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Course Topics

Representation: language models, word embeddings, topic models,
knowledge graphs

Learning: supervised learning,unsupervised learning, semi-supervised
learning, distant supervision, indirect supervision, sequence models, deep
learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms
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Overview

1 Hidden Markov Models
Representation
Learning
Inference

2 Conditional Models and Local Classifiers
Conditional Models for Predicting Sequences
Log-linear Models for Multiclass Classification
Maximum Entropy Markov Models

The Label Bias Problem
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Classification Problem
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The General Framework of Training and Testing

Analogous to classification
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Label and Feature Dependencies

Current label may dependent on the previous one
Fed in “The Fed” is a Noun because it follows a Determiner
Fed in “I fed the..” is a Verb because it follows a Pronoun

Sometimes more difficult: “I/PN can/MD can/VB a/DT can/NN.”
Two kinds of information incorporated in learning:

Some tag sequences are more likely than others. For instance, DT JJ
NN is quite common, while DT JJ VBP is unlikely. (“a new book”)
A word may have multiple possible POS, but some are more likely than
others, e.g., “flour” is more often a noun than a verb

The question is:
Given a word sequence

x1:N
.

= x1, x2, . . . , xN ,

how do we compute the most likely POS sequence

y1:N
.

= y1, y2, . . . , yN

One method is to use a Hidden Markov Model
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Classifiers Feasible for Sequence Labeling

Generative
Naive Bayes
Hidden Markov model (HMM)

Discriminative models
Maximum entropy, logistic regression
Maximum Entropy Markov Model (MEMM)
Conditional random field (CRF)
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Hidden Markov Model

Discrete Markov Model

States follow a Markov chain
Each state is an observation

Hidden Markov Model

States follow a Markov chain
States are not observed
Each state stochastically emits an observation
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A Toy Part-of-Speech Example

Sentence “The Fed raises interest rates”
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Most Likely State Sequence

Input:

A hidden Markov model Θ = {π,A,Φ}
An observation sequence x1:N

Output: A state sequence y1:N that corresponds to

arg max
y1:N

P(y1:N |x1:N ,Θ)

This is maxinum a posteriori inference (MAP inference)

Computationally a combinatorial optimization problem
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MAP Inference

We want arg maxy1:N
P(y1:N |x1:N ,Θ)

Note that P(y1:N |x1:N ,Θ) ∝ P(y1:N , x1:N |Θ)

And we don’t care about P(x1:N) since we are maximizing over y1:N

So
arg max

y1:N

P(y1:N |x1:N ,Θ) = arg max
y1:N

P(y1:N , x1:N |Θ)

We have defined

P(x1:N , y1:N |Θ) = P(y1|π)P(x1|y1,Φ)
N∏

n=2

P(yn|yn−1,A)P(xn|yn,Φ)

We omit the parameters for the ease of derivation

P(x1:N , y1:N) = P(y1)P(x1|y1)
N∏

n=2

P(yn|yn−1)P(xn|yn)
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How Many Possible Sequences?

In this simple case, we have 16 candidate sequences

(1× 2× 2× 2× 2)
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How Many Possible Sequences?

Output: one state per observation yn = sk

We have Kn possible sequences to consider in
arg maxy1:N

P(y1:N , x1:N |Θ)
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Naive Approaches

Try out every sequences

Score the sequence y1:N using P(y1:N , x1:N |Θ)
Return the highest scoring one
Correct but slow O(KN)

Greedy search

Construct the output left to right
For each n, elect the best yn using yn−1 and xn
Incorrect but fast, O(NK )
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Beam Search

Beam inference
At each position keep the top k complete sequences
Extend each sequence in each local way
The extensions compete for the k slots at the next position

(a) Greedy (b) Beam Search

Advantages
Fast; beam sizes of 3-5 are almost as good as exact inference in many
cases
Easy to implement (no dynamic programming required)

Disadvantage
Inexact: the globally best sequence can fall off the beam
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Optimal Solution: General Idea

Dynamic programming

The best solution for the full problem relies on the best solution to the
sub-problem
Memorize partial computation

Examples

Viterbi algorithm
Dijkstra’s shortest path algorithm
MDP value iteration
...
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Deriving the Recursion

max
y1:N

P(x1:N , y1:N) = max
y1:N

P(y1)P(x1|y1)
N∏

n=1

P(yn|yn−1)P(xn|yn)

We reorganize it as

maxy1:N
P(xN |yN)P(yN |yN−1) · . . . · P(x2|y2)P(y2|y1) · P(x1|y1)P(y1)
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Deriving the Recursion

maxy1:N
P(xN |yN)P(yN |yN−1) · . . . · P(x2|y2)P(y2|y1) · P(x1|y1)P(y1)

