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Course Topics

Representation: language models, word embeddings, topic models,
knowledge graphs

Learning: supervised learning,unsupervised learning, semi-supervised
learning, distant supervision, indirect supervision, sequence models, deep
learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms
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Overview

1 Hidden Markov Models
Representation
Learning
Inference
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Sequences

Sequences of states

Text is a sequence of words or even letters

If there are K unique states, the set of unique state sequences is
infinite

Our goal (for now): Define probability distributions over sequences

If x1, x2, . . . , xn is a sequence that has n tokens, we want to be able
to define P(x1, x2, . . . , xn)

We have seen a lot of models for this in language models
N-gram language model makes (n − 1)th-order Markov assumption
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Classification Problem
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The General Framework of Training and Testing

Analogous to classification
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Label and Feature Dependencies

Current label may dependent on the previous one
Fed in “The Fed” is a Noun because it follows a Determiner
Fed in “I fed the..” is a Verb because it follows a Pronoun

Sometimes more difficult: “I/PN can/MD can/VB a/DT can/NN.”
Two kinds of information incorporated in learning:

Some tag sequences are more likely than others. For instance, DT JJ
NN is quite common, while DT JJ VBP is unlikely. (“a new book”)
A word may have multiple possible POS, but some are more likely than
others, e.g., “flour” is more often a noun than a verb

The question is:
Given a word sequence

x1:N
.

= x1, x2, . . . , xN ,

how do we compute the most likely POS sequence

y1:N
.

= y1, y2, . . . , yN

One method is to use a Hidden Markov Model
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Classifiers Feasible for Sequence Labeling

Generative
Naive Bayes
Hidden Markov model (HMM)

Discriminative models
Maximum entropy, logistic regression
Maximum Entropy Markov Model (MMEM)
Conditional random field (CRF)
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Hidden Markov Model

Discrete Markov Model

States follow a Markov chain
Each state is an observation

Hidden Markov Model

States follow a Markov chain
States are not observed
Each state stochastically emits an observation
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A Toy Part-of-Speech Example

Sentence “The Fed raises interest rates”
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Joint Model over States and Observations

Given a word sequence x1:N , how do we compute the most likely POS
sequence y1:N? We denote:

Number of states (types, labels) = K
Number of observations (features) = d
π = (π1, . . . , πK )>: Initial probability over states (K dimensional
vector)
A ∈ RK×K : Transition probabilities

Aij = P(yn = j |yn−1 = i)
This is a first-order Markov assumption on the states

Φ ∈ RK×d = (φ1, . . . ,φK )>: Emission probabilities
For texts φk = (φ

(1)
k , . . . ,φ

(d)
k )> can be a multinomial distribution

The parameters of an HMM are Θ = {π,A,Φ}
This is a generative model. We can run an HMM for N steps, and
produce x1:N , y1:N

The joint probability is

P(x1:N , y1:N |Θ) = P(y1|π)P(x1|y1,Φ)
N∏

n=1

P(yn|yn−1,A)P(xn|yn,Φ)
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Three Questions for HMMs (Rabiner (1990))

Given an observation sequence, x1:N and a model Θ = {π,A,Φ}, how
to efficiently calculate the probability of the observation P(x1:N |Θ)?

Given an observation sequence, x1:N and a model Θ = {π,A,Φ},
how to efficiently calculate the most probable state sequence y1:N?

How do we adjust the model parameters Θ = {π,A,Φ} to maximize
P(x1:N |Θ)?
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Mapping to Our Problems

Representation
Hidden states follows first-order Markov chain
Features are modeled with a multinomial emission distribution
We can evaluate P(x1:N , y1:N |Θ) of an observation sequence

Learning
Finding parameters Θ = {π,A,Φ}
Supervised case: trivial parameter estimation
Unsupervised/semi-supervised case: EM algorithm (known as
Baum-Welch algorithm)

EM algorithm involves the so-called forward backward (or in general
sum-product) algorithm

Inference (or decoding problem)
Assign a label to a sequence, corresponding to
arg maxy1:N

= P(y1:N |x1:N ,Θ)
Finding the most likely state sequence to explain the observation
sequence

It can be exactly solved by Viterbi algorithm (or in general
max-product)
We can also use greedy search or beam search to have approximate
solutions
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Learning: The Trivial Case

We can find Θ by maximzing the likelihood of observed data

When y1:N is observed (x1:N is also observed), which is the supervised
learning case, MLE boils down to the frequency estimate

Aij is the fraction of times yn−1 = i followed by yn = j
φk = P(x|y = k) corresponds to the fraction of times x is produced
under state k
π is the fraction of times each state being the first state of a sequence
(assuming we have multiple training sequences)

This is done very similar to naive Bayes classifier
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Priors and Smoothing

