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Course Organization

Representation: language models, word embeddings, topic models,
knowledge graphs

Learning: supervised learning,unsupervised learning, semi-supervised
learning, distant supervision, indirect supervision, sequence models, deep
learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms
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Bayesian Inference

Suppose we have a Basysian learning problem
P(Θ|X ) ∝ P(X |Θ)P(Θ) (X = {x1, . . . ,N})
If we want to predict for a new coming data x

Maximum a posterior (MAP) makes a point estimation
Θ∗ = maxΘ P(Θ|X ), and makes a prediction as P(x |Θ∗)
Full Bayesian uses P(x |X ) =

∫
Θ P(x |Θ)P(Θ|X )dΘ

In general, we have a lot of following cases need to be estimated:

EP(x)[φ(x)] =

∫
x
φ(x)P(x)dx

One way to solve this (especially when P(x) is difficult to compute) is
using sampling:

ÊP(x)[φ(x)] =
1

R

R∑
x(r)∼P(x)

φ(x(r))
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Sampling

Φ = EP(x)[φ(x)] =

∫
x
φ(x)P(x)dx

We call P(x) the target density
We assume x is a Rd vector with real/discrete components xi

We concentrate on the sampling problem, because if we have solved
it, then we can solve the expectation problem by

Φ̂ = ÊP(x)[φ(x)] =
1

R

R∑
x(r)∼P(x)

φ(x(r))

The expectation of Φ̂ is Φ
The variance of Φ̂ will decrease as σ2

R where σ2 is the variance of Φ:

σ2 =

∫
x
[φ(x)− Φ]2P(x)dx

which means the accuracy of the sampling is independent of the
dimensionality of the space sampled

A few as a dozen independent samples x(r) suffice of estimate Φ
satisfactorily
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However, why is sampling from P(x) hard?

We assume that the density from which we wish to draw samples
P(x) can be evaluated, at least to with a multiplicative constant:

P(x) = P∗(x)/Z

If we can evaluate P∗(x), why can we not easily obtain Φ?

We do not know the normalizing constant

Z =

∫
x

dxP∗(x)

Even if we know Z , drawing samples from P(x) is still challenging,
especially in high-dimensional spaces
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Recall: Generative View of Text Documents
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Generating Text from Language Models

Example
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Recall: Computer Simulation

Sample from a discrete distribution P(X ), assuming n outcomes in the
event space X

Algorithm 1 Sample from a distribution P(X )

1: for t = 1 to T do
2: Divide the interval [0, 1] into n intervals according to the probabilities

of the outcomes
3: Generate a random number r between 0 and 1
4: Return xi where r falls into [

∑i−1
0 pi ,

∑i
0 pi ]

5: end for
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Uniform Sampling

Having agreed that we cannot visit every location in the space, we
might consider trying to solve sampling by uniform sampling:

Sample x(r) uniformly and evaluate P∗(x(r)) to give

ZR =
R∑

r=1

P∗(x(r))

and estimate Φ = EP(x)[φ(x)] =
∫
x φ(x)P(x)dx by

Φ̂ =
R∑

r=1

φ(x(r))
P∗(x(r))

ZR

Is there anything wrong with this strategy?
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Is there anything wrong with this strategy?

Let’s assume φ(x) is a benign, smoothly varying function, and
concentrated on the nature of P∗(x)

A high dimensional distribution is often concentrated in a small region
of the state space known as its typical set T

whose volume is given by |T | ' 2H(X)

H(X) is the entropy of the probability distribution
H(X) =

∑
x P(x) log2

1
P(x)

Φ =
∫
x φ(x)P(x)dx will be principally determined by values in typical

set

If we have d random variables with binary values, the total size of
state space is 2d and the typical set size is 2H

Each sample has a chance 2H/2d of falling into typical set
We need Rmin ' O(2d−H) samples
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One Dimensional Sampling Example

Consider P∗ = exp{0.4(x − 0.4)2 − 0.08x4}, x ∈ (−∞,∞)

To give a simpler problem, we can discretize the variable x and ask for
samples from the discrete prob.

