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Course Topics

Learning Inference

Representation

@ Representation: language models, word embeddings, topic models,
knowledge graphs

@ Learning: supervised learning,unsupervised learning, semi-supervised
learning, distant supervision, indirect supervision, sequence models, deep
learning, optimization techniques

@ Inference: constraint modeling, joint inference, search algorithms
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Overview

© Hidden Markov Models
@ Representation
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Sequences

@ Sequences of states
e Text is a sequence of words or even letters

o If there are K unique states, the set of unique state sequences is

infinite
@ Our goal (for now): Define probability distributions over sequences
o If x3,x2,...,x, is a sequence that has n tokens, we want to be able
to define P(x1,x2,...,Xn)

o We have seen a lot of models for this in language models
o N-gram language model makes (n — 1)th-order Markov assumption
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Classification Problem

labels
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The General Framework of Training and Testing

@ Analogous to classification

Inference
Sequence Level Sequence Moclel
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Label and Feature Dependencies

@ Current label may dependent on the previous one
e Fed in “The Fed” is a Noun because it follows a Determiner
o Fed in "I fed the.." is a Verb because it follows a Pronoun
e Sometimes more difficult: “I/PN can/MD can/VB a/DT can/NN."
@ Two kinds of information incorporated in learning:
e Some tag sequences are more likely than others. For instance, DT JJ
NN is quite common, while DT JJ VBP is unlikely. (*“a new book”)
e A word may have multiple possible POS, but some are more likely than
others, e.g., “flour” is more often a noun than a verb
@ The question is:
o Given a word sequence

X1:N = X1, X2, ...y XN,
how do we compute the most likely POS sequence

Yi:N i}/1,}/2,--~,)/N

o One method is to use a Hidden Markov Model
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Classifiers Feasible for Sequence Labeling

o Generative
o Naive Bayes
e Hidden Markov model (HMM)
@ Discriminative models
e Maximum entropy, logistic regression
e Maximum Entropy Markov Model (MMEM)
o Conditional random field (CRF)

e 2 il

SEQUENCE GENERAL
Naive Bayes HMMs GRAPHS Generative directed models

o o conas

Logistic Regression Linear-chain CRFs GRAPHS

i

General CRFs
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Hidden Markov Model

@ Discrete Markov Model
e States follow a Markov chain
o Each state is an observation
@ Hidden Markov Model
o States follow a Markov chain

e States are not observed
o Each state stochastically emits an observation
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A Toy Part-of-Speech Example

@ Sentence “The Fed raises interest rates”

Transitions Emissions

P(The | Determiner) = 0.5 P(Fed| Noun) = 0.001

P(A | Determiner) = 0.3 P(raises| Noun) = 0.04

P(An | Determiner) = 0.1 P(interest| Noun) = 0.07
P(

Clommrmrefe——{oe?

P(Fed | Determiner) =0 The| Noun) =0

start = Determiner —> Noun —> Verb —> Noun —> Noun

S

Initial The Fed raises interest rates
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Model over States and Observations

@ Given a word sequence xi.p, how do we compute the most likely POS
sequence y;.n?7 We denote:
o Number of states (types, labels) = K
o Number of observations (features) = d
o m=(m1,...,7k) " : Initial probability over states (K dimensional

vector)
o A € R¥*K: Transition probabilities
o Aj=P(yn=jlyn-1=1)
o This is a first-order Markov assumption on the states
o ® c RFXI = (¢;,...,¢,)": Emission probabilities
o For texts ¢, = ((1)5(1)7 .. .’¢5<d))T can be a multinomial distribution
@ The parameters of an HMM are © = {mwr, A, ®}
@ This is a generative model. We can run an HMM for N steps, and

prOduce X1:N> Y1:N
@ The joint probability is
N
P(x1:n, y1:n|©) = P(ya|m)P(x1ly1, ®) [ [ P(yalyn-1, A)P(xnlyn, ®)

n=1
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Three Questions for HMMs (Rabiner (1990))

@ Given an observation sequence, x1.y and a model © = {m, A, ®}, how
to efficiently calculate the probability of the observation P(x1.y|©)?

e Given an observation sequence, x1.y and a model © = {7, A, ®},
how to efficiently calculate the most probable state sequence yy.py?

