) is
{x0} itself). If it is completely inside a bounded set K, then the trajectory is a bounded
infinite set so the theorem implies there exists a sequence ϕtn(x0) that converges to a
limit y in Rd. Consequently, ω(x) contains at least one point y.

The boundedness of K guarantees the forward trajectory has at least one ω-limit
point. However, boundedness alone cannot guarantee the limit point must be in K. That’s
why we need to combine closedness with boundedness. The following is a “common-
sense” fact in analysis and point-set topology:

Proposition 4.13. Let K be a closed set in Rd. If xn is a sequence in K and that xn → y
as n→∞, then the limit y must be in K.

Proof. We prove by contradiction. Suppose y is not in K, then y ∈ Rd\K. Since K is
closed, the complement Rd\K is open. By the definition of openness, there exists a ball
Bε(y) that is contained inside Rd\K.

The sequence xn → y as n → ∞, so xn will eventually enter the ball Bε(y) for
sufficiently large n. However, it is not possible since all xn’s are in K but the ball Bε(y)
is disjoint from K.

Therefore, we must have y ∈ K.

�
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Combining closedness and boundedness of K, the forward trajectory ϕt(x0) trapped
inside K must have at least one ω-limit point, and all ω-limit points must be in K. This
is significant since then our proof “game” will be confined in the trapping region K.

Remark 4.14. In finite-dimensional spaces such as Rd, a closed and bounded set can
be called a compact set. �

4.3.2. Local Sections and Flow Boxes. The Poincaré-Bendixson’s Theorem re-
quires the trapping region K has no equilibrium point for the system. We will explore
why this is needed in this subsection.

From now on, we will restrict the discussion to planar system only. Let x0 be a
non-equilibrium point of a C1-system x′ = F(x). The vector F(x0) at x0 is non-zero, and
so there is a straight line, denoted by l(x0), passing through x0 and is perpendicular to
F(x0). Pick a point x on this line l(x0), then one can tell whether F(x) is pointing at the
same side of the line as F(x0) by considering the dot product F(x) · F(x0). If the dot
product is positive, then F(x) points at the same side of the line as F(x0).

Since F(x0) ·F(x0) = |F(x0)|2 > 0, by continuity of the vector field, the dot product
F(x) · F(x0) must be positive as far as x is sufficiently close to x0. Consequently, one
can find a line segment Sx0

of l(x0) such that at every point x on this line segment Sx0
,

the vector field F(x) is pointing at the same side of l(x0) as F(x0). This line segment is
called:

Definition 4.15 (Local Sections). Let x0 be a non-equilibrium point of a C1-system
x′ = F(x). A local sections Sx0

is a line segment passing through x0 and perpendicular
to F(x0) such that F(x) · F(x0) > 0 for any x ∈ Sx0

. �

Sx0

x0

F(x0)

Figure 4.7. A local section Sx0 based at x0.

Given a local section Sx0
, one can construct a flow box at x0 to be described below.

As the vector field F(x) is pointing at the same side of the local section Sx0 when x
is sufficiently close to x0. One can expect there is a neighborhood V of x0 so that the
trajectories inside V are flowing in approximately parallel directions as shown in Figure
4.8. A flow box has two edges: the in-edge and the out-edge. A flow box is characterized
by the following properties:

(1) Any trajectory must enter the flow box V through its in-edge.

(2) After a trajectory enters the flow box V, it must intersect the local section Sx0

exactly once before leaving V.

(3) Any trajectory must leave the flow box V through its out-edge.

The formal construction of flow boxes is bit technical so we omit it here. Readers
may consult Section 10.2 of Hirsch-Smale-Devaney’s book for both the formal definition
and the existence proof of flow boxes using the Implicit Function Theorem. In order
to understand the key idea of the Poincaré-Bendixson’s Theorem, it is more important
to keep in mind the geometric intuition of flow boxes, rather than knowing the formal
definition or why flow boxes must exist.
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in-edge out-edge
S

Figure 4.8. An example of a flow box and a local section.

4.3.3. Jordan Curve Theorem and Consequences. Limit sets, local sections
and flow boxes are three key ingredients in the proof of the Poincaré-Bendixson’s Theorem.
In this subsection, we will first state (but not prove) a celebrated result in topology, the
Jordan Curve Theorem. It will lead to two important consequences about limit sets and
local sections.

