Statistical Learning Models for Text and Graph Data Sequence Labeling and Structured Output Learning: HMM

Yangqiu Song
Hong Kong University of Science and Technology
yqsong@cse.ust.hk

November 1, 2019
*Contents are based on materials created by Vivek Srikumar, Dan Roth, Xiaojin (Jerry) Zhu, Chris Manning

Reference Content

- Dan Roth. CS546: Machine Learning and Natural Language . http://12r.cs.uiuc.edu/~danr/Teaching/CS546-16/
- Vivek Srikumar. CS 6355 Structured Prediction. https: //svivek.com/teaching/structured-prediction/spring2018/
- Xiaojin (Jerry) Zhu. CS 769: Advanced Natural Language Processing. http://pages.cs.wisc.edu/~jerryzhu/cs769.html
- Chris Manning. CS 224N/Ling 237. Natural Language Processing. https://web.stanford.edu/class/cs224n/

Course Topics

- Representation: language models, word embeddings, topic models, knowledge graphs
- Learning: supervised learning,unsupervised learning, semi-supervised learning, distant supervision, indirect supervision, sequence models, deep learning, optimization techniques
- Inference: constraint modeling, joint inference, search algorithms

Overview

(1) Hidden Markov Models

- Representation
- Learning
- Inference

Sequences

- Sequences of states
- Text is a sequence of words or even letters
- If there are K unique states, the set of unique state sequences is infinite
- Our goal (for now): Define probability distributions over sequences
- If $x_{1}, x_{2}, \ldots, x_{n}$ is a sequence that has n tokens, we want to be able to define $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- We have seen a lot of models for this in language models
- N-gram language model makes ($n-1$)th-order Markov assumption

Classification Problem

Features:
Trump
's
says
he
Trump_'s
says_he
\ldots
base forms
say
...

Features:
he
'Il
directly
with
he_'ll
directly_with
...
base forms
will
...

The General Framework of Training and Testing

- Analogous to classification

Label and Feature Dependencies

- Current label may dependent on the previous one
- Fed in "The Fed" is a Noun because it follows a Determiner
- Fed in "I fed the.." is a Verb because it follows a Pronoun
- Sometimes more difficult: "I/PN can/MD can/VB a/DT can/NN."
- Two kinds of information incorporated in learning:
- Some tag sequences are more likely than others. For instance, DT JJ NN is quite common, while DT JJ VBP is unlikely. ("a new book")
- A word may have multiple possible POS, but some are more likely than others, e.g., "flour" is more often a noun than a verb
- The question is:
- Given a word sequence

$$
\mathbf{x}_{1: N} \doteq \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}
$$

how do we compute the most likely POS sequence

$$
y_{1: N} \doteq y_{1}, y_{2}, \ldots, y_{N}
$$

- One method is to use a Hidden Markov Model

Classifiers Feasible for Sequence Labeling

- Generative
- Naive Bayes
- Hidden Markov model (HMM)
- Discriminative models
- Maximum entropy, logistic regression
- Maximum Entropy Markov Model (MMEM)
- Conditional random field (CRF)

Naive Bayes

Logistic Regression

SEOUENCE

HMMs

Linear-chain CRFs

GENERAL GRAPHS
 GRAPHS

Generative directed models

General CRFs

Hidden Markov Model

- Discrete Markov Model
- States follow a Markov chain
- Each state is an observation
- Hidden Markov Model
- States follow a Markov chain
- States are not observed
- Each state stochastically emits an observation

A Toy Part-of-Speech Example

- Sentence "The Fed raises interest rates"

