
Statistical Learning Models for Text and Graph Data
Sequence Labeling and Structured Output Learning:

Constraint Modeling

Yangqiu Song

Hong Kong University of Science and Technology

yqsong@cse.ust.hk

November 1, 2019

∗Contents are based on materials created by Dan Roth, Xiaojin (Jerry) Zhu

Yangqiu Song (HKUST) COMP5222/MATH5471 November 1, 2019 1 / 45



Reference Content

Dan Roth. NAACL tutorial on Structured Predictions in NLP:
Constrained Conditional Models and Integer Linear Programming.
http://l2r.cs.illinois.edu/tutorials.html

Dan Roth. CS546: Machine Learning and Natural Language .
http://l2r.cs.uiuc.edu/~danr/Teaching/CS546-16/

Xiaojin (Jerry) Zhu. CS 769: Advanced Natural Language Processing.
http://pages.cs.wisc.edu/~jerryzhu/cs769.html

Yangqiu Song (HKUST) COMP5222/MATH5471 November 1, 2019 2 / 45

http://l2r.cs.illinois.edu/tutorials.html
http://l2r.cs.uiuc.edu/~danr/Teaching/CS546-16/
http://pages.cs.wisc.edu/~jerryzhu/cs769.html


Course Topics

Representation: language models, word embeddings, topic models,
knowledge graphs

Learning: supervised learning,unsupervised learning, semi-supervised
learning, distant supervision, indirect supervision, sequence models, deep
learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms
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Overview

1 Semi-supervised Mixture Models

2 Posterior Regularization
Motivation
Algorithm
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Recall Naive Bayes Classifier: A Generative View

Both ym and
xm = (x1

m, . . . , x
d
m)T

are observed variables;
π and θk are
parameters

Naive Bayes from Class Conditional Unigram Model

For m = 1, . . . ,M

Choose ym ∼ Multinomial(ym|1,π)

Choose Nm =
∑d

j x
j
m ∼ Poisson(ξ)

For n = 1, . . . ,Nm

Choose v ∼ Multinomial(v |1,θ∗|ym ) =∏d
j=1(θj∗|ym )v=j
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Parameter Estimation (based on Multinomial)

Both ym and
xm = x1

m, . . . , x
d
m are

observed variables; π
and θk are parameters

Maximum likelihood of the training set:

J = log
∏M

m=1 Pπ,{θk}(xm, ym)

=
∑M

m=1 logPπ,{θk}(xm, ym)

=
∑M

m=1 logP(ym|π)P(xm|ym,θ∗|ym)

We can formulate a constrained optimization
problem

max J
s.t.

∑K
k=1 πk = 1∑d
j=1 θ

j
k = 1(k = 1, . . . ,K )

It’s easy to solve with Lagrange multiplier and arrive
at:

πk = |{ym=k}|
M

θjk =
∑

m,ym=k x
j
m∑

m,ym=k

∑d
j=1 x

j
m
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What if the documents are not labeled?

In naive Bayes, both ym and xm = (x1
m, . . . , x

d
m)T are observed variables; π

and θk are parameters

Figure: Native Bayes Figure: Mixture Model

However, in clustering problems, ym is not observed (labeled before feeding
into machine learning algorithm)
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Expectation Maximization (EM) Algorithm

We instead maximize the marginal log likelihood:

J (Θ) = logP({xm}Mm=1|Θ)

Then the lower bound can be derived:

J (Θt) =
∑M

m=1 log
∑K

y=1 P(xm, y |Θt)

=
∑M

m=1 log
∑K

y=1 qxm,y (Θ)P(xm,y |Θt)
qxm,y (Θ)

≥
∑M

m=1

∑K
y=1 qxm,y (Θ) log P(xm,y |Θt)

qxm,y (Θ).
= Q(Θ,Θt)

where
∑K

y=1 qxm,y (Θ) = 1 is some distribution
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EM Algorithm

Repeat

E-step: compute posterior of hidden variables

qxm,y = P(y |xm,Θ)

M-step: parameter estimation by maximizing the lower bound

πk =
∑

m qxm,y

M

θjk =
∑

m qxm,y x
j
m∑

m

∑d
j=1 qxm,y x

j
m

Until the convergence of the objective function
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What if the Data is Semi-supervised?
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Semi-supervised Text Classification (Nigam et al. (2000))