@ How do we adjust the model parameters © = {7, A, ®} to maximize
P(Xl;/\/|@)?
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Mapping to Our Problems

@ Representation
e Hidden states follows first-order Markov chain
o Features are modeled with a multinomial emission distribution
e We can evaluate P(x1.n, y1.n|©) of an observation sequence
@ Learning
o Finding parameters © = {m, A, ®}
e Supervised case: trivial parameter estimation
o Unsupervised/semi-supervised case: EM algorithm (known as
Baum-Welch algorithm)
e EM algorithm involves the so-called forward backward (or in general
sum-product) algorithm
@ Inference (or decoding problem)
e Assign a label to a sequence, corresponding to
arg maxy, , = P(Yl:N|X1:N7@)
e Finding the most likely state sequence to explain the observation
sequence
@ It can be exactly solved by Viterbi algorithm (or in general
max-product)
@ We can also use greedy search or beam search to have approximate
solutions
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Overview

© Hidden Markov Models

@ Learning
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Learning: The Trivial Case

@ We can find © by maximzing the likelihood of observed data

@ When y;. is observed (xi.y is also observed), which is the supervised
learning case, MLE boils down to the frequency estimate
o Aj is the fraction of times y,_; = i followed by y, = j
e ¢, = P(x|y = k) corresponds to the fraction of times x is produced
under state k
e 7 is the fraction of times each state being the first state of a sequence
(assuming we have multiple training sequences)

@ This is done very similar to naive Bayes classifier
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Priors and Smoothing

@ Maximum likelihood estimation works best with lots of annotated
data

o Never the case

@ Priors inject information about the probability distributions
e Dirichlet priors for multinomial distributions

o Effectively additive smoothing
e Add small constants to the count
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Learning: yi.n is Unobserved

For unsupervised learning:

@ The MLE will maximize (up to a local optimum, see below) the
likelihood of observed data

P(X1;N|@) = Z P(X1:N7)/1:N|9)

YN

where the summation is over all possible label sequences of length N
e This is an exponential sum with KV label sequences
e HMM training uses a combination of dynamic programming and EM to
handle this issue
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Lower Bound for EM Algorithm

@ Note the log likelihood involves summing over hidden variables, which
suggests we can apply Jensens inequality to lower bound

P(Xl:N‘e) — |ng}’1:N P(Xl:N7y1:N|e)
- ldy _P(x1:n.y1:n(©)
= log Zyuv P(y:nx1:n, ©° )Wﬁ:@w)

old P(x1:n,y1:n[©)
> ZYI:N P(y1:N‘x1:N7 © )lOg P(y1-n[x1.n,©°9)

o In E-step, we find the posterior P(yy.y|x1.n, ©°9)

@ In M-step, we maximize the above lower bound (taking the parts that
depends on)

Q(0,0%) =3, P(yinlxin, ©°)log P(x1.n, y1:n|©)
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EM Algorithm

Q(O,0%) =5~ P(y1.n|x1:n, ©%) log P(x1:n, y1:n|©)

Yi:N
@ We introduce two sets of variables (E-Step):
’Yn(k) = P()/n = k|X1:N7 GOId)

En(,/k) = 'D(Yn—l =j,Yn= k|x1:Na GOId)
to denote the node marginals and edge marginals (conditioned on
input x3., under the old parameters)

o Given N

P(x1:n, y1:n1©) = P(ya|m)P(xalyr, ®) ] P(valyn-1, A)P(Xnlyn, ®)
n=2
@ The Q function can be written as
Q(e,0°) = Zgzl 71(k) log i
+ lezl ZII((:]_ ’Yn}((k) log P(an/na ¢k)
+ 2 2je1 2okt &n(Uk) log Aji
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@ The M-step is a constrained optimization problem since the
parameters need to be normalized. As before, one can introduce