The statement of the Jordan Curve Theorem, stated below, sounds quite trivial
and you may wonder why such an obvious statement can be qualified as a theorem.
Nonetheless, the proof requires an advanced concept called Homology which is usually
taught in graduate level Algebraic Topology course.

Theorem 4.16 (Jordan Curve Theorem). Any continuous simple closed curve C in the
plane R2 divides the plane into two disjoint components, i.e. there exist two disjoint
connected open sets U and V such that R2\C = U ∪ V . Moreover, one of the U and V is
bounded and the other one must be unbounded.

The first consequence of the Jordan Curve Theorem is about monotonicity:

Lemma 4.17. Let ϕt be the flow of a C1 planar system, and let S be any local section.
Consider a trajectory ϕt(y) from a point y in R2. If t1 < t2 < t3 are times at which the
trajectory ϕt(y) intersects S, then the intersection points ϕt1(y), ϕt2(y) and ϕt3(y) must
be in monotonic order on the local section S (see Figures 4.9 and 4.10 for an example and
a non-example of monotonically ordered points).

Proof. First construct a continuous simple closed curve C by gluing the part of the
trajectory ϕt(y) for t ∈ [t1, t2] and the line segment joining ϕt1(y) and ϕt2(y). The
Jordan Curve Theorem asserts that C divides the plane R2 into two disjoint open sets U
and V . Assume without loss of generality that the trajectory ϕt(y) enters the region U
shortly after t2. Suppose at a later time t3, the trajectory intersects S in the middle of
ϕt1(y) and ϕt2(y) (let’s call this 1 − 3 − 2 configuration), then S being a local section
implies the trajectory must come from another region V shortly before t3 (see Figure
4.11). However, it is impossible since U and V are disjoint. It rules out the 1 − 3 − 2
arrangement on the local section S. Similarly, one can also rule out the 3 − 1 − 2
configuration by the same argument. Therefore, the only possibility is 1− 2− 3, which is
exactly what we need to show.

�
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S

t1
t2

t3

Figure 4.9. ϕti (x0)’s are monotonically ordered on S

S

t1

t2

t3

Figure 4.10. ϕti (x0)’s are not monotonically ordered on S

S

t1

t2
t3

U

V

Figure 4.11. The trajectory in blue is a hypothetical trajectory that gives a 1 − 3 − 2
configuration. This configuration is ruled out by the Jordan Curve Theorem.

If we further assume that the point y of Lemma 4.17 is an ω-limit point of another
point x, then we have a stronger result:

Lemma 4.18. Let ϕt be the flow of a C1 planar system, and let S be any local section. If
a trajectory ϕt(y) starts from a point y ∈ ω(x) for some x ∈ R2, then the trajectory ϕt(y)
intersects S at at most one point.

Remark 4.19. The trajectory can intersect S for infinitely many times, but the lemma
shows the intersection point must be the same every time. �

Proof. We prove by contradiction. Suppose ϕt(y) intersects S at two different points z
and w. One can then find two disjoint flow boxes, V based at z and anotherW based at
w.
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As z and w are on the trajectory from y, they are both ω-limit points of x by Lemma
4.11. As a result, there exist sequences tn → +∞ and sn → +∞ such that ϕtn(x)→ z
and ϕsn(x)→ w as n→∞.

There must be infinitely many ϕtn(x)’s in V since ϕtn(x) converges to z which is
inside V. Therefore, by the property of a flow box, the trajectory ϕt(x) must enter the
flow box for infinitely many times and intersect the V-portion of the local section S for
infinitely many times. See Figure 4.12.

Similarly, the trajectory ϕt(x) must intersect the W-portion of the local section S
for infinitely many times. However, Lemma 4.17 shows ϕt(x) must intersect the local
section S in monotonic order. It is impossible to have this trajectory intersecting the V-
and W-portions of the local section S both for infinitely many times and overall in a
monotonic order. It leads to a contradiction. Therefore, ϕt(y) cannot intersect S at two
different points, and hence it can only intersect S at at most one point.

�

S

V

W

from x intersect S for∞ times

from above intersect S for∞ times

Figure 4.12. The trajectory from x cannot intersect S first in V and then W both for
infinitely many times in a monotonic manner. This leads to a contradiction. Note that the
trajectory from y is not shown in the figure since it is not relevant.

4.3.4. Completion of the Proof: A Tale of Three Points. Finally, with Lemma
4.18, we are ready to give the proof of the Poincaré-Bendixson’s Theorem.