We modify the log-likelihood as

J (Θ) =

Ml∑
m=1

logP(xm, ym|Θ) + λ

Mu∑
m=1

log
K∑

y=1

P(xm, y |Θ)

When λ = 0, it the supervised learning case

We still need to perform EM algorithm since there is a sum inside log

In E-step, we estimate qxm,y = P(y |xm,Θ) for unlabeled data
In M-step, we modify the algorithm based both labeled and unlabeled
data

πk =
∑Ml

m I (ym=k)+λ
∑Mu

m qxm,y

Ml+Mu

θjk =
∑Ml

m,ym=k x
j
m+λ

∑Mu
m qxm,yx

j
m∑Ml

m,ym=k

∑d
j=1 x

j
m+λ

∑Mu
m

∑d
j=1 qxm,yx

j
m
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What Kind of Other Supervision Can We Use?

Pairwise constraints

Must-link: two data samples must be in the same class
Cannot-link: two data samples cannot be in the same class

Constrained clustering (Basu et al. (2004))

Still consider mixture modeling
Add pairwise constraints to labels

Yangqiu Song (HKUST) COMP5222/MATH5471 November 1, 2019 12 / 45



Graphical Model for Constrained Clustering

Recall
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Graphical Model for Constrained Clustering

A hidden Markov random field model over labels
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Hidden Markov Modeling

Emission probability: P(x|y) is a multinomial distribution for
document classification

As what we did in naive Bayes classifier or
unsupervised/semi-supervised mixture models

Markov random field over labels P(Y)
.

= 1
Z exp(− E

T )

A Gibbs distribution defined based on some energy function E
Z is a normalization constant

For must-links
EM(yi , yj) ∝ I (yi 6= yj)

which penalize two examples with different estimated labels but with
a must-link constraint

For cannot-links
EC (yi , yj) ∝ I (yi = yj)

which penalize two examples with the same estimated label but with
a cannot-link constraint
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Constrained Clustering

Objective function:
J (Θ)

=
∑M

m=1 log
∑K

y=1 P(xm, y |Θ)−
∑

i ,j∈M EM(yi , yj)−
∑

i ,j∈C EC (yi , yj)

≥
∑M

m=1

∑K
y=1 P(y |xm,Θ) log P(xm,y |Θt)

P(y |xm,Θ)

−
∑

i ,j∈M EM(yi , yj)−
∑

i ,j∈C EC (yi , yj)

Recall: When we consider a finite mixture model, and draw just one
sample at each E-step

This is called stochastic EM
In the E-step, a sample of y is taken from the posterior distribution
P(y |x,Θt)
This effectively makes a hard assignment of each data point to one of
the components in the mixture

If Gibbs sampling is used
Instead of drawing a sample from the corresponding conditional
distribution, we make a point estimate of the variable given by the
maximum of the conditional distribution
Then we obtain the iterated conditional modes (ICM) algorithm
For finite mixture models, it’s similar to K -means
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Constrained Clustering (Cont’d)

Objective function:

J (Θ)

=
∑M

m=1 log
∑K

y=1 P(xm, y |Θ) +
∑

i ,j∈M EM(yi , yj) +
∑

i ,j∈C EC (yi , yj)

≥
∑M

m=1

∑K
y=1 P(y |xm,Θ) log P(xm,y |Θt)

P(y |xm,Θ)

+
∑

i ,j∈M EM(yi , yj) +
∑

i ,j∈C EC (yi , yj)

In E-step, we use iterated conditional modes (ICM) algorithm

We re-assign the cluster labels due to the maximization of the objective
function

In M-step, we maximize the parameter Θ exactly the same as mixture
models

Given the cluster labels for each example, we re-calculate cluster
centers (like K -means)
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Summary of Semi-supervised Clustering

Semi-supervised learning with seeds
Supervision is coming from the prior of individual labels
Augment maximum likelihood with supervised learning likelihood
Modify the M-step with both labeled and unlabeled data

Semi-supervised learning with constraints
Supervision is coming from the pairwise labels
Augment maximum likelihood with hidden Markov random field model
Modify the E-step with both unlabeled data and constraints

