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Course Organization

Representation: language models, word embeddings, topic models,
knowledge graphs

Learning: supervised learning,unsupervised learning, semi-supervised
learning, distant supervision, indirect supervision, sequence models, deep
learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms
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Overview

1 Language Models: Recap

2 Topic Models

3 Probabilistic Latent Semantic Analysis (PLSA)

4 Latent Dirichlet Allocation (LDA)
Motivation: Bayesian Modeling
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Paragraphs of Text

A language model is a probability distribution over V†

Typically P decomposes into probabilities P(xi |hi )
We considered n-gram, log-linear, and neural language models, etc.
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Three Kinds of Cotext

If we consider a word token at a particular position i in text to be the
observed value of a random variable Xi , what other random variables are
predictive of/related to Xi?

The words that occur within a small “window” around i (e.g.,
xi−2, xi−1, xi+1, xi+2, or maybe the sentence containing i) →
distributional semantics

The document containing i (a moderate-to-large collection of other
words) → topic models

A sentence known to be a translation of the one containing i →
translation models
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Topic Models

Words are not independent and identically distributed (i.i.d.)!

Predictable given history: n-gram/Markov models
Predictable given other words in the document: topic models

Let Z = {1, . . . , k} be a set of “topics” or “themes” that will help us
capture the interdependence of words in a document

Usually these are not named or characterized in advance; they are just
k different values with no a priori meaning
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The Term-Document Matrix

Let A ∈ RV×M contain statistics of association between words in V
and M documents. N is the total number of word tokens.
Comparison of contexts

Local context (Let’s try to keep the kitchen clean.)

Document-level context ([A]v ,d = cxd (v))
d1: “yes, we have no bananas”
d2: “say yes for bananas”
d3: “no bananas , we say”
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Topic Models: Latent Semantic Indexing/Analysis
(Deerwester et al. (1990))

LSI/A seeks to solve:

A
V ×M
≈ V

V × d
× diag(s)

d × d

× C
d ×M

>

where V contains embeddings of words and C contains embeddings of
documents

This can be solved by applying singular value decomposition to A
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LSI/A Example

d = 2: Words and documents in two dimensions.

Note how “no”, “we”, and “,” are all in the exact same spot. Why?
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Understanding LSI/A

Mapping words and documents into the same d-dimensional space.

Bag of words assumption (Salton et al. (1975)): a document is
nothing more than the distribution of words it contains.

Distributional hypothesis (Harris (1954); Firth (1957)): words are
nothing more than the distribution of contexts (here, documents) they
occur in. Words that occur in similar contexts have similar meanings.

A is sparse and noisy; LSI/A “fills in” the zeroes and tries to
eliminate the noise.
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Probabilistic Topic Models

LSI/A: assumes the elements of A are the result of Gaussian noise.

Probabilistic Latent Semantic Analysis (PLSA) (Hofmann (1999))
model the probability distribution p(xd |d)

This is a particular kind of conditional language model

Latent Dirichlet Allocation (Blei et al. (2003))

Introduce Bayesian inference to PLSA
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Document as a Sample of Mixed Topics
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Mixture Models

Recall naive Bayes based mixture models for a document collection by
K topics (classes)

Each topic is a multinomial over words, and each document is
generated from a single topic

Naive Bayes from Class Conditional Unigram Model

For m = 1, . . . ,M

Choose ym ∼ Multinomial(ym|1,π)

Choose Nm =
∑d

j x
j
m ∼ Poisson(ξ)

For n = 1, . . . ,Nm

Choose v ∼ Multinomial(v |1,θ∗|ym ) =∏d
j=1(θj∗|ym )v=j

It assumes “one document, one topic.”
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Probabilistic Latent Semantic Analysis (PLSA)

PLSA assumes that each document d (with word vector w) is
generated from all topics, with documentspecific topic weights.