Proof of Theorem 4.8. Recall that the set-up is that there is a closed and bounded set
K in R2 that contains a forward trajectory ϕt(x) for t ∈ [0,∞). By the closedness and
boundedness of K, the limit set ω(x) is non-empty (by Bolzano-Weierstrass) and is
contained inside K (by closedness). The absence of equilibrium point in K and that
ω(x) ⊂ K guarantee every point on ω(x) has a local section and a flow box around the
point.

Now let y be any point in ω(x). The key idea of proving the theorem is to show
that ϕt(y) is a periodic solution. In order to prove this, consider a point z ∈ ω(y).
Since y ∈ ω(x), Lemma 4.11 shows ϕt(y) ∈ ω(x) ⊂ K for any t ≥ 0. Consequently, the
closedness of K implies ω(y) ⊂ K, and so z ∈ K.

Now that z ∈ K, it is not an equilibrium point and so there exists a local section S
and a flow box V based at z. Now the proof is completed by applying Lemma 4.18: since
y is an ω-limit point of x, the lemma shows that the trajectory ϕt(y) intersects the local
section S at at most one point. Since z is an ω-limit point of y, it implies ϕt(y) must enter
the flow box V for at infinitely many times, and intersect S for infinitely many times but
every time the intersection point must be the same. Therefore, one can pick two different
times s and t, where s < t, such that ϕt(y) = ϕs(y), which implies ϕt−s(y) = y. In other
words, the trajectory ϕt(y) is periodic with a period t− s > 0. It completes the proof.

�
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We would like to end this section by stating (but not proving) two extended forms of
the Poincaré-Bendixson’s Theorem. In the version we stated in Theorem 4.8, if K is a
closed and bounded set in R2, contains no equilibrium point of the system and contains
a forward trajectory ϕt(x), then the system has a periodic solution. From the proof, we
have seen that the periodic solution is given by ϕt(y) where y ∈ ω(x). By Lemma 4.11,
y ∈ ω(x) implies ϕt(y) ∈ ω(x) for any t, and so the periodic trajectory ϕt(y) must be a
subset of ω(x).

In fact, one can show that the periodic trajectory ϕt(y) is all of ω(x):

Theorem 4.20 (Poincaré-Bendixson’s Theorem: extension 1). Assume K and the system
satisfy all conditions of Theorem 4.8, and that the forward trajectory is given by ϕt(x) ∈ K,
then the system has a non-trivial closed orbit in K and the image of the closed orbit is
equal to ω(x).

Proof. Readers may consult Section 10.5 in Hirsch-Smale-Devaney’s book, or Chapter 7
of Ordinary Differential Equations: Qualitative Theory by Barreria and Valls.

�

Another extension of the Poincaré-Bendixson’s Theorem concerns about the possibil-
ity of having equilibrium points inside the trapping region K:

Theorem 4.21 (Poincaré-Bendixson’s Theorem: extension 2). Assume K is a closed and
bounded set in R2 and it contains a forward trajectory ϕt(x) of a planar system, then the
limit set ω(x) must be one of the following:

(1) a non-trivial closed orbit; or
(2) an equilibrium point; or
(3) a connected set of finitely many equilibrium points together with non-periodic trajecto-

ries connecting them.

Proof. Readers may consult Teschl’s book for a proof of this extension.

�

4.3.5. Limit Cycles and the Hilbert’s 16th Problem. We would like to end this
course by keeping readers informed of a long-standing unsolved problem. In order to
state the problem, we need to introduce:

Definition 4.22 (Limit Cycles). A limit cycle γ is a non-trivial periodic solution to an
ODE system and it is a limit set of a point not lying on γ, i.e. γ = ω(x) or γ = α(x) for
some x ∈ R2\γ. �

The unit circle of the Hopf’s system is a limit cycle because it is the ω-limit set of the
trajectories spiraling towards it. However, the closed orbits of a center phase portrait for
linear system are not limit cycles because they are not limit sets for nearby trajectories
but rather they are limit sets of itself.