Lagrange multipliers and set the gradient of the Lagrangian to zero to
arrive at

Tk X y1(k)
Ajk 5 30 Enljk)
where Aji is normalized over k

@ ¢, is maximized depending on the particular form of the distribution.
If it is multinomial, we have

Di X Y, Yn(k)xn
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In the E-step,
@ We need to compute v,(k) and &,(jk)

@ Particularly we have

Yn(k) = P(yn = k|x1.n, ©°1)

= P(}/n = k’xl:N)
_ PGunlyn=k)P(yn=k)

P(x1:n)
P(Xlzn‘Yn:k)P(anrl:N‘yn:k)P(yn:k)
P(x1:n)
P(Xl:nv}/n:k)P(Xn+1:N‘yn:k)
P(x1.n)

- a(yn=k)B(yn=k)
P(Xl:N)

@ We use an recursive way to compute forward a(y,) and backward
B(yn)

@ This is consistent with the “sum-product” algorithm
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Forward Recursion a(y,)

IR

a(yn) = P(x1n,yn)
= P(yn)P(Xn’}/n) (xl.n71|}/n)
= P(x”’yn)P(xlzn—la)/n)
= P(xnlyn) Z}’n—l P(X1:n~1, Yn—1,¥n)
= P(xn|yn) Zy,Hl P(x1:n-1, Yn|yn—1)P(¥n-1)
= P(xn|yn) Zyn_l P(x1:n—1]yn—1) P(¥n|Yn—1)P(yn-1)
= P(xn|yn) Z}’n—l P(X1:n—1, Yn—1)P(¥n|yn-1)
= P(xnlyn) Zy,,,l a(yn-1)P(ynlyn-1)
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Backward Recursion 5(y,)

[TIT7]

P(xn+1 N‘yn
P(xn+1.NaYn+1|Yn)
Yoi1 Xn41:N Y15 Yn) P(Yn+1]yn)

>
> (
= Zyn+1 P(Xny1:n|Yn+1) P(Yns1|yn)
> (
>

B(Yn

Yn+1

Xnt2:N|Ynt+1) P(Xnt1]Ynt1) P(Ynr1lyn)
yn+1)P(Xn+1 |}/n+1)'D(yn+1 |yn)

B

3

i
=™
—~
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E-Step (Cont'd)

e After computing forward recursion a(y,) and backward recursion
B(yn) we have
7n(k) _ a(yn = k)/B(yl‘l = k)
P(xl:N)

@ Similarly, we have

(Yn-1 = J)P(Yn = klyn—1 = j)P(Xn|yn = k)B(yn = k)
P(x1:n)

gn(jk) =
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Overview

© Hidden Markov Models

@ Inference
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Most Likely State Sequence

o Input:

o A hidden Markov model © = {m, A, ®}
e An observation sequence X;i.p

@ OQutput: A state sequence y;.y that corresponds to

arg max P(y1.n[x1:n, ©)
Yi:n

o This is maxinum a posteriori inference (MAP inference)

o Computationally a combinatorial optimization problem
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MAP Inference

We want arg max,, ,, P(yi:n|X1:n, ©)
Note that 'D(yl:N|x1:N7e) X 'D(yl:vil:N|e)
e And we don't care about P(xy.n) since we are maximizing over yy.y

e So
arg max P(y1.n|x1:n, ©) = arg max P(y1.n, X1:n|©)
Yi:n Yi:n

@ We have defined

N
P(x1:n, y1:n1©) = P(ya|m)P(xalyr, ®) ] P(valyn-1, A)P(Xnlyn, ®)
n=2
@ We omit the parameters for the ease of derivation
N
P(x1n, y1n) = P(y1)P(xaly1) [ P(valyn—1)P(xnlya)
n=2
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How Many Possible Sequences?

