1 Review

1.1 Complex Sequences

Definition 1.1. (limit of complex-valued sequence) Let $\left\{z_{n}\right\}_{n=1}^{\infty}$ be a sequence of complex numbers. z_{n} converges to the limit L if for any $\epsilon>0$, there exists N_{ϵ} such that

$$
n>N_{\epsilon} \Longrightarrow\left|z_{n}-L\right|<\epsilon
$$

Proposition 1.2. A complex sequence converge to L iff $\operatorname{Re}(z)$ converges to $\operatorname{Re}(L)$ and $\operatorname{Im}(z)$ converges to $\operatorname{Im}(L)$.
Definition 1.3. A complex sequence is said to be Cauchy if for any $\epsilon>0$, there exists N_{ϵ} such that

$$
n, m>N_{\epsilon} \Longrightarrow\left|z_{n}-z_{m}\right|<\epsilon
$$

Theorem 1.4. (completeness of \mathbb{C}) For any Cauchy sequence over \mathbb{C}, there exists $L \in \mathbb{C}$ such that L is the limit of the sequence.

Proof sketch: Completeness of $\mathbb{R}+$ considering real and imaginary components individually.

1.2 Complex Series

Definition 1.5. (conditional and absolute convergence) Given a complex series $S=\sum_{n=1}^{\infty} z_{n}$. S is said to be converge absolutely if $\sum_{n=1}^{\infty}\left|z_{n}\right|$ converges. S is said to be converge conditionally if S converges but does not converge absolutely.

Proposition 1.6. Ratio test (for modulus), root test (for modulus) and absolute convergence test works for complex series.

Definition 1.7. The radius of convergence $R \in \mathbb{R}$ of a series $s(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is a value such that whenever $z \in B\left(z_{0}, R\right), s(z)$ converges.

1.3 Exponential

Definition 1.8. The complex exponential function defined for any $z \in \mathbb{C}$ is

$$
e^{z}:=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

Proposition 1.9. (Properties regarding complex exponential)
(a) (Euler's identity) $e^{i \theta}=\cos \theta+i \sin \theta$,
(a) $e^{z+w}=e^{z} e^{w}$.

2 Problems

1. True or False
(a) We can conclude that the series defined by e^{z} has an infinite radius of convergence from both ratio test and root test.
(b) Let T_{n} be the n-th term of the complex series. If $\lim _{n \rightarrow \infty} T_{n}=0$, then $\sum_{n=1}^{\infty}(-1)^{n} T_{n}$ converges.
2. Let $a, b \in \mathbb{C}$. Assume that b not equal to any integer $0 \leq$. Show that the radius of convergence of the series

$$
\sum \frac{a(a+1) \cdots(a+n)}{b(b+1) \cdots(b+n)} z^{n}
$$

is at least 1 . Show that this radius can be infinity in some cases.
3. (a) Show that

$$
S(z)=\sum_{n=1}^{\infty} \frac{z^{n-1}}{\left(1-z^{n}\right)\left(1-z^{n+1}\right)}= \begin{cases}\frac{1}{(1-z)^{2}} & \text { for }|z|<1 \\ \frac{1}{z(1-z)^{2}} & \text { for }|z|>1\end{cases}
$$

(b) Prove that the convergence is uniform for $|z| \leq c<1$ in the first case, $|z| \geq b>1$ in the second.
4. (Ratio test implies root test) Show that if $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence of non-zero complex numbers such that $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L$, then $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=L$.
5. Suppose $\left\{a_{n}\right\}_{n=1}^{N}$ and $\left\{b_{n}\right\}_{n=1}^{N}$ are two finite sequences of complex numbers . Let $B_{k}=\sum_{n=1}^{k} b_{n}$ denote the partial sums of the series $\sum b_{n}$ with the convention $B_{0}=0$. Prove the summation by part formula

$$
\sum_{n=M}^{N} a_{n} b_{n}=a_{N} b_{N}-a_{M} B_{M-1}-\sum_{n=M}^{N-1}\left(a_{n+1}-a_{n}\right) B_{n}
$$