The Poincaré-Bendixson’s Theorem (extension 1) asserts that for a planar system
if a non-periodic forward trajectory from x is trapped inside a closed and bounded set
K which contains no equilibrium, then the trajectory limits to a periodic solution. The
image of the closed orbit is equal to ω(x). This closed orbit is a limit cycle. Therefore,
the Poincaré-Bendixson’s Theorem gives a lower bound (i.e. at least one) of the number
of limit cycles in this scenario.
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However, it is an extremely difficult problem to determine an upper bound on the
number of limit cycles for planar systems. The problem was proposed by David Hilbert in
1900, among a list of 23 problems. The one about limit cycles, listed as the 16th problem,
is stated as follows:

Problem 4.23 (Hilbert’s 16th Problem). Let P (x, y) and Q(x, y) be two real polynomials
of degree n. Consider the planar system

x′ = P (x, y)

y′ = Q(x, y).

Find an upper bound (in terms of n) of the number of limit cycles to this system. �

As of today (January 10, 2020), the problem is unsolved for all n > 1. The best
result obtained so far is by Yulii Ilyashenko and Jean Écalle in 1991/92 who proved that
these systems have only finitely many limit cycles.

– The End of the Course –
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Appendix

A.1. Uniform Convergence

This appendix reviews some basic knowledge about uniform convergence.

A.1.0.1. Pointwise convergence. The Picard’s iteration sequence xn(t) is a se-
quence of functions, not a sequence of numbers. There are two ‘variables’ involves: one is
an integer n and another is the time t. Pointwise convergence, or pointwise limit, means
we are taking n→∞ while regarding t as a constant.

Definition A.1 (Pointwise Convergence). Given a sequence of functions {xn(t)}∞n=1

where t is defined on an interval I, we say xn(t) converges pointwise to a function x∞(t)
on I if for each fixed t ∈ I, the sequence {xn(t)} regarding t constant converges to
x∞(t) as n→∞, or equivalently, for each t ∈ I

|xn(t)− x∞(t)| → 0 as n→∞.

Example A.1. The sequence of functions xn(t) = (1− t2)n converges pointwise on
[0, 1] to the function:

x∞(t) =

{
0 if 0 < t ≤ 1

1 if t = 0

Therefore, it is possible for a sequence of continuous functions converges pointwise
to a discontinuous function! �

Example A.2. Denote a sequence of functions as follows:

xn(t) =


n2t if 0 ≤ t ≤ 1/n

−n2t+ 2n if 1/n ≤ t < 2/n

0 if 2/n ≤ t ≤ 1

The graph of the function can be found in Figure A.1. By the definition,
xn(0) = 0 for any n, therefore xn(0) → 0 as n → ∞. For any t ∈ (0, 1], one can
always find a large enough N such that 2/N ≤ t ≤ 1, and therefore for any n ≥ N ,
we have xn(t) = 0 and so xn(t)→ 0 as n→∞. Therefore, xn(t)→ 0 for t ∈ [0, 1]
as n→∞.

143
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From the graph of the function xn(t), one can easily see that:∫ 1

0

xn(t)dt = 1 for any n ≥ 2

but ∫ 1

0

lim
n→∞

xn(t)dt =

∫ 1

0

0dt = 0.

Therefore, this example shows it is possible that:

lim
n→∞

∫ 1

0

xn(t)dt = 1 6= 0 =

∫ 1

0

lim
n→∞

xn(t)dt

and so the limit and integral signs cannot be always switched! The step we ‘cheated’
in page 41 needs to be justified! �

t

x
( 1
n , n)

( 2
n , 0) (1, 0)

Figure A.1. The graph of the function xn(t) defined in Example A.2.

A.1.0.2. Uniform convergence: definition. We ask: Is there any condition for the
sequence of a function which allows us to switch the limit and integral signs?

The answer is positive: we require a stronger type of convergence called uniform
convergence. To start with, we define a norm of a function.

Definition A.2 (L∞-Norm of a Function). Given a bounded function x(t) : I → Rd
defined on an interval I, the L∞-norm of the function over the interval I is defined as:

‖x‖∞ := sup{|x(t)| : t ∈ [a, b]}.
In other words, ‖x‖∞ measures the largest magnitude of x(t) among all t in the given
interval [a, b].

