1 Review

1.1 Logarithm and Trigonometric Function

Definition 1.1. (complex logarithm) Given $z \in \mathbb{C}$ and $z \neq 0$, the complex logarithm of z is the set

$$
\log z:=\left\{w \in \mathbb{C}: e^{w}=z\right\}
$$

Definition 1.2. (principal logarithm) For any $z \neq 0$, the principal logarithm is the function

$$
\log (z):=\ln |z|+i \operatorname{Arg}(z)
$$

Definition 1.3. (complex sine and cosine) For any $z \in \mathbb{C}$ we define

$$
\sin z=\frac{e^{i z}-e^{-i z}}{2 i}, \quad \cos z=\frac{e^{i z}+e^{-i z}}{2}
$$

Definition 1.4. (inverse trigonometric function) The inverse trigonometric function are

$$
\sin ^{-1} z:=\{w \in \mathbb{C}: \sin w=z\}, \quad \cos ^{-1} z:=\{w \in \mathbb{C}: \sin w=z\}
$$

1.2 Contour Integral

Definition 1.5. (integral along a curve) Given a smooth curve γ parametrize $z:[a, b] \subset \mathbb{R} \rightarrow \mathbb{C}$, then the integral of $f(z)$ along γ is defined as

$$
\int_{\gamma} f(z) d z:=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

Definition 1.6. (primitive) A primitive for a complex-valued function f over Ω is a holomorphic function F such that $F^{\prime}=f$ (can think of anti-derivative of a function in 1-variable calculus).

Theorem 1.7. ("fundamental theorem of calculus") If f is a complex-valued function with primitive in open subset $\Omega \subset \mathbb{C}$ and γ is a curve with initial point and end point respectively w_{1}, w_{2}, then

$$
\int_{\gamma} f(z) d z=F\left(w_{2}\right)-F\left(w_{1}\right)
$$

Proof sketch: An application of chain rule in line integral. Refer to your knowledge in multivariable calculus.
Lemma 1.8. (integral approximation) The integration of continuous function over curve γ satisfies the following inequality:

$$
\left|\int_{\gamma} f(z) d z\right| \leq \sup _{z \in \gamma}|f(z)| \cdot \text { length }(\gamma)
$$

2 Problems

1. True or False
(a) The function $f(z)=1 / z$ has primitive in $\mathbb{C} \backslash\{0\}$.

False. Take the path of γ being the closed unit circle, having $\gamma(t)=e^{i t}, t \in[0,2 \pi]$. Then

$$
\oint_{\gamma} \frac{1}{z} d z=\int_{0}^{2 \pi} \frac{\gamma^{\prime}(t)}{\gamma(t)} d t=\int_{0}^{2 \pi} i d t=2 \pi i \neq 0
$$

If primitive exists, close-loop integral is zero. Therefore $1 / z$ do not have primitive.
(b) $\log (z)$ is a multivalued function.

False. Notice that $\operatorname{Arg}(z)$ and $\ln |z|$ are single-valued functions.
2. Let σ be a vertical segment parametrized by $\sigma(t)=z_{0}+i t c,-1 \leq t \leq 1$ for $z_{0} \in \mathbb{C}$ a fixed complex number, c a fixed real number >0. Let $\alpha=z_{0}+x$ and $\alpha^{\prime}=z_{0}-x$, where x is real positive. Find

$$
\lim _{x \rightarrow 0} \int_{\sigma}\left(\frac{1}{z-\alpha}-\frac{1}{z-\alpha^{\prime}}\right) d z
$$

Solution:

$$
\begin{aligned}
\int_{\sigma}\left(\frac{1}{z-\alpha}-\frac{1}{z-\alpha^{\prime}}\right) d z & =i c\left(\alpha-\alpha^{\prime}\right) \int_{-1}^{1} \frac{d t}{(z-\alpha)\left(z-\alpha^{\prime}\right)} \\
& =-\frac{2 i x}{c} \int_{0}^{1} \frac{d t}{(x / c)^{2}+t^{2}} \\
& =-4 i \arctan \left(\frac{c}{x}\right) \\
\Rightarrow \lim _{x \rightarrow 0} \int_{\sigma}\left(\frac{1}{z-\alpha}-\frac{1}{z-\alpha^{\prime}}\right) d z & =-2 \pi i
\end{aligned}
$$

3. Let Ω be a simply-connected open set. Let f be a holomorphic function on Ω and assume that $f(z) \neq 0$ for all $z \in \Omega$. Show that there exists holomorphic function g on Ω such that $g^{n}=f$ for any $n \in \mathbb{N}$.