Model over States and Observations

- Given a word sequence $\mathbf{x}_{1: N}$, how do we compute the most likely POS sequence $y_{1: N}$? We denote:
- Number of states (types, labels) $=K$
- $N u m b e r$ of observations (features) $=d$
- $\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)^{\top}$: Initial probability over states (K dimensional vector)
- $\mathbf{A} \in \mathbb{R}^{K \times K}$: Transition probabilities
- $A_{i j}=P\left(y_{n}=j \mid y_{n-1}=i\right)$
- This is a first-order Markov assumption on the states
- $\boldsymbol{\Phi} \in \mathbb{R}^{K \times d}=\left(\phi_{1}, \ldots, \phi_{K}\right)^{\top}$: Emission probabilities
- For texts $\phi_{k}=\left(\phi_{k}^{(1)}, \ldots, \phi_{k}^{(d)}\right)^{\top}$ can be a multinomial distribution
- The parameters of an HMM are $\Theta=\{\boldsymbol{\pi}, \mathbf{A}, \boldsymbol{\Phi}\}$
- This is a generative model. We can run an HMM for N steps, and produce $x_{1: N}, y_{1: N}$
- The joint probability is

$$
P\left(\mathbf{x}_{1: N}, y_{1: N} \mid \Theta\right)=P\left(y_{1} \mid \boldsymbol{\pi}\right) P\left(\mathbf{x}_{1} \mid y_{1}, \boldsymbol{\Phi}\right) \prod_{n=1}^{N} P\left(y_{n} \mid y_{n-1}, \mathbf{A}\right) P\left(\mathbf{x}_{n} \mid y_{n}, \boldsymbol{\Phi}\right)
$$

Three Questions for HMMs (Rabiner (1990))

- Given an observation sequence, $\mathbf{x}_{1: N}$ and a model $\Theta=\{\boldsymbol{\pi}, \mathbf{A}, \boldsymbol{\Phi}\}$, how to efficiently calculate the probability of the observation $P\left(\mathbf{x}_{1: N} \mid \Theta\right)$?
- Given an observation sequence, $\mathbf{x}_{1: N}$ and a model $\Theta=\{\boldsymbol{\pi}, \mathbf{A}, \boldsymbol{\Phi}\}$, how to efficiently calculate the most probable state sequence $y_{1: N}$?
- How do we adjust the model parameters $\Theta=\{\boldsymbol{\pi}, \mathbf{A}, \boldsymbol{\Phi}\}$ to maximize $P\left(\mathrm{x}_{1: N} \mid \Theta\right)$?

Mapping to Our Problems

- Representation
- Hidden states follows first-order Markov chain
- Features are modeled with a multinomial emission distribution
- We can evaluate $P\left(\mathrm{x}_{1: N}, y_{1: N} \mid \Theta\right)$ of an observation sequence
- Learning
- Finding parameters $\Theta=\{\boldsymbol{\pi}, \mathbf{A}, \boldsymbol{\Phi}\}$
- Supervised case: trivial parameter estimation
- Unsupervised/semi-supervised case: EM algorithm (known as Baum-Welch algorithm)
- EM algorithm involves the so-called forward backward (or in general sum-product) algorithm
- Inference (or decoding problem)
- Assign a label to a sequence, corresponding to $\arg \max _{y_{1: N}}=P\left(y_{1: N} \mid x_{1: N}, \Theta\right)$
- Finding the most likely state sequence to explain the observation sequence
- It can be exactly solved by Viterbi algorithm (or in general max-product)
- We can also use greedy search or beam search to have approximate solutions

Overview

(1) Hidden Markov Models

- Representation
- Learning
- Inference

Learning: The Trivial Case

- We can find Θ by maximzing the likelihood of observed data
- When $y_{1: N}$ is observed ($\mathbf{x}_{1: N}$ is also observed), which is the supervised learning case, MLE boils down to the frequency estimate
- $A_{i j}$ is the fraction of times $y_{n-1}=i$ followed by $y_{n}=j$
- $\phi_{k}=P(\mathbf{x} \mid y=k)$ corresponds to the fraction of times \mathbf{x} is produced under state k
- π is the fraction of times each state being the first state of a sequence (assuming we have multiple training sequences)
- This is done very similar to naive Bayes classifier

