1 Review

Theorem 1.1. (Taylor's theorem for holomorphic function)Suppose f is holomorphic in an open disc $B_{R}\left(z_{0}\right)$, then for any $z \in B_{R}\left(z_{0}\right)$, the power series

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}
$$

converges pointwise to $f(z)$. This is known as the Taylor's series of the holomorphic function f at z_{0}.
Proof sketch: Let $R^{\prime}=R-\epsilon$ for some $\epsilon>0$ such that $z \in B_{R^{\prime}}\left(z_{0}\right)$. Consider $f(z)=\frac{1}{2 \pi i} \oint_{\left|\zeta-z_{0}\right|=R^{\prime}} \frac{f(\zeta)}{\zeta-z} d \zeta=$ $\frac{1}{2 \pi i} \oint_{\left|\zeta-z_{0}\right|=R^{\prime}} \frac{f(\zeta)}{\zeta-z_{0}} \frac{1}{1-\frac{z-z_{0}}{\zeta-z_{0}}} d \zeta$.

Corollary 1.2. (Taylor remainder for holomorphic function) Let f satisfying the conditions as in the Taylor's theorem, then for any closed curve $\gamma \subset B_{R}\left(z_{0}\right)$ enclosing z and z_{0}

$$
f(z)=\sum_{n=0}^{N-1} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}+\underbrace{\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(\zeta)}{\zeta-z}\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)^{N} d \zeta}_{=: R_{N}(z), \text { the remainder term }}
$$

Proof sketch: Similar to the proof of Taylor's theorem, but notice that $\frac{1-\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)^{N}}{1-\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)}=\sum_{n=1}^{N-1} \frac{1}{\left(z-z_{0}\right)^{n}}$.
Theorem 1.3. (Laurent) Suppose f is a holomorphic function defined on the annulus $A_{r, R}\left(z_{0}\right)$ for $r, R \in[0, \infty]$ and $r<R$, then

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}
$$

for some complex numbers c_{n}. The series is known as the Laurent series of the function f at z_{0}.
Proof sketch:

- Consider the keyhole domain

- In the defined domain we have

$$
f(z)=\frac{1}{2 \pi i} \oint_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta-\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta=\frac{1}{2 \pi i} \oint_{\Gamma} \frac{1}{\zeta-z_{0}} \frac{f(\zeta)}{1-\frac{z-z_{0}}{\zeta-z_{0}}} d \zeta+\frac{1}{2 \pi i} \oint_{\gamma} \frac{1}{z-z_{0}} \frac{f(\zeta)}{1-\frac{\zeta-z_{0}}{z-z_{0}}} d \zeta .
$$

Expand the series.

Corollary 1.4. (Laurent remainder) Let f be a function meeting the requirement of Laurent's theorem, then for each $N \in \mathbb{Z}^{+}$and $z \in A_{R, r}\left(z_{0}\right)$,

$$
\begin{aligned}
f(z)= & \sum_{n=1}^{N}\left(\frac{1}{2 \pi i} \oint_{\gamma} f(\zeta)\left(\zeta-z_{0}\right)^{n-1} d \zeta\right) \frac{1}{\left(z-z_{0}\right)^{n}}+\underbrace{\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(\zeta)}{z-\zeta}\left(\frac{\zeta-z_{0}}{z-z_{0}}\right)^{N} d \zeta}_{=r_{N}(z)} \\
& +\sum_{n=1}^{N}\left(\frac{1}{2 \pi i} \oint_{\Gamma} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}} d \zeta\right)\left(z-z_{0}\right)^{n}+\underbrace{\frac{1}{2 \pi i} \oint_{\Gamma} \frac{f(\zeta)}{z-\zeta}\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)^{N} d \zeta}_{=: R_{N}(z)}
\end{aligned}
$$

where Γ and γ are any pair of circles in $A_{R, r}\left(z_{0}\right)$ centered at z_{0} such that z is in between Γ and γ. Proof sketch: Similar to the proof of Taylor's theorem through considering a geometric sum.

2 Problems

1. True or False

(a) Laurent's theorem is a consequence of Cauchy-Goursat's theorem.