Remark A.3. Note that the L∞-norm ‖·‖∞ depends on the time interval I. Larger time
interval may give a larger L∞-norm. If the time interval I plays an essential role in some
of our arguments, you should indicate on which time interval the L∞-norm is defined,
by either declaring the interval in the text, or write ‖·‖∞, I . �

Remark A.4. While the magnitude |x(t)| depends on t, the L∞-norm ‖x‖∞ doesn’t.
Therefore, it is recommended not to write the t-variable for the function x inside the
L∞-norm, i.e write ‖x‖∞ but not ‖x(t)‖∞. �

Remark A.5. The name L∞-norm refers to the fact that it is the limit of the Lp-norm as
p→∞. The Lp-norm of a continuous function x(t) on the time interval [a, b] is defined
as:

‖x‖p :=

(∫ b

a

|x(t)|pdt

)1/p

.
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It can be shown by some analysis argument (omitted here) that limp→∞ ‖x‖p = ‖x‖∞ �

Example A.3. The L∞-norm over the interval [0, 2π] of the functions f(t) = sin t
and g(t) = sin t+ cos t are:

‖f‖∞ = 1, ‖g‖∞ =
√

2.

�

Example A.4. The following sequence of functions was investigated before:

xn(t) =


n2t if 0 ≤ t ≤ 1/n

−n2t+ 2n if 1/n ≤ t < 2/n

0 if 2/n ≤ t ≤ 1

From the graph of xn(t), one can see easily that ‖xn‖∞ = n for any n ≥ 2. �

We are now ready to state the definition of uniform convergence:

Definition A.6 (Uniform Convergence). We say a sequence of functions xn(t) : I → Rd
converges uniformly on I to a function y(t) : I → Rd if:

‖xn − y‖∞,I → 0 as n→∞.

Remark A.7. Just like Lipschitz continuity, the notion of uniform convergence always
get tied with the time interval because the L∞-norm depends on the time interval chosen.
It is possible for a sequence converges uniformly to a limit on one interval but not on
a larger one. Therefore, it is crucial to indicate the interval whenever we talk about
uniform convergence: always say xn(t) converges uniformly on I to a function, rather
than just saying xn(t) converges uniformly to that function. �

Remark A.8. Uniform convergence implies pointwise convergence. Precisely, if xn
converges uniformly on [a, b] to a function y : I → Rd, then for any fixed t ∈ I, the
sequence xn(t) converges to y(t) as n → ∞. This can be argued easily by squeezing
principle: for each fixed t ∈ I, we have:

|xn(t)− y(t)| ≤ sup{|xn(s)− y(s)| : s ∈ I} =: ‖xn − y‖∞ .

If xn converges uniformly on [a, b] to y, then the right-hand side tends to 0 as n→∞ by
the definition of uniform convergence. The squeezing principle shows the left-hand side
also tends to 0.

Therefore, we say uniform convergence is stronger than pointwise convergence. �

Example A.5. The sequence fn(t) := sin t
n converges uniformly on [0, 2π] to 0 as

n→∞. It can be argued as follows: since uniform convergence implies pointwise
convergence to the same limit function, the only candidate uniform convergence
limit for fn(t) must be the pointwise limit 0. To show it is indeed the case, we
consider:

|fn(t)− 0| =
∣∣∣∣sin t

n
− sin 0

∣∣∣∣
= |cos ξ|

∣∣∣∣ tn − 0

∣∣∣∣ (mean-value theorem)

≤
∣∣∣∣ tn
∣∣∣∣ ≤ 2π

n
. (since t ∈ [0, 2π])
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The ξ above is some number in [0, tn ].

Therefore, |fn(t)− 0| ≤ 2π
n for any t ∈ [0, 2π], and so

‖fn − 0‖∞ := sup{|fn(t)− 0| : t ∈ [0, 2π]} ≤ 2π

n
→ 0 as n→∞.

Therefore, by squeezing principle ‖fn − 0‖∞ → 0 as n→∞. By the definition of
uniform convergence, fn converges uniformly on [0, 2π] to 0 as n→∞. �

Example A.6. However, the sequence of ‘triangle’ functions xn(t) defined in Exam-
ple A.2 does not converges uniformly on [0, 1]. Since uniform convergence implies
pointwise convergence, the only candidate for the uniform convergence limit must
equal to the pointwise convergence limit, which is 0 for this example.

However, ‖xn − 0‖∞ = n which does not converge to 0 as n→∞. Therefore,
xn does not converge uniformly on [0, 1] to any limit function. �

A.1.0.3. Weierstrass’s M-test. Given an infinite series of functions
∑∞
n=1 an(t),

defined on a time interval I, we say it converges pointwise on I if for every fixed t ∈ I,
we have

N∑
n=1

an(t)→
∞∑
n=1

an(t) as N →∞,

regarding the series as a sequence indexed by N . Likewise, we say
∑∞
n=1 an converges

uniformly on I if ∥∥∥∥∥
N∑
n=1

an −
∞∑
n=1

an

∥∥∥∥∥
∞,I

→ 0 as N →∞.

