1 Review

Definition 1.1. (complex numbers) Complex numbers is the ring (field) $\mathbb{C}=\left\{z=a+b i: a, b \in \mathbb{R}, i^{2}=-1\right\}$.

- a is the real part of z, denoted by $\operatorname{Re}(z)$.
- b is the imaginary part of z, denoted by $\operatorname{Im}(z)$.

Definition 1.2. (conjugate and modulus) Given $z=a+b i \in \mathbb{C}$, we denote and define:

- $\bar{z}:=a-b i$ as the conjugate of z;
- $|z|:=\sqrt{a^{2}+b^{2}}$ as the modulus of z.

Remark 1.3. Useful identities: $\bar{z} z=|z|^{2}, \overline{\bar{z}}=z,|\bar{z}|=|z|, \operatorname{Re}(z)=\frac{z+\bar{z}}{2}, \operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}, \overline{z_{1} \pm z_{2}}=\overline{z_{1}} \pm \overline{z_{2}}, \overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}$, $\left(\frac{z_{1}}{z_{2}}\right)=\frac{\overline{z_{1}}}{\overline{z_{2}}}$.
Proposition 1.4. (triangle inequality) Let $z_{1}, z_{2} \in \mathbb{C}$ we have

$$
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
$$

Definition 1.5. (polar form and principal argument) Given a complex z, it's polar form is defined to be

$$
z=|z|\left(\cos \theta_{0}+i \sin \theta_{0}\right)
$$

The principal $\operatorname{argument}$ denoted by $\operatorname{Arg}(z)$ is defined to be the angle $\theta_{0} \in(-\pi, \pi]$ representing the angle between the origin- z line and the real axis.

Definition 1.6. (argument map) The argument map is the map defined on $\mathbb{C} \backslash\{0\}$ by

$$
\arg (z)=\{\operatorname{Arg}(z)+2 k \pi i: k \in \mathbb{Z}\} .
$$

Proposition 1.7. (De Moivre's Theorem) For any $\theta \in \mathbb{R}$ and $n \in \mathbb{Z}$, we have

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

Proof sketch: Induction and product to sum formula.
Definition 1.8. (roots of complex number) Given any $z \in \mathbb{C} \backslash\{0\}$ and $n \in \mathbb{N}$, the n-th roots of z is given by

$$
z^{\frac{1}{n}}:=\left\{\sqrt[n]{|z|}\left(\cos \left(\frac{\operatorname{Arg}(z)+2 k \pi}{n}\right)+i \sin \left(\frac{\operatorname{Arg}(z)+2 k \pi}{n}\right)\right), k \in\{1, \cdots, n-1\}\right\}
$$

Remark 1.9. Notice that $z^{\frac{1}{n}}$ is multivalued and different from $\sqrt[n]{z}$.

2 Problems

1. True or False
(a) For any $\theta \in \mathbb{R}$ and $q \in \mathbb{Q}$, we have $(\cos \theta+i \sin \theta)^{q}=\cos (q \theta)+i \sin (q \theta)$.

False. For any $q \in \mathbb{Q}, q=p / r$ for $p \in \mathbb{Z}$ and $r \in \mathbb{Z} \backslash\{0\}$. Suppose $r \neq 1$, then $(\cos \theta+i \sin \theta)^{q}$ is multivalued.
(b) Suppose $a \in \mathbb{R}, \sqrt[n]{a}=a^{\frac{1}{n}}$.

False. $\sqrt[n]{a}$ is denoting the n-th root of a in the real number system, which is single valued. While $a^{\frac{1}{n}}$ is a set of n values.
2. (a) Let $z=\cos \theta+i \sin \theta$, where $\theta \in \mathbb{R}$. Find the four values of z such that $\operatorname{Im}\left(z^{2}+\bar{z}\right)=0$.
(b) Let z_{1}, z_{2} be two values of z obtained in (a) such that $\operatorname{Im}\left(z_{1}\right)<0<\operatorname{Im}\left(z_{2}\right)$. For any positive n, define $S_{n}=\sum_{r=1}^{n} \omega^{r}$, where $\omega=\frac{z_{2}}{z_{1}}$.
(i) Prove that $\omega^{3}=1$.
(ii) If n is a multiple of 3 , prove that $S_{n}=0$.
(iii) Does there exist an integer m such that $\left(S_{2009}+S_{2010}+S_{2011}\right)^{m}=2$? Explain.
(iv) Find all positive integers k such that $\left(S_{n}\right)^{k}+\left(S_{n+1}\right)^{k}+\left(S_{n+2}\right)^{k}=2$ for any positive integer n.

