Statistical Learning Models for Text and Graph Data Topic Models

Yangqiu Song

Hong Kong University of Science and Technology

yqsong@cse.ust.hk

October 23, 2019

*Contents are based on materials created by Noah Smith, Xiaojin (Jerry) Zhu, Chengxiang Zhai

- Noah Smith. CSE 517: Natural Language Processing https://courses.cs.washington.edu/courses/cse517/16wi/
- Xiaojin (Jerry) Zhu. CS 769: Advanced Natural Language Processing. http://pages.cs.wisc.edu/~jerryzhu/cs769.html
- Chengxiang Zhai. CS598CXZ Advanced Topics in Information Retrieval. http://times.cs.uiuc.edu/course/598f16/

Course Organization

- Representation: language models, word embeddings, topic models, knowledge graphs
- Learning: supervised learning, unsupervised learning, semi-supervised learning, distant supervision, indirect supervision, sequence models, deep learning, optimization techniques
- Inference: constraint modeling, joint inference, search algorithms

- Language Models: Recap
- 2 Topic Models
- Probabilistic Latent Semantic Analysis (PLSA)
- 4 Latent Dirichlet Allocation (LDA)
 - Motivation: Bayesian Modeling

- \bullet A language model is a probability distribution over \mathcal{V}^{\dagger}
- Typically *P* decomposes into probabilities $P(x_i | \mathbf{h}_i)$
 - We considered n-gram, log-linear, and neural language models, etc.

If we consider a word token at a particular position i in text to be the observed value of a random variable X_i , what other random variables are predictive of/related to X_i ?

- The words that occur within a small "window" around *i* (e.g., $x_{i-2}, x_{i-1}, x_{i+1}, x_{i+2}$, or maybe the sentence containing *i*) \rightarrow distributional semantics
- The document containing *i* (a moderate-to-large collection of other words) → topic models
- A sentence known to be a translation of the one containing $i \rightarrow$ translation models

Language Models: Recap

2 Topic Models

3 Probabilistic Latent Semantic Analysis (PLSA)

- Words are not independent and identically distributed (i.i.d.)!
 - Predictable given history: n-gram/Markov models
 - Predictable given other words in the document: topic models
- Let $Z = \{1, \ldots, k\}$ be a set of "topics" or "themes" that will help us capture the interdependence of words in a document
 - Usually these are not named or characterized in advance; they are just *k* different values with no a priori meaning

The Term-Document Matrix

- Let A ∈ ℝ^{V×M} contain statistics of association between words in V and M documents. N is the total number of word tokens.
- Comparison of contexts
 - Local context (Let's try to keep the kitchen clean.)

- Document-level context ([A]_{v,d} = $c_{x_d}(v)$)
 - d1: "yes, we have no bananas"
 - d2: "say yes for bananas"
 - d3: "no bananas , we say"

Topic Models: Latent Semantic Indexing/Analysis (Deerwester et al. (1990))

• LSI/A seeks to solve:

$$\mathbf{A}_{\scriptscriptstyle V\times M}\approx \mathbf{V}_{\scriptscriptstyle V\times d}\times \mathsf{diag}(\mathbf{s})\times \mathbf{C}_{\scriptscriptstyle d\times M}^{\top}$$

where ${\bf V}$ contains embeddings of words and ${\bf C}$ contains embeddings of documents

• This can be solved by applying singular value decomposition to A

10 / 50

• d = 2: Words and documents in two dimensions.

Note how "no", "we", and "," are all in the exact same spot. Why?

- Mapping words and documents into the same *d*-dimensional space.
- Bag of words assumption (Salton et al. (1975)): a document is nothing more than the distribution of words it contains.
- Distributional hypothesis (Harris (1954); Firth (1957)): words are nothing more than the distribution of contexts (here, documents) they occur in. Words that occur in similar contexts have similar meanings.
- A is sparse and noisy; LSI/A "fills in" the zeroes and tries to eliminate the noise.

- LSI/A: assumes the elements of A are the result of Gaussian noise.
- Probabilistic Latent Semantic Analysis (PLSA) (Hofmann (1999)) model the probability distribution $p(\mathbf{x}_d|d)$
 - This is a particular kind of conditional language model
- Latent Dirichlet Allocation (Blei et al. (2003))
 - Introduce Bayesian inference to PLSA

- 1 Language Models: Recap
- 2 Topic Models

Probabilistic Latent Semantic Analysis (PLSA)

Latent Dirichlet Allocation (LDA)
 Motivation: Bayesian Modeling

Document as a Sample of Mixed Topics

government 0.3 Topic θ_1 response 0.2 city 0.2 Topic θ new 0.1 orleans 0.05 donate 01 relief 0.05 Topic help 0.02 is 0.05 Background θ_{k} the 0.04 a 0.03

[Criticism of government response to the hurricane primarily consisted of criticism of its response to the approach of the storm and its aftermath. specifically in the delayed response] to the [flooding of New Orleans. ... 80% of the 1.3 million residents of the greater New Orleans metropolitan area evacuated] ... [Over seventy countries pledged monetary donations or other assistance]. ...

A D > A A P >

- Recall naive Bayes based mixture models for a document collection by K topics (classes)
- Each topic is a multinomial over words, and each document is generated from a single topic

Probabilistic Latent Semantic Analysis (PLSA)

• PLSA assumes that each document d (with word vector w) is generated from all topics, with documentspecific topic weights.