Priors and Smoothing

- Maximum likelihood estimation works best with lots of annotated data
- Never the case
- Priors inject information about the probability distributions
- Dirichlet priors for multinomial distributions
- Effectively additive smoothing
- Add small constants to the count

Learning: $y_{1: N}$ is Unobserved

For unsupervised learning:

- The MLE will maximize (up to a local optimum, see below) the likelihood of observed data

$$
P\left(\mathbf{x}_{1: N} \mid \Theta\right)=\sum_{y_{1: N}} P\left(\mathbf{x}_{1: N}, y_{1: N} \mid \Theta\right)
$$

where the summation is over all possible label sequences of length N

- This is an exponential sum with K^{N} label sequences
- HMM training uses a combination of dynamic programming and EM to handle this issue

Lower Bound for EM Algorithm

- Note the log likelihood involves summing over hidden variables, which suggests we can apply Jensens inequality to lower bound

$$
\begin{aligned}
P\left(\mathbf{x}_{1: N} \mid \Theta\right) & =\log \sum_{y_{1: N}} P\left(\mathbf{x}_{1: N}, y_{1: N} \mid \Theta\right) \\
& =\log \sum_{y_{1: N}} P\left(y_{1: N} \mid \mathbf{x}_{1: N}, \Theta^{\text {old }}\right) \frac{P\left(\mathbf{x}_{1: N}, y_{1: N} \mid \Theta\right)}{P\left(y_{1: N} \mid \mathbf{x}_{1: N}, \Theta^{o l d}\right)} \\
& \geq \sum_{y_{1: N}} P\left(y_{1: N} \mid \mathbf{x}_{1: N}, \Theta^{\text {old }}\right) \log \frac{P\left(x_{1: N}, y_{1: N} \mid \Theta\right)}{P\left(y_{1: N} \mid \mathbf{x}_{1: N}, \Theta^{\text {old }}\right)}
\end{aligned}
$$

- In E-step, we find the posterior $P\left(y_{1: N} \mid \mathbf{x}_{1: N}, \Theta^{\text {old }}\right)$
- In M-step, we maximize the above lower bound (taking the parts that depends on)

$$
Q\left(\Theta, \Theta^{o l d}\right)=\sum_{y_{1: N}} P\left(y_{1: N} \mid \mathbf{x}_{1: N}, \Theta^{o l d}\right) \log P\left(\mathbf{x}_{1: N}, y_{1: N} \mid \Theta\right)
$$

EM Algorithm

$$
Q\left(\Theta, \Theta^{\text {old }}\right)=\sum_{y_{1: N}} P\left(y_{1: N} \mid \mathbf{x}_{1: N}, \Theta^{\text {old }}\right) \log P\left(\mathbf{x}_{1: N}, y_{1: N} \mid \Theta\right)
$$

- We introduce two sets of variables (E-Step):

$$
\begin{gathered}
\gamma_{n}(k)=P\left(y_{n}=k \mid \mathbf{x}_{1: N}, \Theta^{\text {old }}\right) \\
\xi_{n}(j k)=P\left(y_{n-1}=j, y_{n}=k \mid \mathbf{x}_{1: N}, \Theta^{\text {old }}\right)
\end{gathered}
$$

to denote the node marginals and edge marginals (conditioned on input $\mathbf{x}_{1: N}$, under the old parameters)

- Given

$$
P\left(\mathbf{x}_{1: N}, y_{1: N} \mid \Theta\right)=P\left(y_{1} \mid \boldsymbol{\pi}\right) P\left(\mathbf{x}_{1} \mid y_{1}, \boldsymbol{\Phi}\right) \prod_{n=2}^{N} P\left(y_{n} \mid y_{n-1}, \mathbf{A}\right) P\left(\mathbf{x}_{n} \mid y_{n}, \boldsymbol{\Phi}\right)
$$

