## 1 Review

Definition 1.1. (singularity) A point $z_{0}$ for a function $f$ is said to be a (an):

- isolated singularity if there exists $\epsilon$ such that $f$ is holomorphic on $A_{\epsilon, 0}\left(z_{0}\right)$;
- removable singularity if $f$ can be redefined such that $f$ is holomorphic over $\Omega$;
- essential singularity if the $c_{-n}$ is non-zero for infinitely many $n \in \mathbb{N}$.

Definition 1.2. (zero and pole) $z_{0} \in \mathbb{C}$ is a zero of a holomorphic function $f$ if $f\left(z_{0}\right)=0 . z_{\infty} \in \mathbb{C}$ is pole of a holomorphic function $f$ is a point such that $1 / f\left(z_{0}\right)=0$ and $1 / f$ is holomorphic in a neighborhood of $z_{\infty}$.

Proposition 1.3. If $f$ has a pole of order $n$ at $z_{0}$, then there exists some holomorphic function $G(z)$ in a neighborhood of $z_{\infty}$ such that

$$
f(z)=\frac{a_{-n}}{\left(z-z_{0}\right)^{n}}+\cdots+\frac{a_{-1}}{z-z_{0}}+G(z)
$$

Definition 1.4. (residue) Given a pole $z_{\infty}$ of a function $f$, the residue is defined to be $a_{-1}$, the coefficient of $\left(z-z_{0}\right)^{-1}$.

Definition 1.5. (order of pole) Suppose $z_{0}$ is a pole of $f$. Then the order of $z_{0}$ as a pole is the largest nonnegative integer such that $c_{-k}$ of the Laurent series based at $z_{0}$ is nonzero.

Proposition 1.6. Suppose $f$ has a pole at $z_{0}$, then

$$
\operatorname{Res}\left(f, z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{1}{(n-1)!}\left(\frac{d}{d z}\right)^{n-1}\left(z-z_{0}\right)^{n} f(z)
$$

Theorem 1.7. (residue theorem) Suppose $f$ is a holomorphic in a open subset $\Omega \subset \mathbb{C}$ containing a circle $C$ and $\operatorname{Int} C$, except for a pole $z_{0}$ in $\operatorname{Int} C$. Then

$$
\int_{C} f(z) d z=2 \pi i \cdot \operatorname{Res}\left(f, z_{0}\right)
$$

Proof sketch:
Corollary 1.8. Suppose $f$ is a holomorphic in a open subset $\Omega \subset \mathbb{C}$ containing a circle $C$ and Int $C$, except for a poles $z_{1}, \cdots, z_{m}$ in $\operatorname{Int} C$. Then

$$
\int_{C} f(z) d z=2 \pi i \sum_{j=1}^{m} \operatorname{Res}\left(f, z_{j}\right)
$$

Application: Evaluation of real integral.
Definition 1.9. (meromorphic function) Let $\Omega \subset \mathbb{C}$ be an open subset. $f$ is said to be meromorphic if $f$ is holomorphic on $\Omega \backslash S$, where $S$ is a discrete set of isolated singularities in $\Omega$ which are all poles of $f$.

Theorem 1.10. (argument principle) Suppose $f$ is meromorphic in an open set $\Omega$ containing a circle $C$ and its interior. If $f$ has no zero and no pole on $C$, then

$$
\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{j=1}^{M} \operatorname{ord}\left(\alpha_{j}\right)-\sum_{k=1}^{N} \operatorname{ord}\left(\beta_{k}\right)
$$

where $\left\{\alpha_{1}, \cdots, \alpha_{M}\right\}$ and $\left\{\beta_{1}, \cdots, \beta_{N}\right\}$ are respectively zeros and poles of $f$ and ord means the order of zeros and poles.

Proof sketch:

- A meromorphic function can be written as

$$
f(z)=\frac{\prod_{j=1}^{M}\left(z-\alpha_{j}\right)^{\operatorname{ord}\left(\alpha_{j}\right)}}{\prod_{j=1}^{N}(z-\beta)^{\operatorname{ord}\left(\beta_{j}\right)}} F(z), \text { where } F(z) \text { is nonvanishing and holomorphic over } \Omega
$$

- Recall that $f \mapsto f / f^{\prime}$ sends product of functions to sum of function.
- Apply Cauchy's integral formula to get the concerned evaluation.

