1 Review

Definition 1.1. (complex numbers) Complex numbers is the ring (field) $\mathbb{C}=\left\{z=a+b i: a, b \in \mathbb{R}, i^{2}=-1\right\}$.

- a is the real part of z, denoted by $\operatorname{Re}(z)$.
- b is the imaginary part of z, denoted by $\operatorname{Im}(z)$.

Definition 1.2. (conjugate and modulus) Given $z=a+b i \in \mathbb{C}$, we denote and define:

- $\bar{z}:=a-b i$ as the conjugate of z;
- $|z|:=\sqrt{a^{2}+b^{2}}$ as the modulus of z.

Remark 1.3. Useful identities: $\bar{z} z=|z|^{2}, \overline{\bar{z}}=z,|\bar{z}|=|z|, \operatorname{Re}(z)=\frac{z+\bar{z}}{2}, \operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}, \overline{z_{1} \pm z_{2}}=\overline{z_{1}} \pm \overline{z_{2}}, \overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}$, $\left(\frac{z_{1}}{z_{2}}\right)=\frac{\overline{z_{1}}}{\overline{z_{2}}}$.
Proposition 1.4. (triangle inequality) Let $z_{1}, z_{2} \in \mathbb{C}$ we have

$$
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
$$

Definition 1.5. (polar form and principal argument) Given a complex z, it's polar form is defined to be

$$
z=|z|\left(\cos \theta_{0}+i \sin \theta_{0}\right)
$$

The principal $\operatorname{argument}$ denoted by $\operatorname{Arg}(z)$ is defined to be the angle $\theta_{0} \in(-\pi, \pi]$ representing the angle between the origin- z line and the real axis.

Definition 1.6. (argument map) The argument map is the map defined on $\mathbb{C} \backslash\{0\}$ by

$$
\arg (z)=\{\operatorname{Arg}(z)+2 k \pi i: k \in \mathbb{Z}\} .
$$

Proposition 1.7. (De Moivre's Theorem) For any $\theta \in \mathbb{R}$ and $n \in \mathbb{Z}$, we have

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

Proof sketch: Induction and product to sum formula.
Definition 1.8. (roots of complex number) Given any $z \in \mathbb{C} \backslash\{0\}$ and $n \in \mathbb{N}$, the n-th roots of z is given by

$$
z^{\frac{1}{n}}:=\left\{\sqrt[n]{|z|}\left(\cos \left(\frac{\operatorname{Arg}(z)+2 k \pi}{n}\right)+i \sin \left(\frac{\operatorname{Arg}(z)+2 k \pi}{n}\right)\right), k \in\{1, \cdots, n-1\}\right\}
$$

Remark 1.9. Notice that $z^{\frac{1}{n}}$ is multivalued and different from $\sqrt[n]{z}$.

2 Problems

1. True or False
(a) For any $\theta \in \mathbb{R}$ and $q \in \mathbb{Q}$, we have $(\cos \theta+i \sin \theta)^{q}=\cos (q \theta)+i \sin (q \theta)$.
(b) Suppose $a \in \mathbb{R}, \sqrt[n]{a}=a^{\frac{1}{n}}$.
2. (a) Let $z=\cos \theta+i \sin \theta$, where $\theta \in \mathbb{R}$. Find the four values of z such that $\operatorname{Im}\left(z^{2}+\bar{z}\right)=0$.
(b) Let z_{1}, z_{2} be two values of z obtained in (a) such that $\operatorname{Im}\left(z_{1}\right)<0<\operatorname{Im}\left(z_{2}\right)$. For any positive n, define $S_{n}=\sum_{r=1}^{n} \omega^{r}$, where $\omega=\frac{z_{2}}{z_{1}}$.
(i) Prove that $\omega^{3}=1$.
(ii) If n is a multiple of 3 , prove that $S_{n}=0$.
(iii) Does there exist an integer m such that $\left(S_{2009}+S_{2010}+S_{2011}\right)^{m}=2$? Explain.
(iv) Find all positive integers k such that $\left(S_{n}\right)^{k}+\left(S_{n+1}\right)^{k}+\left(S_{n+2}\right)^{k}=2$ for any positive integer n.
3. Prove that

$$
1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{1}{2}+\frac{\sin [(n+1 / 2) \theta]}{2 \sin (\theta / 2)}
$$

4. Suppose P is a polynomial with real coefficients. Show that $P\left(z_{0}\right)=0$ iff $P\left(\overline{z_{0}}\right)=0$.
5. (a) Show that the n-th roots of 1 (other than 1 itself) satisfy the cyclotomic equation

$$
z^{n-1}+z^{n-2}+\cdots+z+1=0
$$

(b) Suppose we consider the $n-1$ diagonals of a regular n-gon inscribed in a unit circle obtained by connecting one vertex with all the others. Show that the product of their lengths is n.