The Fed raises interest rates

List of allowed tags for each word

Determiner Verb Verb Verb Verb
Noun Noun Noun Noun
1 2 2 2 2

@ In this simple case, we have 16 candidate sequences

(1x2x2x2x2)
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How Many Possible Sequences?

@ Qutput: one state per observation y, = s

Observations X, X5 X,

List of allowed states for each observation

51 51 51
52 ) 52
53 57 S3
o S =

@ We have K" possible sequences to consider in
arg maxy,.y P(y1:n, X1:n(©)
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Naive Approaches

@ Try out every sequences

o Score the sequence y;.y using P(y1.n,X1:n|©)
o Return the highest scoring one
o Correct but slow O(KN)

o Greedy search

o Construct the output left to right
e For each n, elect the best y, using y,_1 and x,
o Incorrect but fast, O(NK)
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@ Beam inference
o At each position keep the top k complete sequences
o Extend each sequence in each local way
e The extensions compete for the k slots at the next position

— =
/——4’ 4/

—_ — —

(a) Greedy (b) Beam Search

@ Advantages
o Fast; beam sizes of 3-5 are almost as good as exact inference in many
cases
o Easy to implement (no dynamic programming required)
o Disadvantage
o Inexact: the globally best sequence can fall off the beam
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Optimal Solution: General ldea

@ Dynamic programming
o The best solution for the full problem relies on the best solution to the
sub-problem
o Memorize partial computation
@ Examples
Viterbi algorithm
o Dijkstra's shortest path algorithm
o MDP value iteration
o
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Deriving the Recursion

N
max P(x1.n, y1:n) = max P(y1) P(xa|y1) [ [ P(valyn-1)P(xnlyn)
Yu.n YN o
We reorganize it as
maxy, , P(xn|yn)P(ynlyn—1) - - .. - P(x2|y2) P(y2ly1) - P(x1]y1)P(y1)
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Deriving the Recursion

maxy,.y P(xnlyn)P(ynlyn—1) - - .. - P(xaly2) P(y2ly1) - P(x1ly1)P(y1)
= maxy,, P(xn|yn)P(ynlyn—1) - ... - maxy, P(x2|y2)P(y2|y1) - P(x1|y1)P(y1)
= maxy,y P(xn|yn)P(ynlyn—1) - - .. maxy, P(x2]y2)P(y2|y1) - scorei(y1)
= maxy,, P(xn|yn)P(ynlyn—1) - - .. - maxy, P(x3|y3) P(ys]y2)
-maxy, P(x2|y2)P(y2|y1) - scorei(y1)
= maxy,, P(xn|yn)P(ynlyn-1) - - .. - maxy, P(xs|ys)P(ys|y2) - scores(y2)

= maxy, scorey(yn)

where we have score,(y,) = maxy, ; P(¥n|yn—1)P(Xn|yn)scoren—1(yn-1)

Goal: To find the highest scoring path in this trellis
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Complexity of Inference

o Complexity parameters

o Input sequence length: N
e Number of states: K

e Memory
e Storing the table: NK (scores for all states at each position)
@ Runtime

o At each step, go over pairs of states
o O(NK?)
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Summary of Viterbi Inf

@ Viterbi inference

e Dynamic programming or memoization
o Requires small window of state influence (e.g., past two states are
relevant)

@ Advantage
o Exact: the global best sequence is returned
o Disadvantage

o Harder to implement long-distance state-state interactions (but beam
inference tends not to allow long-distance resurrection of sequences

anyway)
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@ Predicting sequences
o As many output states as observations

@ Markov assumption helps decompose the score

@ Several algorithmic questions

o Most likely state
o Learning parameters: supervised, unsupervised (posterior, sum-product

algorithm)
o Probability of an observation sequence: sum over all assignments of

states; replace max with sum in Viterbi
o Inference: Viterbi (or max-product algorithm)

38 / 40
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@ Conditional Models and Local Classifiers

@ Global models

e Conditional Random Fields
e Structured Perceptron for sequences
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