= maxy2:N
P(xN |yN)P(yN |yN−1) · . . . ·maxy1 P(x2|y2)P(y2|y1) · P(x1|y1)P(y1)

= maxy2:N
P(xN |yN)P(yN |yN−1) · . . . ·maxy1 P(x2|y2)P(y2|y1) · score1(y1)

= maxy3:N
P(xN |yN)P(yN |yN−1) · . . . ·maxy2 P(x3|y3)P(y3|y2)

·maxy1 P(x2|y2)P(y2|y1) · score1(y1)
= maxy3:N

P(xN |yN)P(yN |yN−1) · . . . ·maxy2 P(x3|y3)P(y3|y2) · score2(y2)
= . . .
= maxyN scoreN(yN)

where we have scoren(yn) = maxyn−1 P(yn|yn−1)P(xn|yn)scoren−1(yn−1)
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Complexity of Inference

Complexity parameters

Input sequence length: N
Number of states: K

Memory

Storing the table: NK (scores for all states at each position)

Runtime

At each step, go over pairs of states
O(NK 2)
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Summary of Viterbi Inference

Viterbi inference

Dynamic programming or memoization
Requires small window of state influence (e.g., past two states are
relevant)

Advantage

Exact: the global best sequence is returned

Disadvantage

Harder to implement long-distance state-state interactions (but beam
inference tends not to allow long-distance resurrection of sequences
anyway)
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Summary

Predicting sequences

As many output states as observations

Markov assumption helps decompose the score

Several algorithmic questions

Most likely state
Learning parameters: supervised, unsupervised (posterior, sum-product
algorithm)
Probability of an observation sequence: sum over all assignments of
states; replace max with sum in Viterbi
Inference: Viterbi (or max-product algorithm)
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Outline

Sequence Models

Hidden Markov Models

Representation
Learning
Inference

Conditional Models and Local Classifiers

Global Models

Conditional Random Fields
Structured Perceptron for sequences
Structural SVM
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HMM Recap

The joint probability is

P(x1:N , y1:N |Θ) = P(y1|π)P(x1|y1,Φ)
N∏

n=2

P(yn|yn−1,A)P(xn|yn,Φ)

Training via maximum likelihood (supervised learning)

Θ = {π,A,Φ} = arg max
Θ

∏
i

P(x
(i)
1:N , y

(i)
1:N |Θ) = P(x

(i)
1:N , y

(i)
1:N |Θ)

where x
(i)
1:N , y

(i)
1:N is the i-th example (sequence)

Yangqiu Song (HKUST) COMP5222/MATH5471 November 1, 2019 25 / 48



HMM Recap

In the training phase, we are optimizing joint likelihood of the input
and the output for training

P(x1:N , y1:N |Θ)

In the test phase, we are trying to find a state sequence y1:N that
corresponds to

arg max
y1:N

P(y1:N |x1:N ,Θ)

Question:

Why not directly optimize this conditional likelihood instead in training
phase?
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Modeling Next-state Directly

Instead of modeling the joint distribution P(x1:N , y1:N), we only focus
on P(y1:N |x1:N)

Which is what we care about eventually anyway

For sequences, different formulations

Maximum Entropy Markov Model (McCallum et al. (2000))
Projection-based Markov Model (Punyakanok and Roth (2001))
Other names: discriminative/conditional Markov model, ...
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Generative vs Discriminative Models

Generative models

Learn P(x, y)
Characterize how the data is generated (both inputs and outputs)
E.g., Naive Bayes, Hidden Markov Model

Discriminative models

Learn P(y |x)
Directly characterize the decision boundary only
E.g., Logistic Regression, Conditional models (several names)

A generative model tries to characterize the distribution of the inputs,
while a discriminative model doesn’t care
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Another Independence Assumption

P(yn|yn−1, yn−2, . . . , xn, xn−1, xn−2, . . .) = P(yn|yn−1, xn)

This assumption lets us write the conditional probability of the output
as

P(y1:N |x1:N) =
∏
n

P(yn|yn−1, xn)

Compared to HMM P(y1:N |x1:N ,Θ) ∝ P(y1:N , x1:N |Θ)
where we don’t care about P(x1:N) since we are maximizing over y1:N

We don’t even need to model P(xn|yn) here
Very similar to logistic regression vs. naive Bayes
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Modeling P(yn|yn−1, xn)

Different approaches possible

Train a maximum entropy classifier
Or, ignore the fact that we are predicting a probability, we only care
about maximizing some score. Train any classifier, using say the
perceptron algorithm

For both cases

Use rich features that depend on input and previous state
We can increase the dependency to arbitrary neighboring xn’s

E.g., Neighboring words influence this words POS tag
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Detour: Log-linear Models for Multiclass