Solution: Consider the function

$$
g_{n}(z)=e^{\frac{1}{n} \log f(z)}
$$

One can check easily that it is holomorphic since $\log f(z)=\ln f(z)+i \operatorname{Arg}(f(z)) . \log f(z)$ is holomorphic over Ω since $f(z) \neq 0$. Then the claim easily follows.
4. (a) Evaluate the integral

$$
\int_{\gamma} z^{n} d z
$$

for all $n \in \mathbb{Z}$, where γ is any circle centered at the origin with the counterclockwise orientation.
(b) Same as (a), but γ is any circle not containing the origin.
(c) Show that if $|a|<r<|b|$, then

$$
\int_{\gamma} \frac{1}{(z-a)(z-b)} d z=\frac{2 \pi i}{a-b}
$$

where γ denotes the circle centered at the origin of radius r with counterclockwise orientation.

Solution:

(a) Let R be the radius of the circle,

$$
\int_{\gamma} z^{n} d z=i \int_{0}^{2 \pi} R^{n} e^{i n \theta}\left(R e^{i \theta}\right) d \theta= \begin{cases}2 \pi i & \text { for } n=-1 \\ 0 & \text { for } n \neq-1\end{cases}
$$

(b) Let R be the radius of the circle centered at z_{0}. By the existence of primitive of z^{n} for $n \neq-1, \int_{\gamma} z^{n} d z=0$. So our only concern will be the case of $n=-1$.
For $n=-1$,

$$
\begin{aligned}
\int_{\gamma} z^{n} d z & =i \int_{0}^{2 \pi}\left(z_{0}+R e^{i \theta}\right)^{n}\left(R e^{i \theta}\right) d \theta \\
& =\frac{i}{z_{0}} \int_{0}^{2 \pi} R e^{i \theta} \sum_{n=0}^{\infty}\left(-\frac{R}{z_{0}} e^{i \theta}\right)^{n} d \theta \quad\left(\left|z_{0}\right|>R\right) \\
& =\frac{i}{z_{0}} \sum_{n=0}^{\infty}(-1)^{n} \frac{R^{n+1}}{z_{0}^{n}} \int_{0}^{2 \pi} e^{i(n+1) \theta} d \theta \quad(\text { LDCT }) \\
& =0
\end{aligned}
$$

(c)

$$
\begin{align*}
\int_{\gamma} \frac{1}{(z-a)(z-b)} d z & =\frac{1}{a-b} \int_{\gamma}\left(\frac{1}{z-a}-\frac{1}{z-b}\right) d z \\
& =\frac{1}{a-b} \int_{0}^{2 \pi} \sum_{n=0}^{\infty}\left(\left(r e^{i \theta}\right)^{-n-1} a^{n}+\left(r e^{i \theta}\right)^{n} b^{-n-1}\right) i r e^{i \theta} d \theta \\
& =\frac{1}{a-b} \sum_{n=0}^{\infty} \int_{0}^{2 \pi}\left(\left(r e^{i \theta}\right)^{-n-1} a^{n}+\left(r e^{i \theta}\right)^{n} b^{-n-1}\right) i r e^{i \theta} d \theta \tag{LDCT}\\
& =\frac{2 \pi i}{a-b} \quad \text { (integral except constant term vanishes) }
\end{align*}
$$

5. Prove that $\left|e^{z_{1}}-e^{z_{2}}\right| \leq\left|z_{1}-z_{2}\right|$, where $z_{1}, z_{2} \in\{z: \operatorname{Im}(z) \leq 0\}$.

Solution: Take $\gamma(t)=z_{1}+\left(z_{2}-z_{1}\right) t, t \in[0,1]$ to be the line segment connecting z_{1} and z_{2}, then

$$
\int_{\gamma} e^{z} d z=e^{z_{2}}-e^{z_{1}}
$$

For any $t \in[0,1],\left|e^{\gamma(t)}\right| \leq 1$. What remains is just to exploit the theorem of integral approximation:

$$
\left|e^{z_{2}}-e^{z_{1}}\right|=\left|\int_{\gamma} f(z) d z\right| \leq \sup _{z \in \gamma}\left|e^{z}\right| \cdot\left|z_{2}-z_{1}\right|
$$

