
MATH4023
Tutorial 10 - Taylor Series and Laurent Series
April 28/30, 2020 Notes by Ivan So

1 Review

Theorem 1.1. (Taylor’s theorem for holomorphic function)Suppose f is holomorphic in an open disc BR(z0),
then for any z ∈ BR(z0), the power series

f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n

converges pointwise to f(z). This is known as the Taylor’s series of the holomorphic function f at z0.

Proof sketch: Let R′ = R − ε for some ε > 0 such that z ∈ BR′(z0). Consider f(z) = 1
2πi

∮
|ζ−z0|=R′

f(ζ)
ζ−z dζ =

1
2πi

∮
|ζ−z0|=R′

f(ζ)
ζ−z0

1

1− z−z0ζ−z0

dζ.

Corollary 1.2. (Taylor remainder for holomorphic function) Let f satisfying the conditions as in the Taylor’s theorem,
then for any closed curve γ ⊂ BR(z0) enclosing z and z0

f(z) =

N−1∑
n=0

f (n)(z0)

n!
(z − z0)n +

1

2πi

∮
γ

f(ζ)

ζ − z

(
z − z0

ζ − z0

)N
dζ︸ ︷︷ ︸

=:RN (z), the remainder term

Proof sketch: Similar to the proof of Taylor’s theorem, but notice that
1−

(
z−z0
ζ−z0

)N
1−

(
z−z0
ζ−z0

) =
∑N−1
n=1

1
(z−z0)n .

Theorem 1.3. (Laurent) Suppose f is a holomorphic function defined on the annulus Ar,R(z0) for r,R ∈ [0,∞] and
r < R, then

f(z) =

∞∑
n=−∞

cn(z − z0)n

for some complex numbers cn. The series is known as the Laurent series of the function f at z0.

Proof sketch:

• Consider the keyhole domain

• In the defined domain we have

f(z) =
1

2πi

∮
Γ

f(ζ)

ζ − z
dζ − 1

2πi

∮
γ

f(ζ)

ζ − z
dζ =

1

2πi

∮
Γ

1

ζ − z0

f(ζ)

1− z−z0
ζ−z0

dζ +
1

2πi

∮
γ

1

z − z0

f(ζ)

1− ζ−z0
z−z0

dζ.

Expand the series.
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Corollary 1.4. (Laurent remainder) Let f be a function meeting the requirement of Laurent’s theorem, then for each
N ∈ Z+ and z ∈ AR,r(z0),

f(z) =

N∑
n=1

(
1

2πi

∮
γ

f(ζ)(ζ − z0)n−1dζ

)
1

(z − z0)n
+

1

2πi

∮
γ

f(ζ)

z − ζ

(
ζ − z0

z − z0

)N
dζ︸ ︷︷ ︸

=:rN (z)

+

N∑
n=1

(
1

2πi

∮
Γ

f(ζ)

(ζ − z0)n+1
dζ

)
(z − z0)n +

1

2πi

∮
Γ

f(ζ)

z − ζ

(
z − z0

ζ − z0

)N
dζ︸ ︷︷ ︸

=:RN (z)

where Γ and γ are any pair of circles in AR,r(z0) centered at z0 such that z is in between Γ and γ.

Proof sketch: Similar to the proof of Taylor’s theorem through considering a geometric sum.
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2 Problems

1. True or False

(a) Laurent’s theorem is a consequence of Cauchy-Goursat’s theorem.
True. Notice the use of Cauchy integral formula.

(b) Suppose f(z) is defined on Br(z0) has a power series expansion f(z) =
∑∞
n=0 an(z − z0)n. Then f(z) is

holomorphic.
False. The converse of Taylor’s theorem is not true in general. We can reduce our consideration to a real
valued function. Consider the function

f(x) =

{
sin(e1/x4

)e−1/x2

x 6= 0,

0 x = 0.

Since limx→0 f(x) = 0, f(x) = o(x) for a sum of terms of power > 1. But check that the derivative is not
continuous at x = 0.

2. Suppose |f(z)| ≤ A+B|z|k and f is entire. Show that all the coefficients cj , j > k in it’s power series expansion
are 0.

Solution: If f is entire, consideration of the series expansion at the origin will be suffice. Under such circum-
stance.

cj =
1

j!
f (j)(0) =

1

2πi

∮
CR

f(ξ)

ξj+1
dξ (Higher Order Cauchy Integral Formula)

⇒ |cj | ≤
1

2π
· 2πR sup

z∈CR

∣∣∣∣ f(z)

Rj+1

∣∣∣∣ (Integral Approximation)

≤ A

Rn
+

A

Rj−k

Since we can take R to be arbitrarily large, from the last inequality above, this implies cj = 0 for j > k.

3. (Weierstrass theorem) Prove that if f is holomorphic on C \ {z1, · · · , zN}, then there are N + 1 entire functions
f0, · · · , fN such that

f(z) = f0(z) + f1(1/(z − z1)) + · · ·+ fN (1/(z − zN )).