There is a test, called the Weierstrass’s M-test, one can use to prove a series converges
uniformly on a given interval I. This test is particularly useful when dealing uniform
convergence of a series since it can bypass the calculation of the N -th partial sums∑N
n=1 an(t) and their the L∞-norms.

Theorem A.9 (Weierstrass’s M-test). Let I = [a, b] be a time interval. Let
∑∞
n=1 an(t) be

an infinite series of functions on I. Suppose:

(1) for each n, there exists a real number Mn such that ‖an‖∞,I ≤Mn; and

(2) the infinite series of real numbers
∑∞
n=1Mn converges to a finite number,

then
∑∞
n=1 an converges uniformly on I.

Remark A.10. We call it M-test because it is a convention to use Mn to denote the upper
bound for ‖an‖∞. �

Proof of Theorem A.9. Since
∑∞
n=1Mn converges and ‖an‖∞ ≤ Mn, by comparison

test, we know
∑∞
n=1 ‖an‖∞ converges too. For each t ∈ I, the magnitude |an(t)| ≤

‖an‖∞ and so by comparison test again, we know
∑∞
n=1 |an(t)| converges. The absolute

convergence test on Rd shows
∑∞
n=1 an(t) converges for each t ∈ I. This shows pointwise

convergence.

To prove uniform convergence, one considers the partial sums:∥∥∥∥∥
N∑
n=1

an −
∞∑
n=1

an

∥∥∥∥∥
∞

=

∥∥∥∥∥
∞∑

n=N+1

an

∥∥∥∥∥
∞

≤
∞∑

n=N+1

‖an‖∞ ≤
∞∑

n=N+1

Mn.



A.1. Uniform Convergence 147

Since
∑∞
n=1Mn converges, we have:

∞∑
n=N+1

Mn =

∞∑
n=1

Mn −
N∑
n=1

Mn → 0 as N →∞.

By squeezing principle, we proved:∥∥∥∥∥
N∑
n=1

an −
∞∑
n=1

an

∥∥∥∥∥
∞

→ 0 as N →∞

which means, by definition, the infinite series
∑∞
n=1 an converges uniformly on I. �

Example A.7. To apply the Weierstrass’s M-test, one should:

(i) bound each an(t) by a real number Mn, which depends only on n, but not on
t. Then,

|an(t)| ≤Mn for each t ∈ I ⇒ ‖an‖∞ := sup{|an(t)| : t ∈ I} ≤Mn

which shows these Mn’s satisfy the first condition of the test; then

(ii) show that the infinite series of numbers
∑∞
n=1Mn converges using some of

the series tests you learned in calculus course.

Here are some examples of using the Weierstrass’s M-test:

(1) The series of functions
∑∞
n=1

sinnt
n2 converges uniformly on [0, 2π]: since for

each n, we have∣∣∣∣ sinntn2

∣∣∣∣ ≤ 1

n2
=: Mn for any t ∈ [0, 2π],

and
∑∞
n=1Mn =

∑∞
n=1

1
n2 converges by p-test (where p = 2).

(2) The series of functions
∑∞
n=1

tn

n! converges uniformly on [−T, T ] where T > 0
is a fixed real number: since for each n, we have∣∣∣∣ tnn!

∣∣∣∣ ≤ Tn

n!
=: Mn,

and
∑∞
n=1Mn converges by ratio test:

lim
n→∞

Tn+1/(n+ 1)!

Tn/n!
= lim
n→∞

T

n
= 0 < 1.

Note that although this series converges uniformly on every closed and
bounded interval [−T, T ] where T can be as large as we want, this series
does not converge uniformly on R.

(3) The series of vector-valued functions
∞∑
n=1

[
(sinnt)/n2

tn/n!

]
converges uniformly

on [−1, 1]: since for each n, we have∣∣∣∣[(sinnt)/n2

tn/n!

]∣∣∣∣ =

(∣∣∣∣ sinntn2

∣∣∣∣2 +

∣∣∣∣ tnn!

∣∣∣∣2
)1/2

≤
(

1

n4
+

1

(n!)2

)1/2

=: Mn

for any t ∈ [−1, 1]. For large n, the term 1
n4 dominates over 1

(n!)2 and so Mn '√
1
n4 as n→∞. Since

∑∞
n=1

1
n2 converges by p-test,

∑∞
n=1Mn converges as

well. One may give a more rigorous argument by limit comparison test: show
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that limn→∞
Mn

1/n2 converges to a non-zero finite number, so that
∑∞
n=1Mn

and
∑∞
n=1

1
n2 must either both converge or both diverge.