- The Q function can be written as

$$
\begin{aligned}
Q\left(\Theta, \Theta^{\text {old }}\right) & =\sum_{k=1}^{K} \gamma_{1}(k) \log \pi_{k} \\
& +\sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{n}(k) \log P\left(\mathbf{x}_{n} \mid y_{n}, \phi_{k}\right) \\
& +\sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi_{n}(j k) \log A_{j k}
\end{aligned}
$$

M-step

- The M-step is a constrained optimization problem since the parameters need to be normalized. As before, one can introduce Lagrange multipliers and set the gradient of the Lagrangian to zero to arrive at

$$
\begin{gathered}
\pi_{k} \propto \gamma_{1}(k) \\
A_{j k} \propto \sum_{n=2}^{N} \xi_{n}(j k)
\end{gathered}
$$

where $A_{j k}$ is normalized over k

- ϕ_{k} is maximized depending on the particular form of the distribution. If it is multinomial, we have

$$
\phi_{k} \propto \sum_{n} \gamma_{n}(k) \mathbf{x}_{n}
$$

E-Step

In the E-step,

- We need to compute $\gamma_{n}(k)$ and $\xi_{n}(j k)$
- Particularly we have

$$
\begin{aligned}
\gamma_{n}(k) & =P\left(y_{n}=k \mid \mathbf{x}_{1: N}, \Theta^{o l d}\right) \\
& \doteq P\left(y_{n}=k \mid \mathbf{x}_{1: N}\right) \\
& =\frac{P\left(\mathbf{x}_{1: N} \mid y_{n}=k\right) P\left(y_{n}=k\right)}{P\left(x_{1}, N\right)} \\
& =\frac{P\left(\mathbf{x}_{1: n} \mid y_{n}=k\right) P\left(\mathbf{x}_{n+1: N} \mid y_{n}=k\right) P\left(y_{n}=k\right)}{P\left(\mathbf{x}_{1: N}\right)} \\
& =\frac{P\left(\mathbf{x}_{1: n}, y_{n}=k\right) P\left(x_{n+1} \mid y_{n}=k\right)}{P\left(x_{1}, N\right)} \\
& \doteq \frac{\alpha\left(y_{n}=k\right) \beta\left(y_{n}\right)}{P\left(\mathbf{x}_{1: N}\right)}
\end{aligned}
$$

- We use an recursive way to compute forward $\alpha\left(y_{n}\right)$ and backward $\beta\left(y_{n}\right)$
- This is consistent with the "sum-product" algorithm

Forward Recursion $\alpha\left(y_{n}\right)$

$$
\begin{aligned}
\alpha\left(y_{n}\right) & =P\left(\mathbf{x}_{1: n}, y_{n}\right) \\
& =P\left(y_{n}\right) P\left(\mathbf{x}_{n} \mid y_{n}\right) P\left(\mathbf{x}_{1: n-1} \mid y_{n}\right) \\
& =P\left(\mathbf{x}_{n} \mid y_{n}\right) P\left(\mathbf{x}_{1: n-1}, y_{n}\right) \\
& =P\left(\mathbf{x}_{n} \mid y_{n}\right) \sum_{y_{n-1}} P\left(\mathbf{x}_{1: n-1}, y_{n-1}, y_{n}\right) \\
& =P\left(\mathbf{x}_{n} \mid y_{n}\right) \sum_{y_{n-1}} P\left(\mathbf{x}_{1: n-1}, y_{n} \mid y_{n-1}\right) P\left(y_{n-1}\right) \\
& =P\left(\mathbf{x}_{n} \mid y_{n}\right) \sum_{y_{n-1}} P\left(\mathbf{x}_{1: n-1} \mid y_{n-1}\right) P\left(y_{n} \mid y_{n-1}\right) P\left(y_{n-1}\right) \\
& =P\left(\mathbf{x}_{n} \mid y_{n}\right) \sum_{y_{n-1}} P\left(\mathbf{x}_{1: n-1}, y_{n-1}\right) P\left(y_{n} \mid y_{n-1}\right) \\
& =P\left(\mathbf{x}_{n} \mid y_{n}\right) \sum_{y_{n-1}} \alpha\left(y_{n-1}\right) P\left(y_{n} \mid y_{n-1}\right)
\end{aligned}
$$