Can we generalize both ideas?
For the individual supervision, there have been a lot of semi-supervised
learning algorithm with assumptions such as

Continuity assumption: Points which are close to each other are more
likely to share a label; yields a preference for decision boundaries in
low-density regions
Cluster assumption: The data tend to form discrete clusters, and points
in the same cluster are more likely to share a label
Manifold assumption: The data lie approximately on a manifold of
much lower dimension than the input space

For the pairwise supervision: today’s lecture
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Overview

1 Semi-supervised Mixture Models

2 Posterior Regularization
Motivation
Algorithm
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Semantic Role Labeling

Based on the dataset PropBank (Palmer et al. (2005))

Large human-annotated corpus of verb semantic relations

The task: To predict arguments of verbs

Example (“The bus was heading for Nairobi in Kenya”)

Given the sentence, identifies who does what to whom, where and when.
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Predicting Verb Arguments

Identify candidate arguments for verb using parse tree
Filtered using a binary classifier

Classify argument candidates
Multi-class classifier (one of multiple labels per candidate)

Inference
Using probability estimates from argument classifier
Must respect structural and linguistic constraints, e.g., no overlapping
arguments
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Inference: Verb Arguments
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Inference: Verb Arguments
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Inference: Verb Arguments
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Inference: Verb Arguments
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Many Other Such Constraints in NLP

Recognizing entities and relations
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Many Other Such Constraints in NLP

Recognizing entities and relations

This helps improve 2-5% over no inference (Roth and Yih (2004))
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Many Other Such Constraints in NLP

Word alignment: Symmetric: link is used by source→target model
and target→source model

Multi-view learning: both view should predict the same label

Part-of-speech tagging: each sentence should have at least one verb
and at least one noun
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A Running Example

The task is part-of-speech (POS) tagging with limited or no training
data.

Suppose we know that each sentence should have at least one verb
and at least one noun,

and would like our model to capture this constraint on the unlabeled
sentences.

The model we will be using is a first-order hidden Markov model
(HMM).
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Running Example

In the POS tagging example from above, we would use

logPΘ(x1:N , y1:N) =
∑
n

logPΘ(yn|yn−1) + PΘ(xn|yn)

as the joint probability

Θ represents the multinomial distributions

The log-likelihood (+ log-prior) is

J (Θ) =

ML∑
i

logPΘ(x
(i)
L,1:N , y

(i)
L,1:N)+

MU∑
i

log
∑
y1:N

PΘ(x
(i)
1:N , y1:N)+logP(Θ)

which is a general MAP setting for semi-supervised learning
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Regularization via Posterior Constraints

The goal of the posterior regularization framework is to

restrict the space of the model posteriors on unlabeled data to guide
the model towards desired behavior

Here we want to bias learning so that each sentence is labeled to
contain at least one verb

We define φ(x1:N , y1:N) as “negative number of verbs in y1:N”

Now the constraint over the corpus is

Qx = {qx(y1:N) : Eqx [φ(x1:N , y1:N)] ≤ −1}

More generally, we can define the constraint set to be

Qx = {qx(y1:N) : ∃ξ,Eqx [φ(x1:N , y1:N)]− b ≤ ξ; ||ξ||β ≤ ε}
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Recall: A More General View of EM

One can introduce an arbitrary distribution over hidden variables
Q(Y )

J (Θ) = logP(X |Θ) = log
∑

Y P(X ,Y |Θ)
=

∑
Y Q(Y ) logP(X |Θ)

=
∑

Y Q(Y ) log P(X |Θ)Q(Y )P(X ,Y |Θ)
P(X ,Y |Θ)Q(Y )

=
∑

Y Q(Y ) log P(X ,Y |Θ)
Q(Y ) +

∑
Y Q(Y ) log P(X |Θ)Q(Y )

P(X ,Y |Θ)

=
∑

Y Q(Y ) log P(X ,Y |Θ)
Q(Y ) +

∑
Y Q(Y ) log Q(Y )

P(Y |X ,Θ)

= F (Q,Θ) + KL[Q(Y )||P(Y |X ,Θ)]

Note F (Q,Θ) is the right hand side of Jensen’s inequality
If KL > 0, F (Q,Θ) is a lower bound of J (Θ)