Solution:

(a) From De Moivre's theorem, $z^{2}+\bar{z}=(\cos 2 \theta+i \sin 2 \theta)+(\cos \theta-i \sin \theta)$. So $\operatorname{Im}\left(z^{2}+\bar{z}\right)=0$ implies

$$
\begin{aligned}
\sin 2 \theta-\sin \theta & =0 \\
(2 \cos \theta-1) \sin \theta & =0 \\
\Rightarrow \theta & =0 \text { or } \pi \text { or } \frac{\pi}{3} \text { or } \frac{5}{3} \pi
\end{aligned}
$$

So the corresponding z 's are

$$
z_{1}=1 \text { and } z_{2}=-1 \text { and } z_{3}=\frac{1}{2}+\frac{\sqrt{3}}{2} i \text { and } z_{4}=\frac{1}{2}-\frac{\sqrt{3}}{2} i
$$

(b) (i) From our notation in (a),

$$
\begin{aligned}
\omega & =\frac{z_{3}}{z_{4}}=\frac{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}{\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}}=\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{2}=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3} \quad \text { (De Moivre's) } \\
\Rightarrow \omega^{3} & =\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)^{3}=\cos \frac{6 \pi}{3}+i \sin \frac{6 \pi}{3} \quad \text { (De Moivre's) }
\end{aligned}
$$

(ii) Let $n=3 k$. Since $\omega^{3}=1$,

$$
S_{n}=k\left(\omega+\omega^{2}+\omega^{3}\right)
$$

From the geometric sum formula,

$$
k\left(\omega+\omega^{2}+\omega^{3}\right)=k \omega \frac{1-\omega^{3}}{1-\omega}=0 \quad\left(\omega^{3}=1\right)
$$

(iii) Notice that 2010 divide 3. By (b)(ii),

$$
\left(S_{2009}+S_{2010}+S_{2011}\right)^{m}=\left(\omega+\left(\omega+\omega^{2}\right)\right)^{m}=(\omega-1)^{m}
$$

$|\omega-1|=\sqrt{\left(\cos \frac{2 \pi}{3}-1\right)^{2}+\sin ^{2} \frac{2 \pi}{3}}=\sqrt{2-2 \cos \frac{2 \pi}{3}}=\sqrt{3}$. For any positive integer $m,(\sqrt{3})^{m}$ cannot be equal to m. This disproved the claim.
(iv) For 3 consecutive integers, one of them must be divisible by 3 . Without loss of generality, assume $n+2$ is divisible by 3 . So

$$
\begin{aligned}
\left(S_{n}\right)^{k}+\left(S_{n+1}\right)^{k}+\left(S_{n+2}\right)^{k} & =(\omega)^{k}+\left(\omega+\omega^{2}+1-1\right)^{k}+0 \\
& =\omega^{k}+(-1)^{k}
\end{aligned}
$$

$|\omega|=1$ implies $\omega^{k}+(-1)^{k}=2$ if and only if k is even and $\omega^{k}=1$. The least positive integer for which $\omega^{k}=1$ is 3 . Therefore, the set of all k in which $\left(S_{n}\right)^{k}+\left(S_{n+1}\right)^{k}+\left(S_{n+2}\right)^{k}=2$ will be $6 \mathbb{Z}$.
3. Prove that

$$
1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{1}{2}+\frac{\sin [(n+1 / 2) \theta]}{2 \sin (\theta / 2)}
$$