Choose a zm,i = k from topic distribution π

Choose a document from
dm ∼ Multinomial(dm|1,θk)

Choose a word wi from
wi ∼ Multinomial(wi |1,φk)

Add one count of word wi to document dm

Repeat until we generate the document-word
matrix

Under this process, the probability of picking the corpus is:

P(D,W) =
∏M

m=1

∏Nm
i=1

∑K
k=1 P(zm,i = k)P(dm|θk)P(wi |φk)

=
∏M

m=1

∏V
i=1

(∑K
k=1 P(zm,i = k)P(dm|θk)P(wi |φk)

)cdm (wi )
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A Matrix Factorization View

P(D,W) =
∏M

m=1

∏Nm
i=1

∑K
k=1 P(zm,i = k)P(dm|θk)P(wi |φk)

=
∏M

m=1

∏V
i=1

(∑K
k=1 P(zm,i = k)P(dm|θk)P(wi |φk)

)cdm (wi )
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Maximize Log Likelihood

Log likelihood:

P(D,W) =
∏M

m=1

∏V
i=1

(∑K
k=1 P(zm,i = k)P(dm|θk)P(wi |φk)

)cdm (wi )

To reduce the notation complexity, we denote:

logP(D,W) =
∑M

d=1

∑V
w=1 cd(w) log

(∑K
k=1 P(z)P(d |z)P(w |z)

)
We denote the parameters as
Θ = {π,φk ,θk , k = 1, . . . ,K} = {P(z),P(d |z),P(w |z)}
Note here z is a hidden variable, and note that the sum is inside the
log

We can apply EM algorithm to maximize the likelihood

Yangqiu Song (HKUST) COMP5222/MATH5471 October 23, 2019 19 / 50



Lower Bound and E-Step

Remember Jensens inequality

log
∑
i

Pi fi (x) ≥
∑
i

Pi log fi (x)

We first compute the lower bound of the log likelihood:

logP(D,W)

=
∑M

d=1

∑V
w=1 cd(w) log

(∑K
k=1 P(z)P(d |z)P(w |z)

)
=

∑M
d=1

∑V
w=1 cd(w) log

(∑K
k=1 qz,d ,w (Θ)P(z)P(d |z)P(w |z)

qz,d,w (Θ)

)
≥

∑M
d=1

∑V
w=1 cd(w)

∑K
k=1 qz,d ,w (Θ)

(
log P(z)P(d |z)P(w |z)

qz,d,w (Θ)

)
Note Jensen’s inequality involves computing
qz,d ,w (Θ) = P(z |d ,w ,Θt), which computes the probability of topics
separately for each cell, under the current parameters Θt

This is exactly the E-step:

P(z |d ,w ,Θt) ∝ P(z |Θt)P(d |z ,Θt)P(w |z ,Θt)
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M-Step

logP(D,W)

=
∑M

d=1

∑V
w=1 cd(w) log

(∑K
k=1 P(z)P(d |z)P(w |z)

)
=

∑M
d=1

∑V
w=1 cd(w) log

(∑K
k=1 P(z |d ,w ,Θt)P(z)P(d |z)P(w |z)

P(z|d ,w ,Θt)

)
=

∑M
d=1

∑V
w=1 cd(w)

∑K
k=1 P(z |d ,w ,Θt)

(
log P(z)P(d |z)P(w |z)

P(z|d ,w ,Θt)

)
Maximizing the right of the above inequality by setting the gradient
to zero amounts to the M-step, which gives

P(z) ∝
∑

d

∑
w cd(w)P(z |d ,w ,Θt)

P(d |z) ∝
∑

w cd(w)P(z |d ,w ,Θt)
P(w |z) ∝

∑
d cd(w)P(z |d ,w ,Θt)
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Use of PLSA

Once the model is trained, we can look at it in the following way
P(w |z) are the topics. Each topic is defined by a word multinomial.
Often people find that the topics seem to have distinct semantic
meanings.
From P(d |z) and P(z), we can compute P(z |d) ∝ p(d |z)p(z). P(z |d)
is the topic wights for document d .