First consider the maximization of F on Q with Θt fixed
F (Q,Θ) is maximized by Q(Y ) = P(Y |X ,Θt) since J (Θ) is fixed and
KL attends its minimum zero (E-Step)

Next consider the maximization of F on Θ with Q fixed as above
Note in this case F (Q,Θ) = Q(Θt ,Θ) (M-Step)

Yangqiu Song (HKUST) COMP5222/MATH5471 November 1, 2019 33 / 45



Illustration of EM

Figure: EM Algorithm
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Illustration of EM

Figure: EM Algorithm
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Illustration of EM

Figure: EM Algorithm
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EM Algorithm: General Idea
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EM Algorithm for Posterior Regularization

Note that we constrain q as

Qx = {qx(y1:N) : ∃ξ,Eqx [φ(x1:N , y1:N)]− b ≤ ξ; ||ξ||β ≤ ε}

So in E-step, we will possibly find a sub-optimal solution which is not
exactly the posterior:

minqx,ξ
∑M

i KL[qx(y
(i)
1:N)||PΘt (y

(i)
1:N |x

(i)
1:N)]

s.t. Eqx [φ(x
(i)
1:N , y

(i)
1:N)]− b ≤ ξ; ||ξ||β ≤ ε for all i

This is corresponding to maximizing
F (Q,Θt) = J (Θt)− KL[Q(Y )||P(Y |X ,Θt)] w.r.t. Q to obtain Qt+1

In traditional way, we minimize KL[Q(Y )||P(Y |X ,Θt)]

In the M-step, we maximize F (Qt+1,Θ) with respect to Θ, which is

F (Qt+1,Θ) =
∑

Y Qt+1(Y ) log P(X ,Y |Θ)
Qt+1(Y )

= EQt+1(Y )[logP(X ,Y |Θ)] + const

which is exactly the same as traditional EM algorithm
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Objective Function for PR

Comparing the original cost function used in EM

J (Θ) = logP(X |Θ) = log
∑

Y P(X ,Y |Θ)
=

∑
Y Q(Y ) logP(X |Θ)

=
∑

Y Q(Y ) log P(X |Θ)Q(Y )P(X ,Y |Θ)
P(X ,Y |Θ)Q(Y )

=
∑

Y Q(Y ) log P(X ,Y |Θ)
Q(Y ) +

∑
Y Q(Y ) log P(X |Θ)Q(Y )

P(X ,Y |Θ)

=
∑

Y Q(Y ) log P(X ,Y |Θ)
Q(Y ) +

∑
Y Q(Y ) log Q(Y )

P(Y |X ,Θ)

= F (Q,Θ) + KL[Q(Y )||P(Y |X ,Θ)]

The actual objective function for PR is

J (Θ)− KL[Q(Y )||P(Y |X ,Θ)] = F (Q,Θ)

by alternatively optimizing Q and Θ in E-step and M-step

The difference is in E-step, we optimize Q with constraints

Yangqiu Song (HKUST) COMP5222/MATH5471 November 1, 2019 39 / 45



Illustration
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PR for Discriminative Models

For a discriminative model, we directly optimize

J (Θ) = logPΘ(Y |X ) + logP(Θ)

We define the same object function

J (Θ)− KL[Q(Y )||P(Y |X ,Θ)]

For labeled data part, we can still use
J (Θ) = logPΘ(Y |X ) + logP(Θ)
Here we define the lower bound function
F ′(Q,Θ) = −KL[Q(Y )||P(Y |X ,Θ)] for the unlabeled data
Then in E-step, we maximize

F ′(Q,Θt) = −KL[Q(Y )||P(Y |X ,Θt)]

w.r.t. Q to obtain Qt+1

In the M-step, we maximize

F ′(Qt+1,Θ) = −KL[Qt+1(Y )||P(Y |X ,Θ)]

w.r.t. Θ to obtain Θt+1
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Further Reading

Ganchev et al. (2010): Posterior Regularization for Structured Latent
Variable Models

Hu et al. (2016): Harnessing Deep Neural Networks with Logic Rules
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Results on Stanford Sentiment Treebank
(Socher et al., 2013)

Rule: sentence S with an “A-but-B” structure, then expect the sentiment
of the whole sentence to be consistent with the sentiment of clause B
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