Theorem 1.11. (Rouché's theorem) Suppose that $f$ and $g$ are holomorphic in an open set containing a circle $C$ and its interior. If $|f(z)|>|h(z)|$ for all $z \in C$, then

$$
\oint_{C} \frac{f^{\prime}(z)+h^{\prime}(z)}{f(z)+h(z)} d z=\oint_{C} \frac{f^{\prime}(z)}{f(z)} d z
$$

Proof sketch:

- Consider the function $g(z)=\frac{f(z)+h(z)}{f(z)}$, then the function maps $\gamma$ into a curve in $B_{1}(1)$.
- $g \circ \gamma$ does not enclose zero, implying

$$
\oint_{g \circ \gamma} \frac{1}{w} d w=0
$$

The resulting statement just follow from recalling the definition of $g$.

## 2 Problems

## 1. True or False

(a) The function $f(z)=z / z$ has an isolated singularity at $z=0$.

False. Redefinition of $f(z)=z / z=1$, which has no singularity.
(b) The function $f(z)=\log (1+z)-\log z$ has a essential singularity at $z=0$.

True. $f(z)=\log (1+z)-\log z=\log \left(1+\frac{1}{z}\right)=\sum_{n=1}^{\infty}(-1)^{n-1}\left(\frac{1}{z}\right)^{n}$.
2. (a) Let $z_{1}, \cdots, z_{n}$ be distinct complex numbers. Determine the explicit partial fraction decomposition of $\frac{1}{\left(z-z_{1}\right) \cdots\left(z-z_{n}\right)}$.
(b) Let $P(z)$ be a polynomial of degree $\leq n-1$ and $a_{1}, \cdots, a_{n}$ be distinct complex numbers. Assume there is a partial fraction decomposition of the form

$$
\frac{P(z)}{\left(z-a_{1}\right) \cdots\left(z-a_{n}\right)}=\frac{c_{1}}{z-a_{1}}+\cdots+\frac{c_{n}}{z-a_{n}} .
$$

Prove that

$$
c_{1}=\frac{P\left(a_{1}\right)}{\left(a_{1}-a_{2}\right) \cdots\left(a_{1}-a_{n}\right)}
$$

and find similarly other coefficients $c_{j}$.

## Solution:

(a) In partial fraction expression,

$$
f(z):=\frac{1}{\left(z-z_{1}\right) \cdots\left(z-z_{n}\right)}=\frac{a_{1}}{z-z_{1}}+\cdots+\frac{a_{n}}{z-z_{n}} .
$$

Pick a sufficiently small $\epsilon$ such that $B_{\epsilon}\left(z_{i}\right)$ contains no $z_{j}$ except for $i=j$, then over $B_{\epsilon}\left(z_{i}\right), \frac{a_{j}}{z-z_{j}}$ is holomorphic for $i \neq j$. Therefore,

$$
\begin{aligned}
\int_{\bar{B}_{\epsilon}\left(z_{i}\right)} f(z) d z & =\int_{\bar{B}_{\epsilon}\left(z_{i}\right)}\left(\frac{a_{1}}{z-z_{1}}+\cdots+\frac{a_{n}}{z-z_{n}}\right) d z \\
\operatorname{Res}\left(f, z_{i}\right) & =a_{i} \quad \text { (Cauchy's integral formula and Residue theorem) }
\end{aligned}
$$

From the residue formula, one can determine easily that

$$
\operatorname{Res}\left(f, z_{i}\right)=\prod_{j=1, j \neq i}^{n} \frac{1}{z_{i}-z_{j}}=a_{i}
$$

(b) Note that $P(z)$ is entire. The principle behind is the same as (a).
3. (Open Mapping Theorem) Prove that if $f$ is holomorphic and non-constant in a region $\Omega$, then $f$ is open (meaning the image of $f$ is open).