Solution: Consider the Laurent expansion at one of the singular point say z1, then there exists R1 > 0 such
that

f(z) =
∞∑
n=0

an(z − z1)n +
∞∑
n=1

bn(z − z1)−n.

The series
∑∞
n=1 bn(z − z1)−n converges for z 6= z1. This fact implies,

f1(z) =

∞∑
n=1

bnz
n

is entire. The function
F1(z) = f(z)− f1(1/(z − z1))

has a removable singularity at z1. If N = 1, the function is entire and the result is proved.
Assume N > 1, reiterate the argument, and we will obtain entire function f2 such that z2 is a removable
singularity of the function

F2(z) = F1(z)− f2(1/1(z − z2)) = f(z)− [f1(1/(z − z1)) + f2(1/(z − z2))].

Reiterating this argument a finite number of times, we obtain the results.
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4. Is there a polynomial P (z) such that P (z)e1/z is an entire function? Justify your answer.

Solution: Let P (z) = adz
d + · · ·+ a0, then if we write Laurent expansion of P (z)e1/z as

∑∞
n=−∞ cnz

n, we have

c−N =
a0

N !
+

a1

(N + 1)!
+ · · ·+ ad

(N + d)!
.

Let r be the smallest nonnegative integer such that ar 6= 0, then

c−N =
1

(N + r)!

(
ar +

ar+1

N + r + 1
+ · · ·+ ad

(N + r + 1) · · · (N + d)

)
,

which is nonzero for any large N . Therefore no polynomial such that P (z)e1/z is entire.

5. Let f : C→ C be an entire function, whose Taylor’s series about 0 is given by:

f(z) =

∞∑
n=0

anz
n.

(a) Show that for any integer n ≥ 1 and r ∈ R>0, we have:∫ 2π

0

f(reiθ) sinnθdθ = iπanr
n.

(b) Two real numbers α and β are said to have the same sign if they are both positive or both negative or both
zero. Suppose further that for each z ∈ C, Im(f(z)) and Im(z) always have the same sign.

(i) Show that an ∈ R for any n ≥ 0.

(ii) Using the result of (i), show that
f(z) = a0 + a1z

for any z ∈ C. [Hint: You can use without proofs that n sin θ+ sinnθ, n sin θ− sinnθ and sin θ all must
have the same sign for any integer n ≥ 2 and any θ ∈ [0, 2π].]

Solution:

(a) Define

I :=

∫ 2π

0

f(reiθ) sinnθdθ =

∫ 2π

0

f(reiθ)

(
einθ − e−inθ

2i

)
dθ.

Let z = reiθ, θ ∈ [0, 2π], then dz = ireiθdθ = izdθ. This implies:

I =

∮
|z|=r

f(z) ·
(
z
r

)n − ( rz )n
2i

· 1

iz
dz

= −
∮
|z|=r

f(z)

2z

(
zn

rn
− rn

zn

)
dz

=

∮
|z|=r

(
f(z)rn

2zn+1
− f(z)zn−1

2rn︸ ︷︷ ︸
entire for n≥1

)
dz

=
rn

2
· 2πi

n!
f (n)(0) (Higher Cauchy’s Integral Formula)

= iπrnan, for n ≥ 1

(b) (i) Im(f(z)) and Im(z) have the same sign implies Im(f(x+ 0i)) and Im(x+ 0i) = 0 have the same sign.
Therefore Im(f) = 0 for any x ∈ R. Then

f ′(x+ 0i) =
∂f

∂x

∣∣∣∣
(x,0)

=
∂u

∂x

∣∣∣∣
(x,0)

(since v(x, 0) ≡ 0)

⇒ Im(f ′(x+ 0i)) = 0

Inductively, one can show Im(f (n)(x+ 0i)) = 0. This concluded the claim.
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(ii) Using the hint, n sin θ ± sinnθ and sin θ have the same sign (we denote by ∼ for the notion of same
sign in the following), therefore∫ 2π

0

Im(f(reiθ))(n sin θ ± sin θ)dθ ≥ 0 (Im(f(reiθ)) ∼ Im(reiθ) ∼ sin θ)

⇒ Im

(∫ 2π

0

f(reiθ)(n sin θ ± sinnθ)dθ

)
≥ 0

⇒ Im(iπna1r ± iπanrn) ≥ 0

⇒ πna1r ± πanrn ≥ 0 (an ∈ R, ∀n ≥ 1, r > 0)

⇒ |an| ≤
n|a1|
rn−1

(∀n ≥ 1, r > 0)

Since r can be selected from our choice, picking r →∞, the above inequality implies ak = 0 for k ≥ 2.
Therefore f(z) = a0 + a1z.

6. Find by Yourself: Computation exercise regarding expansion of Laurent series.