Solution: From de Moivre's formula,

$$
\begin{aligned}
(\cos \theta+i \sin \theta)+\cdots+(\cos \theta+i \sin \theta)^{n} & =(\cos \theta+i \sin \theta)+\cdots+(\cos n \theta+i \sin n \theta) \\
\frac{1-(\cos \theta+i \sin \theta)^{n+1}}{1-(\cos \theta+i \sin \theta)} & =(\cos \theta+\cdots+\cos n \theta)+i(\sin \theta+\cdots+\sin n \theta)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\cos \theta+\cdots+\cos n \theta & =\operatorname{Re}\left(\frac{1-(\cos \theta+i \sin \theta)^{n+1}}{1-(\cos \theta+i \sin \theta)}\right) \\
& =\frac{1}{2}\left(\frac{1-(\cos (n+1) \theta+i \sin (n+1) \theta)}{1-(\cos \theta+i \sin \theta)}+\frac{1-(\cos (n+1) \theta-i \sin (n+1) \theta)}{1-(\cos \theta-i \sin \theta)}\right) \\
& =\frac{1+\cos (n+1) \theta \cos \theta+\sin (n+1) \theta \sin \theta-\cos \theta-\cos (n+1) \theta}{2(1-\cos \theta)} \\
& =\frac{1+\cos n \theta-\cos \theta-\cos (n+1) \theta}{4 \sin ^{2}(\theta / 2)} \quad(\operatorname{compund} \text { angle formula }+ \text { half angle formula) } \\
& =\frac{2 \cos ^{2}[(n / 2) \theta]-2 \cos [(n / 2+1) \theta] \cos [(n / 2) \theta]}{4 \sin ^{2}(\theta / 2)} \quad \text { (half anle formula }+ \text { product to sum formula) } \\
& =\frac{\cos [(n / 2) \theta](\sin [(n / 2+1 / 2) \theta])}{2 \sin (\theta / 2)} \quad \text { (sum to product formula) } \\
& =\frac{1}{2}+\frac{\sin [(n+1 / 2) \theta]}{2 \sin (\theta / 2)} \quad \text { (product to sum formula) }
\end{aligned}
$$

4. Suppose P is a polynomial with real coefficients. Show that $P\left(z_{0}\right)=0$ iff $P\left(\overline{z_{0}}\right)=0$.

Solution: Let $P(z)=a_{d} z^{d}+a_{d-1} z^{d-1}+\cdots+a_{0}$ with $a_{i} \in \mathbb{R}$. If $P\left(z_{0}\right)=a_{d} z_{0}^{d}+a_{d-1} z_{0}^{d-1}+\cdots+a_{0}=0$, then

$$
\overline{P\left(z_{0}\right)}=\overline{a_{d} z_{0}^{d}+a_{d-1} z_{0}^{d-1}+\cdots+a_{0}}=a_{d}{\overline{z_{0}}}^{d}+a_{d-1}{\overline{z_{0}}}^{d-1}+\cdots+a_{0}=P\left(\overline{z_{0}}\right)=\overline{0}=0
$$

This showed $\overline{z_{0}}$ is also a root of $P(z)$. The prove in the other direction is similar.
Significance: Complex roots for a polynomial comes in a conjugate pair. So, anything special regarding roots of odd degree polynomial based on this property?
5. (a) Show that the n-th roots of 1 (other than 1 itself) satisfy the cyclotomic equation

$$
z^{n-1}+z^{n-2}+\cdots+z+1=0
$$

(b) Suppose we consider the $n-1$ diagonals of a regular n-gon inscribed in a unit circle obtained by connecting one vertex with all the others. Show that the product of their lengths is n.

Solution:

(a) Suppose ξ is a n-th root of 1 not equal to 1 , then

$$
\xi^{n-1}+\xi^{n-2}+\cdots+\xi+1=\frac{1-\xi^{n}}{1-\xi}=\frac{1-1}{1-\xi}=0
$$

(b) Represent each vertex of a regular n-gon by an element of $1^{\frac{1}{n}}$:

Our target will be to evaluate $\left|\xi_{1}-1\right| \cdots\left|\xi_{1}^{n-1}-1\right|$. Notice that

$$
\begin{aligned}
& z^{n}-1=\left(z-\xi_{1}\right) \cdots\left(z-\xi_{1}^{n-1}\right)(z-1) \\
\Rightarrow & \left(z-\xi_{1}\right) \cdots\left(z-\xi_{1}^{n-1}\right)=z^{n-1}+\cdots+z+1 \\
\Rightarrow & \left|\left(1-\xi_{1}\right) \cdots\left(1-\xi_{1}^{n-1}\right)\right|=1+\cdots+1=n
\end{aligned}
$$

This proved the claim.

