
MATH4023
Tutorial 1 - Complex Numbers, Polar Form
February 25/27, 2020 Notes by Ivan So

1 Review

Definition 1.1. (complex numbers) Complex numbers is the ring (field) C = {z = a+ bi : a, b ∈ R, i2 = −1}.

• a is the real part of z, denoted by Re (z).

• b is the imaginary part of z, denoted by Im(z).

Definition 1.2. (conjugate and modulus) Given z = a+ bi ∈ C, we denote and define:

• z̄ := a− bi as the conjugate of z;

• |z| :=
√
a2 + b2 as the modulus of z.

Remark 1.3. Useful identities: z̄z = |z|2, z̄ = z, |z̄| = |z|, Re (z) = z+z̄
2 , Im(z) = z−z̄

2i , z1 ± z2 = z1±z2, z1z2 = z1 z2,(
z1
z2

)
= z1

z2
.

Proposition 1.4. (triangle inequality) Let z1, z2 ∈ C we have

|z1 + z2| ≤ |z1|+ |z2|.

Definition 1.5. (polar form and principal argument) Given a complex z, it’s polar form is defined to be

z = |z|(cos θ0 + i sin θ0).

The principal argument denoted by Arg(z) is defined to be the angle θ0 ∈ (−π, π] representing the angle between
the origin-z line and the real axis.

Re

Im

z

Arg(z)

Definition 1.6. (argument map) The argument map is the map defined on C \ {0} by

arg(z) = {Arg(z) + 2kπi : k ∈ Z}.

Proposition 1.7. (De Moivre’s Theorem) For any θ ∈ R and n ∈ Z, we have

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

Proof sketch: Induction and product to sum formula.

Definition 1.8. (roots of complex number) Given any z ∈ C \ {0} and n ∈ N, the n-th roots of z is given by

z
1
n :=

{
n
√
|z|
(

cos

(
Arg(z) + 2kπ

n

)
+ i sin

(
Arg(z) + 2kπ

n

))
, k ∈ {1, · · · , n− 1}

}
.

Remark 1.9. Notice that z
1
n is multivalued and different from n

√
z.
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2 Problems

1. True or False

(a) For any θ ∈ R and q ∈ Q, we have (cos θ + i sin θ)q = cos(qθ) + i sin(qθ).
False. For any q ∈ Q, q = p/r for p ∈ Z and r ∈ Z \ {0}. Suppose r 6= 1, then (cos θ + i sin θ)q is
multivalued.

(b) Suppose a ∈ R, n
√
a = a

1
n .

False. n
√
a is denoting the n-th root of a in the real number system, which is single valued. While a

1
n is a

set of n values.

2. (a) Let z = cos θ + i sin θ, where θ ∈ R. Find the four values of z such that Im(z2 + z) = 0.

(b) Let z1, z2 be two values of z obtained in (a) such that Im(z1) < 0 < Im(z2). For any positive n, define
Sn =

∑n
r=1 ω

r, where ω = z2
z1

.

(i) Prove that ω3 = 1.

(ii) If n is a multiple of 3, prove that Sn = 0.

(iii) Does there exist an integer m such that (S2009 + S2010 + S2011)m = 2? Explain.

(iv) Find all positive integers k such that (Sn)k + (Sn+1)k + (Sn+2)k = 2 for any positive integer n.

Solution:

(a) From De Moivre’s theorem, z2 + z = (cos 2θ + i sin 2θ) + (cos θ − i sin θ). So Im(z2 + z) = 0 implies

sin 2θ − sin θ = 0

(2 cos θ − 1) sin θ = 0

⇒ θ = 0 or π or
π

3
or

5

3
π.

So the corresponding z’s are

z1 = 1 and z2 = −1 and z3 =
1

2
+

√
3

2
i and z4 =

1

2
−
√

3

2
i.

(b) (i) From our notation in (a),

ω =
z3

z4
=

cos π3 + i sin π
3

cos π3 − i sin π
3

=
(

cos
π

3
+ i sin

π

3

)2

= cos
2π

3
+ i sin

2π

3
(De Moivre’s)

⇒ ω3 =

(
cos

2π

3
+ i sin

2π

3

)3

= cos
6π

3
+ i sin

6π

3
(De Moivre’s)

(ii) Let n = 3k. Since ω3 = 1,
Sn = k(ω + ω2 + ω3).

From the geometric sum formula,

k(ω + ω2 + ω3) = kω
1− ω3

1− ω
= 0 (ω3 = 1).

