1 Review

Theorem 1.1. Suppose f is holomorphic on a open set Ω and contains the closure \bar{D} of the disc D. Then for any $z \in D$,

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial \bar{D}} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

Proof sketch: Consider a keyhole domain excluding the point z can apply Cauchy-Goursat's theorem.

- Consider the keyhole domain:

- Applying Cauchy-Goursat's theorem, then

$$
\oint_{\gamma} \frac{f(z)}{z-\alpha} d z=\oint_{|z-\alpha|=\epsilon} \frac{f(z)}{z-\alpha} d z=\oint_{|z-\alpha|=\epsilon} \frac{f(z)-f(\alpha)}{z-\alpha} d z+\oint_{|z-\alpha|=\epsilon} \frac{f(\alpha)}{z-\alpha} d z
$$

- The first integral vanishes.
- Second integral can be obtained from direct evaluation, which is $2 \pi i f(\alpha)$.

Remark 1.2. The keyhole argument of Cauchy integral formula enable us to integrate functions with multiple singularity without the method of partial fraction. The idea is closely related to method of residue calculus (see later lectures).

2 Problems

1. True or False
(a) The keyhole domain is not simply-connected.
(b) The reason behind the vanishing of the first term (boxed in the review section) when we apply the CauchyGoursat's theorem in the proof of the Cauchy's integral formula is complex differentiability.
2. Let f be holomorphic on $\bar{B}\left(z_{0}, b\right)$. Show that

$$
\frac{1}{\pi b^{2}} \iint_{\bar{B}_{b}\left(z_{0}\right)} f(x+i y) d y d x=f\left(z_{0}\right)
$$

3. Let f be a holomorphic function on $B_{R_{0}}(0)$.
(a) Prove that whenever $0<R<R_{0}$ and $|z|<R$, then

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\operatorname{Re} e^{i \zeta}\right) \operatorname{Re}\left(\frac{R e^{i \zeta}+z}{R e^{i \zeta}-z}\right) d \zeta
$$

(b) Show that

$$
\operatorname{Re}\left(\frac{R e^{i \gamma}+r}{R e^{i \gamma}-r}\right)=\frac{R^{2}-r^{2}}{R^{2}-2 R r \cos \gamma+r^{2}}
$$

4. Show that there is no function f holomorphic in $\Omega=\mathbb{C} \backslash[-1,1]$ such that $f(z)^{2}=z$.
5. (a) Show that the association $f \mapsto f^{\prime} / f$ (for a holomorphic f) sends product to sum.
(b) If $P(z)=\left(z-a_{1}\right) \cdots\left(z-a_{n}\right)$, what is P^{\prime} / P ?
(c) Let γ be a closed path such that none of the roots of P lies on γ. Determine the value of

$$
\frac{1}{2 \pi i} \int_{\gamma}\left(P^{\prime} / P\right)(z) d z
$$

6. Find Exercise by Yourself: Evaluation of integral with the application of Cauchy integral formula and the keyhole argument.
