1 Complex Log. and Trig. Functions, Contour Integral

1.1 Logarithm and Trigonometric Function

Definition 1.1. (complex logarithm) Given $z \in \mathbb{C}$ and $z \neq 0$, the complex logarithm of z is the set

$$
\log z:=\left\{w \in \mathbb{C}: e^{w}=z\right\}
$$

Definition 1.2. (principal logarithm) For any $z \neq 0$, the principal logarithm is the function

$$
\log (z):=\ln |z|+i \operatorname{Arg}(z)
$$

Definition 1.3. (complex sine and cosine) For any $z \in \mathbb{C}$ we define

$$
\sin z=\frac{e^{i z}-e^{-i z}}{2 i}, \quad \cos z=\frac{e^{i z}+e^{-i z}}{2}
$$

Definition 1.4. (inverse trigonometric function) The inverse trigonometric function are

$$
\sin ^{-1} z:=\{w \in \mathbb{C}: \sin w=z\}, \quad \cos ^{-1} z:=\{w \in \mathbb{C}: \sin w=z\}
$$

1.2 Contour Integral

Definition 1.5. (integral along a curve) Given a smooth curve γ parametrize $z:[a, b] \subset \mathbb{R} \rightarrow \mathbb{C}$, then the integral of $f(z)$ along γ is defined as

$$
\int_{\gamma} f(z) d z:=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

Definition 1.6. (primitive) A primitive for a complex-valued function f over Ω is a holomorphic function F such that $F^{\prime}=f$ (can think of anti-derivative of a function in 1-variable calculus).

Theorem 1.7. ("fundamental theorem of calculus") If f is a complex-valued function with primitive in open subset $\Omega \subset \mathbb{C}$ and γ is a curve with initial point and end point respectively w_{1}, w_{2}, then

$$
\int_{\gamma} f(z) d z=F\left(w_{2}\right)-F\left(w_{1}\right)
$$

Proof sketch: An application of chain rule in line integral. Refer to your knowledge in multivariable calculus.
Lemma 1.8. (integral approximation) The integration of continuous function over curve γ satisfies the following inequality:

$$
\left|\int_{\gamma} f(z) d z\right| \leq \sup _{z \in \gamma}|f(z)| \cdot \text { length }(\gamma)
$$

2 Problems

1. True or False
(a) The function $f(z)=1 / z$ has primitive in $\mathbb{C} \backslash\{0\}$.
(b) $\log (z)$ is a multivalued function.
2. Let σ be a vertical segment parametrized by $\sigma(t)=z_{0}+i t c,-1 \leq t \leq 1$ for $z_{0} \in \mathbb{C}$ a fixed complex number, c a fixed real number >0. Let $\alpha=z_{0}+x$ and $\alpha^{\prime}=z_{0}-x$, where x is real positive. Find

$$
\lim _{x \rightarrow 0} \int_{\sigma}\left(\frac{1}{z-\alpha}-\frac{1}{z-\alpha^{\prime}}\right) d z
$$

3. Let Ω be a simply-connected open set. Let f be a holomorphic function on Ω and assume that $f(z) \neq 0$ for all $z \in \Omega$. Show that there exists holomorphic function g on Ω such that $g^{n}=f$ for any $n \in \mathbb{N}$.
4. (a) Evaluate the integral

$$
\int_{\gamma} z^{n} d z
$$

for all $n \in \mathbb{Z}$, where γ is any circle centered at the origin with the counterclockwise orientation.
(b) Same as (a), but γ is any circle not containing the origin.
(c) Show that if $|a|<r<|b|$, then

$$
\int_{\gamma} \frac{1}{(z-a)(z-b)} d z=\frac{2 \pi i}{a-b}
$$

where γ denotes the circle centered at the origin of radius r with counterclockwise orientation.
5. Prove that $\left|e^{z_{1}}-e^{z_{2}}\right| \leq\left|z_{1}-z_{2}\right|$, where $z_{1}, z_{2} \in\{z: \operatorname{Im}(z) \leq 0\}$.