Backward Recursion $\beta\left(y_{n}\right)$

$$
\begin{aligned}
\beta\left(y_{n}\right) & =P\left(\mathbf{x}_{n+1}: N \mid y_{n}\right) \\
& =\sum_{y_{n+1}} P\left(\mathbf{x}_{n+1: N}, y_{n+1} \mid y_{n}\right) \\
& =\sum_{y_{n+1}} P\left(\mathbf{x}_{n+1: N} \mid y_{n+1}, y_{n}\right) P\left(y_{n+1} \mid y_{n}\right) \\
& =\sum_{y_{n+1}} P\left(\mathbf{x}_{n+1: N} \mid y_{n+1}\right) P\left(y_{n+1} \mid y_{n}\right) \\
& =\sum_{y_{n+1}} P\left(\mathbf{x}_{n+2: N} \mid y_{n+1}\right) P\left(\mathbf{x}_{n+1} \mid y_{n+1}\right) P\left(y_{n+1} \mid y_{n}\right) \\
& =\sum_{y_{n+1}} \beta\left(y_{n+1}\right) P\left(\mathbf{x}_{n+1} \mid y_{n+1}\right) P\left(y_{n+1} \mid y_{n}\right)
\end{aligned}
$$

E-Step (Cont'd)

- After computing forward recursion $\alpha\left(y_{n}\right)$ and backward recursion $\beta\left(y_{n}\right)$ we have

$$
\gamma_{n}(k)=\frac{\alpha\left(y_{n}=k\right) \beta\left(y_{n}=k\right)}{P\left(\mathbf{x}_{1: N}\right)}
$$

- Similarly, we have

$$
\xi_{n}(j k)=\frac{\alpha\left(y_{n-1}=j\right) P\left(y_{n}=k \mid y_{n-1}=j\right) P\left(\mathbf{x}_{n} \mid y_{n}=k\right) \beta\left(y_{n}=k\right)}{P\left(\mathbf{x}_{1: N}\right)}
$$

Overview

(1) Hidden Markov Models

- Representation
- Learning
- Inference

Most Likely State Sequence

- Input:
- A hidden Markov model $\Theta=\{\boldsymbol{\pi}, \mathbf{A}, \boldsymbol{\Phi}\}$
- An observation sequence $\mathbf{x}_{1: N}$
- Output: A state sequence $y_{1: N}$ that corresponds to

$$
\arg \max _{y_{1: N}} P\left(y_{1: N} \mid \mathbf{x}_{1: N}, \Theta\right)
$$

- This is maxinum a posteriori inference (MAP inference)
- Computationally a combinatorial optimization problem

MAP Inference

- We want arg $\max _{y_{1: N}} P\left(y_{1: N} \mid \mathbf{x}_{1: N}, \Theta\right)$
- Note that $P\left(y_{1: N} \mid \mathbf{x}_{1: N}, \Theta\right) \propto P\left(y_{1: N}, \mathbf{x}_{1: N} \mid \Theta\right)$
- And we don't care about $P\left(\mathbf{x}_{1: N}\right)$ since we are maximizing over $y_{1: N}$
- So

$$
\arg \max _{y_{1: N}} P\left(y_{1: N} \mid \mathbf{x}_{1: N}, \Theta\right)=\arg \max _{y_{1: N}} P\left(y_{1: N}, \mathbf{x}_{1: N} \mid \Theta\right)
$$