There are 50 uniformly spaced points in one dimension
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The Cost of Computing Z

To compute Z , we have to visit every point in the space

If we evaluate p∗i = P∗(xi ) at each point xi , we can compute
Z =

∑
i p
∗
i and pi = p∗i /Z

If our system had d = 1000 dimensions of binary variables

Then the corresponding number of points would be 21000
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Importance Sampling

Importance sampling is not a method for generating samples from
P(x)

It is just a method for estimating the expectations of a function φ(x)

Let’s imagine the target distribution is a one-dimensional density P(x)

P(x) =
P∗(x)

Z

but P(x) is too complicated to sample from directly

We assume Q(x) = Q∗(x)
ZQ

is a simpler density from which we can
generate samples

In importance sampling, we generate R samples {x (r)}Rr=1 from Q(x)

Then Φ can be estimated by

Φ̂ =

∑
r wrφ(x (r))∑

r wr

where wr = P∗(x(r))

Q∗(x(r))
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Importance Sampling: A Toy Example

Φ can be estimated by

Φ̂ =

∑
r wrφ(x (r))∑

r wr

where wr = P∗(x(r))

Q∗(x(r))
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Importance Sampling: A Toy Example
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Importance Sampling in Many Dimensions

Importance sampling suffers from two difficulties

We clearly need to obtain samples that lie in the typical set
Even if we obtain samples in the typical set, the weights associated
with theose samples are likely to vary by large factors
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Rejection Sampling

We again assume one dimensional complicated density P(x) = P∗(x)
Z

We assume a simpler proposal density Q(x) which we can evaluate
and can generate samples from

We further assume for all x , cQ∗(x) > P∗(x)
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Rejection Sampling

We first generate x from Q(x)

We evaluate cQ∗(x) and generate a uniformly distributed variable
from the interval [0, cQ∗(x)]
We then evaluate P∗(x) and accept or reject the sample x by
comparing u with P∗(x)

If u > P∗(x) then x is rejected
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Rejection Sampling

Reject sampling will work best when Q is a good proximation of P

c grows exponentially with the dimensionality N (MacKay (1998))

While it is a useful method for one-dimensional problems, it is not a
practical technique for high-dimensional distributions P(x)
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Motivation

Importance sampling and rejection sampling only work well if the
proposal density Q(x) is similar to P(x)

In large and complex problems, it is difficult to create a single density
Q(x) that has this property

The Metropolis algorithm makes use of a proposal density Q(x ′, x (t))
which depends on the current state x (t)

It is not necessarily for Q(x ′, x (t)) to look at all similar to P(x)
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Metropolis Method

We again assume that we can evaluate P∗(x) for any x

A tentative new x ′ is generated from the proposal density Q(x ′|x (t))

To decide whether to accept the new state, we compute the quantity:

a =
P∗(x ′)Q(x (t)|x ′)
P∗(x (t))Q(x ′|x (t))

If a ≥ 1, then accept the new x ′

Otherwise, the new state is accepted with probability a

If the state is accepted, we set x (t+1) = x ′

If the state is rejected, we set x (t+1) = x (t)

This is different from rejection sampling: in Metropolis method, a
rejection causes the current state sent to the generated list another
time

The samples in a Metropolis simulation of T iterations are correlated
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Variants

a =
P∗(x ′)Q(x (t)|x ′)
P∗(x (t))Q(x ′|x (t))

Steps that are accepted are shown as
green lines, and rejected steps are
shown in red.

When Q(x (t), x ′) = Q(x ′, x (t)), it is called Metropolis algorithm
(Metropolis et al., 1953)

When Q(x (t), x ′) 6= Q(x ′, x (t)), it is know as Metropolis-Hastings
algorithm (Hastings, 1970)

Metropolis methods are know as Markov chain Monte Carlo methods
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Markov Chains

A first order Markov chain is defined to be a series of random
variables x (1), . . . , x (M) such that the following conditional
independence property holds

P(x (t+1)|x (1), . . . , x (t)) = P(x (t+1)|x (t))

where we define the transition probability
T (x (t), x (t+1)) = P(x (t+1)|x (t))