Maximum likelihood estimation works best with lots of annotated
data

Never the case

Priors inject information about the probability distributions

Dirichlet priors for multinomial distributions

Effectively additive smoothing

Add small constants to the count
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Learning: y1:N is Unobserved

For unsupervised learning:

The MLE will maximize (up to a local optimum, see below) the
likelihood of observed data

P(x1:N |Θ) =
∑
y1:N

P(x1:N , y1:N |Θ)

where the summation is over all possible label sequences of length N

This is an exponential sum with KN label sequences
HMM training uses a combination of dynamic programming and EM to
handle this issue
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Lower Bound for EM Algorithm

Note the log likelihood involves summing over hidden variables, which
suggests we can apply Jensens inequality to lower bound

P(x1:N |Θ) = log
∑

y1:N
P(x1:N , y1:N |Θ)

= log
∑

y1:N
P(y1:N |x1:N ,Θ

old) P(x1:N ,y1:N |Θ)
P(y1:N |x1:N ,Θold )

≥
∑

y1:N
P(y1:N |x1:N ,Θ

old) log P(x1:N ,y1:N |Θ)
P(y1:N |x1:N ,Θold )

In E-step, we find the posterior P(y1:N |x1:N ,Θ
old)

In M-step, we maximize the above lower bound (taking the parts that
depends on)

Q(Θ,Θold) =
∑

y1:N
P(y1:N |x1:N ,Θ

old) logP(x1:N , y1:N |Θ)
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EM Algorithm

Q(Θ,Θold) =
∑

y1:N
P(y1:N |x1:N ,Θ

old) logP(x1:N , y1:N |Θ)

We introduce two sets of variables (E-Step):

γn(k) = P(yn = k |x1:N ,Θ
old)

ξn(jk) = P(yn−1 = j , yn = k|x1:N ,Θ
old)

to denote the node marginals and edge marginals (conditioned on
input x1:N , under the old parameters)
Given

P(x1:N , y1:N |Θ) = P(y1|π)P(x1|y1,Φ)
N∏

n=2

P(yn|yn−1,A)P(xn|yn,Φ)

The Q function can be written as

Q(Θ,Θold) =
∑K

k=1 γ1(k) log πk
+
∑N

n=1

∑K
k=1 γn(k) logP(xn|yn,φk)

+
∑N

n=2

∑K
j=1

∑K
k=1 ξn(jk) logAjk
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M-step

The M-step is a constrained optimization problem since the
parameters need to be normalized. As before, one can introduce
Lagrange multipliers and set the gradient of the Lagrangian to zero to
arrive at

πk ∝ γ1(k)

Ajk ∝
∑N

n=2 ξn(jk)

where Ajk is normalized over k

φk is maximized depending on the particular form of the distribution.
If it is multinomial, we have

φk ∝
∑

n γn(k)xn
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E-Step

In the E-step,

We need to compute γn(k) and ξn(jk)

Particularly we have

γn(k) = P(yn = k|x1:N ,Θ
old)

.
= P(yn = k |x1:N)

= P(x1:N |yn=k)P(yn=k)
P(x1:N)

= P(x1:n|yn=k)P(xn+1:N |yn=k)P(yn=k)
P(x1:N)

= P(x1:n,yn=k)P(xn+1:N |yn=k)
P(x1:N)

.
= α(yn=k)β(yn=k)

P(x1:N)

We use an recursive way to compute forward α(yn) and backward
β(yn)

This is consistent with the “sum-product” algorithm
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Forward Recursion α(yn)

α(yn) = P(x1:n, yn)
= P(yn)P(xn|yn)P(x1:n−1|yn)
= P(xn|yn)P(x1:n−1, yn)
= P(xn|yn)

∑
yn−1

P(x1:n−1, yn−1, yn)

= P(xn|yn)
∑

yn−1
P(x1:n−1, yn|yn−1)P(yn−1)

= P(xn|yn)
∑

yn−1
P(x1:n−1|yn−1)P(yn|yn−1)P(yn−1)

= P(xn|yn)
∑

yn−1
P(x1:n−1, yn−1)P(yn|yn−1)

= P(xn|yn)
∑

yn−1
α(yn−1)P(yn|yn−1)
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Backward Recursion β(yn)

β(yn) = P(xn+1:N |yn)
=

∑
yn+1

P(xn+1:N , yn+1|yn)

=
∑

yn+1
P(xn+1:N |yn+1, yn)P(yn+1|yn)

=
∑

yn+1
P(xn+1:N |yn+1)P(yn+1|yn)

=
∑

yn+1
P(xn+2:N |yn+1)P(xn+1|yn+1)P(yn+1|yn)

=
∑

yn+1
β(yn+1)P(xn+1|yn+1)P(yn+1|yn)
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E-Step (Cont’d)

After computing forward recursion α(yn) and backward recursion
β(yn) we have

γn(k) =
α(yn = k)β(yn = k)

P(x1:N)