(iii) Notice that 2010 divide 3. By (b)(ii),

(S2009 + S2010 + S2011)m = (ω + (ω + ω2))m = (ω − 1)m.

|ω − 1| =
√(

cos 2π
3 − 1

)2
+ sin2 2π

3 =
√

2− 2 cos 2π
3 =

√
3. For any positive integer m, (

√
3)m cannot

be equal to m. This disproved the claim.

(iv) For 3 consecutive integers, one of them must be divisible by 3. Without loss of generality, assume n+ 2
is divisible by 3. So

(Sn)k + (Sn+1)k + (Sn+2)k = (ω)k + (ω + ω2 + 1− 1)k + 0

= ωk + (−1)k

|ω| = 1 implies ωk + (−1)k = 2 if and only if k is even and ωk = 1. The least positive integer for which
ωk = 1 is 3. Therefore, the set of all k in which (Sn)k + (Sn+1)k + (Sn+2)k = 2 will be 6Z.
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3. Prove that

1 + cos θ + cos 2θ + · · ·+ cosnθ =
1

2
+

sin[(n+ 1/2)θ]

2 sin(θ/2)
.

Solution: From de Moivre’s formula,

(cos θ + i sin θ) + · · ·+ (cos θ + i sin θ)n = (cos θ + i sin θ) + · · ·+ (cosnθ + i sinnθ)

1− (cos θ + i sin θ)n+1

1− (cos θ + i sin θ)
= (cos θ + · · ·+ cosnθ) + i(sin θ + · · ·+ sinnθ)

Therefore,

cos θ + · · ·+ cosnθ = Re

(
1− (cos θ + i sin θ)n+1

1− (cos θ + i sin θ)

)
=

1

2

(
1− (cos(n+ 1)θ + i sin(n+ 1)θ)

1− (cos θ + i sin θ)
+

1− (cos(n+ 1)θ − i sin(n+ 1)θ)

1− (cos θ − i sin θ)

)
=

1 + cos(n+ 1)θ cos θ + sin(n+ 1)θ sin θ − cos θ − cos(n+ 1)θ

2(1− cos θ)

=
1 + cosnθ − cos θ − cos(n+ 1)θ

4 sin2(θ/2)
(compund angle formula + half angle formula)

=
2 cos2[(n/2)θ]− 2 cos[(n/2 + 1)θ] cos[(n/2)θ]

4 sin2(θ/2)
(half anle formula + product to sum formula)

=
cos[(n/2)θ](sin[(n/2 + 1/2)θ])

2 sin(θ/2)
(sum to product formula)

=
1

2
+

sin[(n+ 1/2)θ]

2 sin(θ/2)
(product to sum formula)

4. Suppose P is a polynomial with real coefficients. Show that P (z0) = 0 iff P (z0) = 0.

Solution: Let P (z) = adz
d + ad−1z

d−1 + · · ·+ a0 with ai ∈ R. If P (z0) = adz
d
0 + ad−1z

d−1
0 + · · ·+ a0 = 0, then

P (z0) = adzd0 + ad−1z
d−1
0 + · · ·+ a0 = adz0

d + ad−1z0
d−1 + · · ·+ a0 = P (z0) = 0 = 0

This showed z0 is also a root of P (z). The prove in the other direction is similar.
Significance: Complex roots for a polynomial comes in a conjugate pair. So, anything special regarding roots
of odd degree polynomial based on this property?

5. (a) Show that the n-th roots of 1 (other than 1 itself) satisfy the cyclotomic equation

zn−1 + zn−2 + · · ·+ z + 1 = 0.

(b) Suppose we consider the n−1 diagonals of a regular n-gon inscribed in a unit circle obtained by connecting
one vertex with all the others. Show that the product of their lengths is n.

Solution:

(a) Suppose ξ is a n-th root of 1 not equal to 1, then

ξn−1 + ξn−2 + · · ·+ ξ + 1 =
1− ξn

1− ξ
=

1− 1

1− ξ
= 0.

(b) Represent each vertex of a regular n-gon by an element of 1
1
n :
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Re

Im

1

ξ1

ξ2
1

ξn−1
1

ξn−2
1

· · ·

· · ·

Our target will be to evaluate |ξ1 − 1| · · · |ξn−1
1 − 1|. Notice that

zn − 1 = (z − ξ1) · · · (z − ξn−1
1 )(z − 1)

⇒ (z − ξ1) · · · (z − ξn−1
1 ) = zn−1 + · · ·+ z + 1

⇒ |(1− ξ1) · · · (1− ξn−1
1 )| = 1 + · · ·+ 1 = n

This proved the claim.