True. Notice the use of Cauchy integral formula.
(b) Suppose $f(z)$ is defined on $B_{r}\left(z_{0}\right)$ has a power series expansion $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$. Then $f(z)$ is holomorphic.
False. The converse of Taylor's theorem is not true in general. We can reduce our consideration to a real valued function. Consider the function

$$
f(x)= \begin{cases}\sin \left(e^{1 / x^{4}}\right) e^{-1 / x^{2}} & x \neq 0 \\ 0 & x=0\end{cases}
$$

Since $\lim _{x \rightarrow 0} f(x)=0, f(x)=o(x)$ for a sum of terms of power >1. But check that the derivative is not continuous at $x=0$.
2. Suppose $|f(z)| \leq A+B|z|^{k}$ and f is entire. Show that all the coefficients $c_{j}, j>k$ in it's power series expansion are 0 .

Solution: If f is entire, consideration of the series expansion at the origin will be suffice. Under such circumstance.

$$
\begin{gathered}
c_{j}=\frac{1}{j!} f^{(j)}(0)=\frac{1}{2 \pi i} \oint_{C_{R}} \frac{f(\xi)}{\xi^{j+1}} d \xi \quad \text { (Higher Order Cauchy Integral Formula) } \\
\Rightarrow\left|c_{j}\right| \leq \frac{1}{2 \pi} \cdot 2 \pi R \sup _{z \in C_{R}}\left|\frac{f(z)}{R^{j+1}}\right| \quad \text { (Integral Approximation) } \\
\leq \frac{A}{R^{n}}+\frac{A}{R^{j-k}}
\end{gathered}
$$

Since we can take R to be arbitrarily large, from the last inequality above, this implies $c_{j}=0$ for $j>k$.
3. (Weierstrass theorem) Prove that if f is holomorphic on $\mathbb{C} \backslash\left\{z_{1}, \cdots, z_{N}\right\}$, then there are $N+1$ entire functions f_{0}, \cdots, f_{N} such that

$$
f(z)=f_{0}(z)+f_{1}\left(1 /\left(z-z_{1}\right)\right)+\cdots+f_{N}\left(1 /\left(z-z_{N}\right)\right)
$$

Solution: Consider the Laurent expansion at one of the singular point say z_{1}, then there exists $R_{1}>0$ such that

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{1}\right)^{n}+\sum_{n=1}^{\infty} b_{n}\left(z-z_{1}\right)^{-n}
$$

The series $\sum_{n=1}^{\infty} b_{n}\left(z-z_{1}\right)^{-n}$ converges for $z \neq z_{1}$. This fact implies,

$$
f_{1}(z)=\sum_{n=1}^{\infty} b_{n} z^{n}
$$

is entire. The function

$$
F_{1}(z)=f(z)-f_{1}\left(1 /\left(z-z_{1}\right)\right)
$$

has a removable singularity at z_{1}. If $N=1$, the function is entire and the result is proved.
Assume $N>1$, reiterate the argument, and we will obtain entire function f_{2} such that z_{2} is a removable singularity of the function

$$
F_{2}(z)=F_{1}(z)-f_{2}\left(1 / 1\left(z-z_{2}\right)\right)=f(z)-\left[f_{1}\left(1 /\left(z-z_{1}\right)\right)+f_{2}\left(1 /\left(z-z_{2}\right)\right)\right] .
$$

Reiterating this argument a finite number of times, we obtain the results.
4. Is there a polynomial $P(z)$ such that $P(z) e^{1 / z}$ is an entire function? Justify your answer.

Solution: Let $P(z)=a_{d} z^{d}+\cdots+a_{0}$, then if we write Laurent expansion of $P(z) e^{1 / z}$ as $\sum_{n=-\infty}^{\infty} c_{n} z^{n}$, we have

$$
c_{-N}=\frac{a_{0}}{N!}+\frac{a_{1}}{(N+1)!}+\cdots+\frac{a_{d}}{(N+d)!} .
$$

Let r be the smallest nonnegative integer such that $a_{r} \neq 0$, then

$$
c_{-N}=\frac{1}{(N+r)!}\left(a_{r}+\frac{a_{r+1}}{N+r+1}+\cdots+\frac{a_{d}}{(N+r+1) \cdots(N+d)}\right)
$$

which is nonzero for any large N. Therefore no polynomial such that $P(z) e^{1 / z}$ is entire.
5. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function, whose Taylor's series about 0 is given by:

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

(a) Show that for any integer $n \geq 1$ and $r \in \mathbb{R}^{>0}$, we have:

$$
\int_{0}^{2 \pi} f\left(r e^{i \theta}\right) \sin n \theta d \theta=i \pi a_{n} r^{n}
$$

(b) Two real numbers α and β are said to have the same sign if they are both positive or both negative or both zero. Suppose further that for each $z \in \mathbb{C}, \operatorname{Im}(f(z))$ and $\operatorname{Im}(z)$ always have the same sign.
(i) Show that $a_{n} \in \mathbb{R}$ for any $n \geq 0$.
(ii) Using the result of (i), show that

$$
f(z)=a_{0}+a_{1} z
$$

for any $z \in \mathbb{C}$. [Hint: You can use without proofs that $n \sin \theta+\sin n \theta, n \sin \theta-\sin n \theta$ and $\sin \theta$ all must have the same sign for any integer $n \geq 2$ and any $\theta \in[0,2 \pi]$.