Similarly, we have

ξn(jk) =
α(yn−1 = j)P(yn = k|yn−1 = j)P(xn|yn = k)β(yn = k)

P(x1:N)
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Most Likely State Sequence

Input:

A hidden Markov model Θ = {π,A,Φ}
An observation sequence x1:N

Output: A state sequence y1:N that corresponds to

arg max
y1:N

P(y1:N |x1:N ,Θ)

This is maxinum a posteriori inference (MAP inference)

Computationally a combinatorial optimization problem
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MAP Inference

We want arg maxy1:N
P(y1:N |x1:N ,Θ)

Note that P(y1:N |x1:N ,Θ) ∝ P(y1:N , x1:N |Θ)

And we don’t care about P(x1:N) since we are maximizing over y1:N

So
arg max

y1:N

P(y1:N |x1:N ,Θ) = arg max
y1:N

P(y1:N , x1:N |Θ)

We have defined

P(x1:N , y1:N |Θ) = P(y1|π)P(x1|y1,Φ)
N∏

n=2

P(yn|yn−1,A)P(xn|yn,Φ)

We omit the parameters for the ease of derivation

P(x1:N , y1:N) = P(y1)P(x1|y1)
N∏

n=2

P(yn|yn−1)P(xn|yn)
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How Many Possible Sequences?

In this simple case, we have 16 candidate sequences

(1× 2× 2× 2× 2)
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How Many Possible Sequences?

Output: one state per observation yn = sk

We have Kn possible sequences to consider in
arg maxy1:N

P(y1:N , x1:N |Θ)
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Naive Approaches

Try out every sequences

Score the sequence y1:N using P(y1:N , x1:N |Θ)
Return the highest scoring one
Correct but slow O(KN)

Greedy search

Construct the output left to right
For each n, elect the best yn using yn−1 and xn
Incorrect but fast, O(NK )
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Beam Search

Beam inference
At each position keep the top k complete sequences
Extend each sequence in each local way
The extensions compete for the k slots at the next position

(a) Greedy (b) Beam Search

Advantages
Fast; beam sizes of 3-5 are almost as good as exact inference in many
cases
Easy to implement (no dynamic programming required)

Disadvantage
Inexact: the globally best sequence can fall off the beam
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Optimal Solution: General Idea

Dynamic programming

The best solution for the full problem relies on the best solution to the
sub-problem
Memorize partial computation

Examples

Viterbi algorithm
Dijkstra’s shortest path algorithm
MDP value iteration
...
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Deriving the Recursion

max
y1:N

P(x1:N , y1:N) = max
y1:N

P(y1)P(x1|y1)
N∏

n=2

P(yn|yn−1)P(xn|yn)

We reorganize it as

maxy1:N
P(xN |yN)P(yN |yN−1) · . . . · P(x2|y2)P(y2|y1) · P(x1|y1)P(y1)
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Deriving the Recursion

maxy1:N
P(xN |yN)P(yN |yN−1) · . . . · P(x2|y2)P(y2|y1) · P(x1|y1)P(y1)

= maxy2:N
P(xN |yN)P(yN |yN−1) · . . . ·maxy1 P(x2|y2)P(y2|y1) · P(x1|y1)P(y1)

= maxy2:N
P(xN |yN)P(yN |yN−1) · . . . ·maxy1 P(x2|y2)P(y2|y1) · score1(y1)

= maxy3:N
P(xN |yN)P(yN |yN−1) · . . . ·maxy2 P(x3|y3)P(y3|y2)

·maxy1 P(x2|y2)P(y2|y1) · score1(y1)
= maxy3:N

P(xN |yN)P(yN |yN−1) · . . . ·maxy2 P(x3|y3)P(y3|y2) · score2(y2)
= . . .
= maxyN scoreN(yN)

where we have scoren(yn) = maxyn−1 P(yn|yn−1)P(xn|yn)scoren−1(yn−1)
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Complexity of Inference

Complexity parameters

Input sequence length: N
Number of states: K

Memory

Storing the table: NK (scores for all states at each position)

Runtime

At each step, go over pairs of states
O(NK 2)
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Summary of Viterbi Inference

Viterbi inference

Dynamic programming or memoization
Requires small window of state influence (e.g., past two states are
relevant)

Advantage

Exact: the global best sequence is returned

Disadvantage

Harder to implement long-distance state-state interactions (but beam
inference tends not to allow long-distance resurrection of sequences
anyway)
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Summary

Predicting sequences

As many output states as observations

Markov assumption helps decompose the score

Several algorithmic questions

Most likely state
Learning parameters: supervised, unsupervised (posterior, sum-product
algorithm)
Probability of an observation sequence: sum over all assignments of
states; replace max with sum in Viterbi
Inference: Viterbi (or max-product algorithm)
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Next...

Conditional Models and Local Classifiers

Global models

Conditional Random Fields
Structured Perceptron for sequences
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