�

Exercise A.1. Show that each of the following series of functions converges uni-
formly on the interval indicated:

(a)
∑∞
n=1

cosnt
n! on t ∈ [−T, T ] where T > 0 is any fixed real number.

(b)
∑∞
n=1

tn

2n on t ∈ [−1, 1].

(c)
∑∞
n=1

tn

n on t ∈ [0, 1
2 ].

(d)
∞∑
n=1

[
cos(nt)/(n!)

tn/n

]
on t ∈ [0, 1

2 ].

A.1.0.4. Consequences of uniform convergence. We list some important con-
sequences of having uniform convergence for a sequence or series of functions.

Theorem A.11. Let I be a time interval. Suppose xn : I → Rd is a sequence of integrable
functions defined on I such that xn converges uniformly on I to a limit function y : I → Rd,
then:

(1) given any finite numbers α and β such that [α, β] ⊂ I, we have

lim
n→∞

∫ β

α

xn(t)dt =

∫ β

α

lim
n→∞

xn(t)dt =

∫ β

α

y(t)dt,

(2) if xn’s are all continuous on I, then the limit function y is also continuous on I.

Proof. By the definition of uniform convergence, we have ‖xn − y‖∞ → 0 as n → ∞.
To prove the first part, we consider:∣∣∣∣∣

∫ β

α

xn(t)dt−
∫ β

α

y(t)dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ β

α

(xn(t)− y(t)) dt

∣∣∣∣∣
≤
∫ β

α

|xn(t)− y(t)| dt

≤
∫ β

α

‖xn − y‖∞ dt

= ‖xn − y‖∞ · (β − α).

In the last equality, we have used the fact the L∞-norm does not depend on t. Since
‖xn − y‖∞ → 0 as n→∞, by squeezing principle, we have:

lim
n→∞

∫ β

α

xn(t) dt =

∫ β

α

y(t) dt

as desired.

To prove that y is continuous on I, take any arbitrary t0 ∈ I and consider y(t)−y(t0).
For any n, we have:

|y(t)− y(t0)| = |y(t)− xn(t) + xn(t)− xn(t0) + xn(t0)− y(t0)|
≤ |y(t)− xn(t)|+ |xn(t)− xn(t0)|+ |xn(t0)− y(t0)|
≤ ‖y − xn‖∞ + |xn(t)− xn(t0)|+ ‖xn − y‖∞ .
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Given any ε > 0, since ‖xn − y‖∞ → 0 as n → ∞, there is a large N > 0 such that
‖xN − y‖∞ < ε/3. Since xN is continuous on I, there exists δ > 0 such that whenever
|t− t0| < δ we have |xN (t)− xN (t0)| < ε/3, and therefore:

|y(t)− y(t0)| ≤ ‖y − xn‖∞ + |xN (t)− xN (t0)|+ ‖xn − y‖∞ ≤
ε

3
+
ε

3
+
ε

3
= ε.

It shows y is continuous at t0. Since t0 is arbitrary on I, we conclude y is continuous on
I. �

The two examples discussed in page 143 does not converge uniformly on their
indicated interval, since one does not have a continuous limit function, another violates
the interchange of the limit and integral signs.

Remark A.12. Note that (1) in Theorem A.11 holds only when [α, β] is a bounded
interval. To deal with the swapping of limit and integral signs for imporper integrals,
other tools such as Lebesgue’s Dominated Convergence Theorem is needed.

For differentiations, note that uniform convergence of differentiable functions xn(t)

does NOT guarantee that we have lim
n→∞

d

dt
xn(t) =

d

dt
lim
n→∞

xn(t). The conditions required

are listed in the theorem below:

Theorem A.13. Let I be a time interval. Suppose xn(t) : I → Rd is a sequence of
differentiable functions such that:

(1) x′n converges uniformly on I to some function y : I → Rd, and
(2) x(t) converges pointwise on I to some function x∞ : I → Rd,

then we have d
dtx∞(t) = y(t) on I. In other words, we have

d

dt
lim
n→∞

xn(t) = lim
n→∞

x′n(t).

One good example to demonstrate the use of the theorem is the justification of
d
dte

tA = AetA in Section 1.3.