One drawback of PLSA is that it is transductive in nature. That is,
there is no easy way to handle a new document that is not already in
the collection

This motivates us to introduce a Bayesian modeling of topic models
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Illustration of EM
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Illustration of EM
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Illustration of EM
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Illustration of EM
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Illustration of EM
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Illustration of EM
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Use of Topic Models
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Example of topics found from a Science Magazine papers
collection
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Remarks

A document is now characterized as a mixture of corpus-universal
topics (each of which is a unigram model).

Topic mixtures can be incorporated into language models; see Iyer
and Ostendorf (1999), for example.

Compared to LSI/A: PLSA is more interpretable (e.g., LSI/A can give
negative values!).

PLSA cannot assign probability to a text not in W; it only defines
conditional distributions over words given texts in W.

The next model overcomes this problem by adding another level of
randomness: P(z |d) becomes a random variable, not a parameter.
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Recall Unigram Language Modeling

Data corpus: a collection of words, W = {w1,w2, . . . ,wN}
Model: multinomial distribution P(W|θ) with parameters
θ = (θ1, . . . , θV ), where

θi = P(vi )
vi ∈ V
V is the vocabulary
|V| = V

Count of words in corpus u = (u1, . . . , uV ) where ui = c(vi ) is the
count of vi shown in W,

∑
i ui = N
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Unigram Modeling

“Bag of words” assumes the words are sampled from a multinomial
distribution u ∼ Multi(θ)

P(u|θ) =

(
N
u

) V∏
i=1

θuii , Mult(u|θ,N),where

(
N
u

)
=

N!∏
i ui !

If we focus on a single trial, we have:

P(w |θ) = P(w = vi ) =
V∏
i=1

θ
δw=vi
i , Mult(w |θ)

Maximum likelihood estimator: θ̂ = arg maxθ P(W|θ)

P(W|θ) =
N∏
j=1

P(wj |θ) =
V∏
i=1

P(vi )
ui =

V∏
i=1

θui
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Maximum Likelihood Estimation: θ̂ = argmaxθ P(W|θ)

P(W|θ) =
∏V

i θ
ui
i

(log likelihood)

⇒ logP(W|θ) =
∑V

i ui log θi

(Lagrange multiplier to make θ be a distribution)

⇒ L(W,θ) = logP(W|θ) =
∑V

i ui log θi + λ(
∑

i θi − 1)

(Set partial derivatives to zero)

⇒ ∂L
∂θi

= ui
θi

+ λ

Since
∑V

i θi = 1, we have λ = −
∑V

i ui

⇒ θi =
ui∑V
i ui

=
ui
N

(Maximum Likelihood Estimation ,MLE )
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Generalization: Add-K smoothing

Problem: Add-one moves too much probability mass from seen to unseen
events!

Variant of Add-One smoothing

Add a constant k to the counts of each word
For any k > 0 (typically, k < 1), a unigram model is

⇒ θi =
ui + k∑V
i ui + kV

=
ui + k

N + kV

If k = 1

“Add one” Laplace smoothing

This is still too simplistic to work well.

Any explanation?
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Bayesian Interpretation

Conjugate distribution

Adding a conjugate prior to a likelihood will result in a posterior in the
same distribution family as the prior, then the prior and the likelihood
are called conjugate distributions
Conjugate distribution makes us easier to formulate Bayesian belief and
inference the model
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Bayesian Interpretation

The conjugate prior of a multinomial is Dirichlet distribution:

P(θ|α) = Dir(θ|α) , Γ(
∑V

i=1 αi )∏V
i=1 Γ(αi )

∏V
i=1 θ

αi−1
i , 1

∆(α)

∏V
i=1 θ

αi−1
i

The “Dirichlet Delta function” ∆(α) is introduced for convenience
α = (α1, α2, . . . , αV )> ∈ RV