- We have defined

$$
P\left(\mathbf{x}_{1: N}, y_{1: N} \mid \Theta\right)=P\left(y_{1} \mid \boldsymbol{\pi}\right) P\left(\mathbf{x}_{1} \mid y_{1}, \boldsymbol{\Phi}\right) \prod_{n=2}^{N} P\left(y_{n} \mid y_{n-1}, \mathbf{A}\right) P\left(\mathbf{x}_{n} \mid y_{n}, \boldsymbol{\Phi}\right)
$$

- We omit the parameters for the ease of derivation

$$
P\left(\mathbf{x}_{1: N}, y_{1: N}\right)=P\left(y_{1}\right) P\left(\mathbf{x}_{1} \mid y_{1}\right) \prod_{n=2}^{N} P\left(y_{n} \mid y_{n-1}\right) P\left(\mathbf{x}_{n} \mid y_{n}\right)
$$

How Many Possible Sequences?

The	Fed	raises	interest	rates
Determiner	Verb	Verb	Verb	Verb
	Noun	Noun	Noun	Noun
1	2	2	2	2

- In this simple case, we have 16 candidate sequences

$$
(1 \times 2 \times 2 \times 2 \times 2)
$$

How Many Possible Sequences?

- Output: one state per observation $y_{n}=s_{k}$

Observations

X_{1}	X_{2}	\ldots	x_{n}
List of allowed states for each observation			
s_{1}	$\mathrm{~s}_{1}$	\ldots	$\mathrm{~s}_{1}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{2}$		$\mathrm{~s}_{2}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{2}$		$\mathrm{~s}_{3}$
\cdot	\cdot	\cdot	
\cdot	\cdot	\cdot	
$\mathrm{~s}_{\mathrm{K}}$	s_{K}		s_{K}

- We have K^{n} possible sequences to consider in $\arg \max _{y_{1: N}} P\left(y_{1: N}, \mathbf{x}_{1: N} \mid \Theta\right)$

Naive Approaches

- Try out every sequences
- Score the sequence $y_{1: N}$ using $P\left(y_{1: N}, \mathbf{x}_{1: N} \mid \Theta\right)$
- Return the highest scoring one
- Correct but slow $O\left(K^{N}\right)$
- Greedy search
- Construct the output left to right
- For each n, elect the best y_{n} using y_{n-1} and \mathbf{x}_{n}
- Incorrect but fast, $O(N K)$

Beam Search

- Beam inference
- At each position keep the top k complete sequences
- Extend each sequence in each local way
- The extensions compete for the k slots at the next position

(a) Greedy
(b) Beam Search
- Advantages
- Fast; beam sizes of 3-5 are almost as good as exact inference in many cases
- Easy to implement (no dynamic programming required)
- Disadvantage
- Inexact: the globally best sequence can fall off the beam

Optimal Solution: General Idea

- Dynamic programming
- The best solution for the full problem relies on the best solution to the sub-problem
- Memorize partial computation
- Examples
- Viterbi algorithm
- Dijkstra's shortest path algorithm
- MDP value iteration
- ...

Deriving the Recursion

$$
\max _{y_{1: N}} P\left(\mathbf{x}_{1: N}, y_{1: N}\right)=\max _{y_{1: N}} P\left(y_{1}\right) P\left(\mathbf{x}_{1} \mid y_{1}\right) \prod_{n=2}^{N} P\left(y_{n} \mid y_{n-1}\right) P\left(\mathbf{x}_{n} \mid y_{n}\right)
$$

We reorganize it as

$$
\max _{y_{1: N}} P\left(\mathbf{x}_{N} \mid y_{N}\right) P\left(y_{N} \mid y_{N-1}\right) \cdot \ldots \cdot P\left(\mathbf{x}_{2} \mid y_{2}\right) P\left(y_{2} \mid y_{1}\right) \cdot P\left(\mathbf{x}_{1} \mid y_{1}\right) P\left(y_{1}\right)
$$