Solution: Let $w_{0} \in f(\Omega)$, say $w_{0}=f\left(z_{0}\right)$. We want to prove that all points near $w_{0}$ must also belongs to the image of $f$. Define $g(z)=f(z)-w=\left(f(z)-w_{0}\right)+\left(w_{0}-w\right)=: F(z)+G(z)$.
Pick $\delta>0$ such that $\bar{B}_{\delta}\left(z_{0}\right) \subset \Omega$ and $f(z) \neq w_{0}$ on $\partial \bar{B}_{\delta}\left(z_{0}\right)$. Then, select $\epsilon>0$ such that $\left|f(z)-w_{0}\right| \geq 0$ on $\partial \bar{B}_{\delta}\left(z_{0}\right)$. If $\left|w-w_{0}\right|<\epsilon$, then $|F(z)|>|G(z)|$ on the circle $\partial \bar{B}_{\delta}\left(z_{0}\right)$.
By Rouché's theorem, $g=F+G$ has zero inside $\partial \bar{B}_{\delta}\left(z_{0}\right)$ since $F$ has a zero inside $\partial \bar{B}_{\delta}\left(z_{0}\right)$.
4. Let $f$ be meromorphic on $\mathbb{C}$ but not entire. Let $g(z)=e^{f(z)}$. Show that $g$ is not meromorphic on $\mathbb{C}$.

Solution: $f$ is meromorphic but not entire implies there exists at least a pole at certain $z_{0} \in \mathbb{C}$. In some neighborhood of $z_{0}$, we can write

$$
\left(z-z_{0}\right)^{m} f(z)=p(z)+\left(z-z_{0}\right)^{m} h(z)
$$

where $h$ is holomorphic and $p$ is a polynomial of degree $<m$. Then,

$$
f(z)=\frac{p(z)}{\left(z-z_{0}\right)^{m}}+h(z)
$$

implying

$$
e^{f(z)}=e^{\frac{p(z)}{\left(z-z_{0}\right)^{m}}} e^{h(z)}
$$

One can easily check that $e^{h(z)}$ is holomorphic. However, $e^{\frac{p(z)}{\left(z-z_{0}\right)^{m}}}$ is having an essential singularity at $z_{0}$. Therefore $e^{f(z)}$ cannnot be meromorphic (notice that essential singularity is not a type of pole).
5. Let $\left\{z_{n}\right\}$ be a sequence of distinct complex numbers such that $\sum \frac{1}{\left|z_{n}\right|^{3}}$ converges. (a) Prove that the series

$$
f(z)=\sum_{n=1}^{\infty}\left(\frac{1}{\left(z-z_{n}\right)^{2}}-\frac{1}{z_{n}^{2}}\right)
$$

defines a meromorphic function on $\mathbb{C}$ on $B_{R}(0)$.(b) Where are the poles of this function?
Solution: Fix an $R>0$, then the hypothesis $\sum \frac{1}{\left|z_{n}\right|^{3}}$ converges implies $\left|z_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$. Therefore, there exists only finitely many $n$ such that $z_{n} \in B_{R}(0)$.
The above statement implies there exists $N$ such that $n>N,\left|z_{n}\right|>2 R$. Rewrite

$$
f(z)=\sum_{n=1}^{N}\left(\frac{1}{\left(z-z_{n}\right)^{2}}-\frac{1}{z_{n}^{2}}\right)+\sum_{n=N+1}^{\infty}\left(\frac{1}{\left(z-z_{n}\right)^{2}}-\frac{1}{z_{n}^{2}}\right)
$$

then $z_{n} \in B_{R}(0)$ are the poles of order 2 . What remains is to show that $f(z)$ is meromorphic. So we will have to show that the second term in $f(z)$ is holomorphic. We have the estimation

$$
\begin{aligned}
\left|\frac{1}{\left(z-z_{n}\right)^{2}}-\frac{1}{z_{n}^{2}}\right|=\left|\frac{-z^{2}+2 z z_{n}}{z_{n}^{2}\left(z-z_{n}\right)^{2}}\right| & =\frac{1}{\left|z_{n}\right|^{3}} \frac{\left|-\frac{z^{2}}{z_{n}}+2 z\right|}{\left|\frac{z}{z_{n}}-1\right|^{2}} \\
& \leq \frac{1}{\left|z_{n}\right|^{3}} \frac{\frac{R^{2}}{2 R}+2 R}{\left(1-\frac{R}{2 R}\right)} \\
& \leq \frac{B}{\left|z_{n}\right|^{3}}, \quad(\text { for some constant } B)
\end{aligned}
$$

While the second sum do not contains poles, a quotient of polynomials define a holomorphic function, proving $f(z)$ as a whole is meromorphic.