Consider multiclass classification

Input: x ∈ Rd

Output: y ∈ {1, 2, . . . ,K}
Feature representation: φ(x, y)

We have seen this before

Define probability of an input x taking a label y as

P(y |x,w) =
exp(w>φ(x, y))∑
y ′ exp(w>φ(x, y ′))

A generalization of logistic regression to multiclass

Interpretation: Score for label, converted to a well-formed probability
distribution by exponentiating + normalizing
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Training a Log-linear Model

Given a data set {x(i), y (i)} (to be consistent here we use superscript
to denote instance ids)

Apply the maximum likelihood principle

max
w

∏
i

P(y (i)|x(i),w)

where

P(y |x,w) =
exp(w>φ(x, y))∑
y ′ exp(w>φ(x, y ′))

With a regularizer

max
w
−λ

2
w>w +

∑
i

logP(y (i)|x(i),w)

(Stochastic) gradient based methods to train w

Log-linear = Maximum Entropy distribution with feature constraints
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The Next-state Model

P(yn|yn−1, yn−2, . . . , xn, xn−1, xn−2, . . .) = P(yn|yn−1, xn)

This assumption lets us write the conditional probability of the output
as

P(y1:N |x1:N) =
∏
n

P(yn|yn−1, xn)
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Modeling P(yn|yn−1, xn)

Different approaches possible

Train a maximum entropy classifier
Or, ignore the fact that we are predicting a probability, we only care
about maximizing some score. Train any classifier, using say the
perceptron algorithm

For both cases

Use rich features that depend on input and previous state
We can increase the dependency to arbitrary neighboring xn’s

E.g., Neighboring words influence this words POS tag
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Modeling P(yn|yn−1, xn) P(yn|yn−1, x1:N)

Different approaches possible
Train a maximum entropy classifier

Basically, a multinomial logistic regression

Or, ignore the fact that we are predicting a probability, we only care
about maximizing some score. Train any classifier, using say the
perceptron algorithm

For both cases

Use rich features that depend on input and previous state
We can increase the dependency to arbitrary neighboring xn’s

E.g., Neighboring words influence this words POS tag
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Maximum Entropy Markov Model (MEMM)

Goal: Compute P(y1:N |x1:N ,w) =
∏

n P(yn|yn−1, x1:N) where

P(yn|yn−1, x1:N) ∝ exp (w>φ(x, n, yn, yn−1))
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Compare MEMM and HMM

HMM: Only depends on the word and the previous tag
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Using MEMM

Training
Next-state predictor locally as maximum likelihood
Similar to any maximum entropy classifier

Prediction/decoding
Modify the Viterbi algorithm for the new independence assumptions

In HMM, we use

scoren(yn) = max
yn−1

P(yn|yn−1)P(xn|yn)scoren−1(yn−1)

In MEMM, we use

scoren(yn) = max
yn−1

P(yn|yn−1, x, n)scoren−1(yn−1)
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Generalization: Any Multiclass Classifier

Viterbi decoding: we only need a score for each decision

So far, probabilistic classifiers

In general, use any learning algorithm to build get a score for the
label yn given yn−1 and x

Multiclass versions of perceptron, SVM
Just like MEMM, these allow arbitrary features to be defined

Viterbi needs to be re-defined to work with sum of scores rather than
the product of probabilities

Yangqiu Song (HKUST) COMP5222/MATH5471 November 1, 2019 41 / 48



Comparison to HMM

What we gain

Rich feature representation for inputs

Helps generalize better by thinking about properties of the input tokens
rather than the entire tokens
E.g., If a word ends with es, it might be a present tense verb (such as
raises). Could be a feature; HMM cannot capture this

Discriminative predictor

Model P(y |x) rather than P(y , x)
Joint vs conditional
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But ... Local Classifiers → Label Bias Problem

Recall: the independence assumption (“Next-state” classifiers are
locally normalized)

P(yn|yn−1, yn−2, . . . , xn, xn|yn−1, xn−2, . . .) = P(yn|yn−1, xn)
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But ... Local Classifiers → Label Bias Problem

The robot wheels Fred round

The path scores are the same
Even if the word Fred is never observed as a verb in the data, it will be
predicted as one
The input Fred does not influence the output at all
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Label Bias

States with a single outgoing transition effectively ignore their input

States with lower-entropy next states are less influenced by observations

Why?

Because each the next-state classifiers are locally normalized
If a state has fewer next states, each of those will get a higher
probability mass

and hence preferred

Surprisingly doesn’t affect some tasks

E.g., POS tagging

Yangqiu Song (HKUST) COMP5222/MATH5471 November 1, 2019 46 / 48



Summary: Local Models for Sequences

Conditional models

Use rich features in the mode

Possibly suffer from label bias problem
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