The Gamma function satisfies Γ(x + 1) = xΓ(x)

For integer variable, Gamma function is Γ(x) = (x − 1)!
For real numbers, it is Γ(x) =

∫∞
0

tx−1e−tdt

The Dirichlet distribution can be seen as the “distribution of a
distribution”

We can sample a multinomial distribution from Dirichlet distribution,
satisfied the constraint

∑
i θi = 1
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Beta Distribution

Called Beta distribution when there are two choices of variable values
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Bayesian Interpretation

The Dirichlet distribution can be seen as the “distribution of a
distribution”

We can sample a multinomial distribution from Dirichlet distribution,
satisfied the constraint

∑
i θi = 1
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Bayesian Estimation

Remember Maximum likelihood estimator: θ̂ = arg maxθ P(W|θ)

P(W|θ) =
N∏
j=1

P(wj |θ) =
V∏
i=1

P(vi )
ui =

V∏
i=1

θui (θi =
ui∑V
i ui

=
ui
N

)

The posterior of the parameters θ based on the prior and the
observation of N words:

P(θ|W,α) = P(W|θ)P(θ|α)
P(W|α) =

∏N
i=1 P(wi |θ)P(θ|α)∫

θ
∏N

i=1 P(wi |θ)P(θ|α)dθ

=
∏N

i=1 P(wi |θ)P(θ|α)
Z

= 1
Z

∏V
i=1 θ

ui
i

1
∆(α)

∏V
i=1 θ

αi−1
i

= 1
∆(α+u)

∏V
i=1 θ

αi+ui−1
i = Dir(θ|α + u)

According to the property of Dirichlet distribution, the posterior is
with mean θi = ui+αi∑V

i ui+Vαi
and mode θi = ui+αi−1∑V

i ui+V (αi−1)
(MAP,

maximum a posterior estimation, estimation), and αi = 1 equals to
MLE
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Graphical Representation of Two Versions

Figure: Unigram Language Model

P(W|θ) =
∏N

j=1 P(wj |θ)
Figure: Bayesian Esitmation

P(θ|W,α) = P(W|θ)P(θ|α)
P(W|α)
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Alternative Way for PLSA to Generate Texts

P(D,W) =
∏M

m=1

∏Nm
i=1

∑K
k=1 P(zm,i = k)P(dm|θk)P(wi |φk)

=
∏M

m=1

∏V
i=1

(∑K
k=1 P(zm,i = k)P(dm|θk)P(wi |φk)

)cdm (wi )

P(D,W) =
∏M

m=1

∏V
i=1 P(dm)

(∑K
k=1 P(zm,i = k |θm)P(wi |φk)

)cdm (wi )
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Comparison of Mixture Models and PLSA

P(D,W) =
∏M

m=1

∏V
i=1 P(dm)

(∑K
k=1 P(zm,i = k |θm)P(wi |φk)

)cdm (wi )
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Comparison of Mixture Models and PLSA

Figure: Mixture Models (with notation
change) Figure: PLSA
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Bayesian Modeling: Language Models

Figure: Unigram Language Model

Figure: Bayesian Esitmation
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Bayesian Modeling: Mixture Models

Figure: Unigram Language Model

Figure: Bayesian Esitmation
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Bayesian Modeling: Topic Models

Figure: PLSA

Figure: LDA
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Generative Process of Latent Dirichlet Allocation

Figure: LDA

For all clusters/components k ∈ [1,K ]:

Choose mixture components φk ∼ Dir(φ|β)

For all documents m ∈ [1,M]:

Choose Nm ∼ Poisson(ξ)
Choose mixture probability θm ∼ Dir(θ|α)
For all words n ∈ [1,Nm] in document dm:

Choose a component index
zm,n ∼ Mult(z |θm)
Choose a word wm,n ∼ Mult(w |φzm,n

)
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