A Markov chain is called homogeneous if the transition probabilities are
the same for all t

The marginal probability for a particular variable can be expressed in
terms of the marginal probability for the previous variable in the chain
in the form

P(x (t+1)) =
∑
x(t)

P(x (t+1)|x (t))P(x (t))
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Markov Chains (Cont’d)

A distribution is said to be invariant, or stationary, with respect to a
Markov chain if each step in the chain leaves that distribution
invariant

For a homogeneous Markov chain P(z) is invariant if

P(x) =
∑
x ′

T (x ′, x)P(x ′)

A sufficient (but not necessary) condition for ensuring that the
required distribution P(x) is invariant is to choose the transition
probabilities to satisfy the property of detailed balance, defined by

P(x)T (x , x ′) = P(x ′)T (x ′, x)

It is easy to verify that∑
x ′

T (x ′, x)P(x ′) =
∑
x ′

P(x)T (x , x ′) = P(x)
∑
x ′

T (x , x ′) = P(x)
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Metropolis methods are know as Markov chain Monte
Carlo methods

From the probability to accept a new state:

a(x , x (t)) = min

(
1,

P∗(x ′)Q(x (t)|x ′)
P∗(x (t))Q(x ′|x (t))

)

We have the joint probability of two consecutive states as

P∗(x (t)) · Q(x ′|x (t))a(x , x (t))

= min(P∗(x (t))Q(x ′|x (t)),P∗(x ′)Q(x (t)|x ′))

= min(P∗(x ′)Q(x (t)|x ′),P∗(x (t))Q(x ′|x (t)))

= P∗(x ′) · Q(x (t)|x ′)a(x (t), x ′)

as required

Metropolis method actually samples from the required distribution
P(x)
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Sampling Effects

The specific choice of proposal distribution can have a marked effect
on the performance of the algorithm

The scale ρ of the proposal distribution should be on the order of the
smallest standard deviation σmin

The iteration T should be at least (σmax/σmin)2 to obtain
approximately independent samples
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Simulation of Sampling

P(x) =

{
1

21 x ∈ {0, 1, . . . , 20}
0 otherwise

Q(x ′|x) =

{
1
2 x ′ = x ± 1
0 otherwise

Rejection will occur only when
the proposal takes the state
x ′ = −1 or x ′ = 21

It takes ≈ T 2 = 100 (178)
iterations to reach 0 or 20

It takes ≈ 400 (540) iterations
to reach both 0 and 20
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Gibbs Sampling

In the general case of a system with K variables, a single iteration
involves sampling one parameter at a time:

x
(t+1)
1 ∼ P(x1|x (t)

2 , x
(t)
3 , . . . , x

(t)
K )

x
(t+1)
2 ∼ P(x2|x (t+1)

1 , x
(t)
3 , . . . , x

(t)
K )

x
(t+1)
3 ∼ P(x3|x (t+1)

1 , x
(t+1)
2 , . . . , x

(t)
K )

...
x

(t+1)
K ∼ P(xK |x (t+1)

1 , x
(t+1)
2 , . . . , x

(t+1)
K−1 )

Denote x
(t)
\k = {x (t+1)

1 , x
(t+1)
2 , . . . , x

(t+1)
k−1 , x

(t)
k+1, . . . , x

(t)
K }

Gibbs sampling can be viewed as a Metropolis method

aG = P∗(x′)Q(x(t)|x ′)
P∗(x(t))Q(x′|x(t))

=
P(x′)P(x

(t)
k |x

′
\k )

P(x(t))P(x ′k |x
(t)
\k )

=
P(x ′k |x

′
\k )P(x′\k )P(x

(t)
k |x

′
\k )

P(x
(t)
k |x

(t)
\k )P(x

(t)
\k )P(x ′k |x

(t)
\k )

x′\k=x
(t)
\k

=
P(x ′k |x

′
\k )P(x′\k )P(x

(t)
k |x

′
\k )

P(x
(t)
k |x

′
\k )P(x′\k )P(x ′k |x

′
\k )

= 1

The samples are always accepted
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Example of Gibbs Sampling
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