Solution:

(a) Define

$$
I:=\int_{0}^{2 \pi} f\left(r e^{i \theta}\right) \sin n \theta d \theta=\int_{0}^{2 \pi} f\left(r e^{i \theta}\right)\left(\frac{e^{i n \theta}-e^{-i n \theta}}{2 i}\right) d \theta
$$

Let $z=r e^{i \theta}, \theta \in[0,2 \pi]$, then $d z=i r e^{i \theta} d \theta=i z d \theta$. This implies:

$$
\begin{aligned}
I & =\oint_{|z|=r} f(z) \cdot \frac{\left(\frac{z}{r}\right)^{n}-\left(\frac{r}{z}\right)^{n}}{2 i} \cdot \frac{1}{i z} d z \\
& =-\oint_{|z|=r} \frac{f(z)}{2 z}\left(\frac{z^{n}}{r^{n}}-\frac{r^{n}}{z^{n}}\right) d z \\
& =\oint_{|z|=r}(\frac{f(z) r^{n}}{2 z^{n+1}}-\underbrace{\frac{f(z) z^{n-1}}{2 r^{n}}}_{\text {entire for } n \geq 1}) d z \\
& =\frac{r^{n}}{2} \cdot \frac{2 \pi i}{n!} f^{(n)}(0) \quad \text { (Higher Cauchy's Integral Formula) } \\
& =i \pi r^{n} a_{n}, \quad \text { for } n \geq 1
\end{aligned}
$$

(b) (i) $\operatorname{Im}(f(z))$ and $\operatorname{Im}(z)$ have the same sign implies $\operatorname{Im}(f(x+0 i))$ and $\operatorname{Im}(x+0 i)=0$ have the same sign. Therefore $\operatorname{Im}(f)=0$ for any $x \in \mathbb{R}$. Then

$$
\begin{aligned}
f^{\prime}(x+0 i) & =\left.\frac{\partial f}{\partial x}\right|_{(x, 0)}=\left.\frac{\partial u}{\partial x}\right|_{(x, 0)} \quad(\text { since } v(x, 0) \equiv 0) \\
\Rightarrow \operatorname{Im}\left(f^{\prime}(x+0 i)\right) & =0
\end{aligned}
$$

Inductively, one can show $\operatorname{Im}\left(f^{(n)}(x+0 i)\right)=0$. This concluded the claim.
(ii) Using the hint, $n \sin \theta \pm \sin n \theta$ and $\sin \theta$ have the same sign (we denote by \sim for the notion of same sign in the following), therefore

$$
\begin{aligned}
& \int_{0}^{2 \pi} \operatorname{Im}\left(f\left(r e^{i \theta}\right)\right)(n \sin \theta \pm \sin \theta) d \theta \geq 0 \quad\left(\operatorname{Im}\left(f\left(r e^{i \theta}\right)\right) \sim \operatorname{Im}\left(r e^{i \theta}\right) \sim \sin \theta\right) \\
\Rightarrow & \operatorname{Im}\left(\int_{0}^{2 \pi} f\left(r e^{i \theta}\right)(n \sin \theta \pm \sin n \theta) d \theta\right) \geq 0 \\
\Rightarrow & \operatorname{Im}\left(i \pi n a_{1} r \pm i \pi a_{n} r^{n}\right) \geq 0 \\
\Rightarrow & \pi n a_{1} r \pm \pi a_{n} r^{n} \geq 0 \quad\left(a_{n} \in \mathbb{R}, \forall n \geq 1, r>0\right) \\
\Rightarrow & \left|a_{n}\right| \leq \frac{n\left|a_{1}\right|}{r^{n-1}} \quad(\forall n \geq 1, r>0)
\end{aligned}
$$

Since r can be selected from our choice, picking $r \rightarrow \infty$, the above inequality implies $a_{k}=0$ for $k \geq 2$. Therefore $f(z)=a_{0}+a_{1} z$.
6. Find by Yourself: Computation exercise regarding expansion of Laurent series.