Deriving the Recursion

$\max _{y_{1: N}} P\left(\mathbf{x}_{N} \mid y_{N}\right) P\left(y_{N} \mid y_{N-1}\right) \cdot \ldots \cdot P\left(\mathbf{x}_{2} \mid y_{2}\right) P\left(y_{2} \mid y_{1}\right) \cdot P\left(\mathbf{x}_{1} \mid y_{1}\right) P\left(y_{1}\right)$
$=\max _{y_{2: N}} P\left(\mathbf{x}_{N} \mid y_{N}\right) P\left(y_{N} \mid y_{N-1}\right) \cdot \ldots \cdot \max _{y_{1}} P\left(\mathbf{x}_{2} \mid y_{2}\right) P\left(y_{2} \mid y_{1}\right) \cdot P\left(\mathbf{x}_{1} \mid y_{1}\right) P\left(y_{1}\right)$
$=\max _{y_{2: N}} P\left(\mathbf{x}_{N} \mid y_{N}\right) P\left(y_{N} \mid y_{N-1}\right) \cdot \ldots \cdot \max _{y_{1}} P\left(\mathbf{x}_{2} \mid y_{2}\right) P\left(y_{2} \mid y_{1}\right) \cdot \operatorname{score}_{1}\left(y_{1}\right)$
$=\max _{y_{3: N}} P\left(\mathrm{x}_{N} \mid y_{N}\right) P\left(y_{N} \mid y_{N-1}\right) \cdot \ldots \cdot \max _{y_{2}} P\left(\mathrm{x}_{3} \mid y_{3}\right) P\left(y_{3} \mid y_{2}\right)$
$\cdot \max _{y_{1}} P\left(\mathrm{x}_{2} \mid \mathrm{y}_{2}\right) P\left(y_{2} \mid y_{1}\right) \cdot \operatorname{score}_{1}\left(y_{1}\right)$
$=\max _{y_{3: N}} P\left(\mathbf{x}_{N} \mid y_{N}\right) P\left(y_{N} \mid y_{N-1}\right) \cdot \ldots \cdot \max _{y_{2}} P\left(\mathbf{x}_{3} \mid y_{3}\right) P\left(y_{3} \mid y_{2}\right) \cdot \operatorname{score}_{2}\left(y_{2}\right)$
$=\quad \cdots$
$=\max _{y_{N}} \operatorname{score}_{N}\left(y_{N}\right)$
where we have $\operatorname{score}_{n}\left(y_{n}\right)=\max _{y_{n-1}} P\left(y_{n} \mid y_{n-1}\right) P\left(\mathbf{x}_{n} \mid y_{n}\right) \operatorname{score}_{n-1}\left(y_{n-1}\right)$

Complexity of Inference

- Complexity parameters
- Input sequence length: N
- Number of states: K
- Memory
- Storing the table: NK (scores for all states at each position)
- Runtime
- At each step, go over pairs of states
- $O\left(N K^{2}\right)$

Summary of Viterbi Inference

- Viterbi inference
- Dynamic programming or memoization
- Requires small window of state influence (e.g., past two states are relevant)
- Advantage
- Exact: the global best sequence is returned
- Disadvantage
- Harder to implement long-distance state-state interactions (but beam inference tends not to allow long-distance resurrection of sequences anyway)

Summary

- Predicting sequences
- As many output states as observations
- Markov assumption helps decompose the score
- Several algorithmic questions
- Most likely state
- Learning parameters: supervised, unsupervised (posterior, sum-product algorithm)
- Probability of an observation sequence: sum over all assignments of states; replace max with sum in Viterbi
- Inference: Viterbi (or max-product algorithm)
- Conditional Models and Local Classifiers
- Global models
- Conditional Random Fields
- Structured Perceptron for sequences

References

Rabiner, L. R. (1990). Readings in speech recognition. chapter A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, pages 267-296.