- Choose a $z_{m,i} = k$ from topic distribution π
- Choose a document from $d_m \sim Multinomial(d_m|1, \theta_k)$
- Choose a word w_i from w_i ~ Multinomial(w_i|1, φ_k)
- Add one count of word w_i to document d_m
- Repeat until we generate the document-word matrix

Under this process, the probability of picking the corpus is:

$$P(\mathcal{D}, \mathcal{W}) = \prod_{m=1}^{M} \prod_{i=1}^{N_m} \sum_{k=1}^{K} P(z_{m,i} = k) P(d_m | \theta_k) P(w_i | \phi_k) \\ = \prod_{m=1}^{M} \prod_{i=1}^{V} \left(\sum_{k=1}^{K} P(z_{m,i} = k) P(d_m | \theta_k) P(w_i | \phi_k) \right)^{c_{d_m}(w_i)}$$

$$P(\mathcal{D}, \mathcal{W}) = \prod_{m=1}^{M} \prod_{i=1}^{N_m} \sum_{k=1}^{K} P(z_{m,i} = k) P(d_m | \theta_k) P(w_i | \phi_k) \\ = \prod_{m=1}^{M} \prod_{i=1}^{V} \left(\sum_{k=1}^{K} P(z_{m,i} = k) P(d_m | \theta_k) P(w_i | \phi_k) \right)^{c_{d_m}(w_i)}$$

Yangqiu Song (HKUST)

COMP5222/MATH5471

October 23, 2019

18 / 50

< 47 ▶

Maximize Log Likelihood

Log likelihood:

$$P(\mathcal{D}, \mathcal{W}) = \prod_{m=1}^{M} \prod_{i=1}^{V} \left(\sum_{k=1}^{K} P(z_{m,i} = k) P(d_m | \boldsymbol{\theta}_k) P(w_i | \boldsymbol{\phi}_k) \right)^{c_{d_m}(w_i)}$$

• To reduce the notation complexity, we denote:

$$\log P(\mathcal{D}, \mathcal{W}) = \sum_{d=1}^{M} \sum_{w=1}^{V} c_d(w) \log \left(\sum_{k=1}^{K} P(z) P(d|z) P(w|z) \right)$$

- We denote the parameters as $\Theta = \{\pi, \phi_k, \theta_k, k = 1, \dots, K\} = \{P(z), P(d|z), P(w|z)\}$
- Note here z is a hidden variable, and note that the sum is inside the log
- We can apply EM algorithm to maximize the likelihood

Lower Bound and E-Step

• Remember Jensens inequality

$$\log \sum_i P_i f_i(x) \ge \sum_i P_i \log f_i(x)$$

• We first compute the lower bound of the log likelihood: $\log P(\mathcal{D}, \mathcal{W}) = \sum_{d=1}^{M} \sum_{w=1}^{V} c_d(w) \log \left(\sum_{k=1}^{K} P(z) P(d|z) P(w|z) \right)$ $= \sum_{d=1}^{M} \sum_{w=1}^{V} c_d(w) \log \left(\sum_{k=1}^{K} P(z) P(d|z) P(w|z) \right)$

$$= \sum_{d=1}^{K} \sum_{w=1}^{V} c_d(w) \log \left(\sum_{k=1}^{K} q_{z,d,w}(\Theta) \frac{1}{q_{z,d,w}(\Theta)} \right)$$

$$\geq \sum_{d=1}^{M} \sum_{w=1}^{V} c_d(w) \sum_{k=1}^{K} q_{z,d,w}(\Theta) \left(\log \frac{P(z)P(d|z)P(w|z)}{q_{z,d,w}(\Theta)} \right)$$

• This is exactly the E-step:

$$P(z|d, w, \Theta^t) \propto P(z|\Theta^t)P(d|z, \Theta^t)P(w|z, \Theta^t)$$

$$\log P(\mathcal{D}, \mathcal{W})$$

$$= \sum_{d=1}^{M} \sum_{w=1}^{V} c_d(w) \log \left(\sum_{k=1}^{K} P(z) P(d|z) P(w|z) \right)$$

$$= \sum_{d=1}^{M} \sum_{w=1}^{V} c_d(w) \log \left(\sum_{k=1}^{K} P(z|d, w, \Theta^t) \frac{P(z) P(d|z) P(w|z)}{P(z|d, w, \Theta^t)} \right)$$

$$= \sum_{d=1}^{M} \sum_{w=1}^{V} c_d(w) \sum_{k=1}^{K} P(z|d, w, \Theta^t) \left(\log \frac{P(z) P(d|z) P(w|z)}{P(z|d, w, \Theta^t)} \right)$$

• Maximizing the right of the above inequality by setting the gradient to zero amounts to the M-step, which gives

•
$$P(z) \propto \sum_{d} \sum_{w} c_d(w) P(z|d, w, \Theta^t)$$

•
$$P(d|z) \propto \sum_{w} c_d(w) P(z|d, w, \Theta^t)$$

•
$$P(w|z) \propto \sum_d c_d(w) P(z|d, w, \Theta^t)$$

• Once the model is trained, we can look at it in the following way

- P(w|z) are the topics. Each topic is defined by a word multinomial. Often people find that the topics seem to have distinct semantic meanings.
- From P(d|z) and P(z), we can compute $P(z|d) \propto p(d|z)p(z)$. P(z|d) is the topic wights for document d.
- One drawback of PLSA is that it is transductive in nature. That is, there is no easy way to handle a new document that is not already in the collection
- This motivates us to introduce a Bayesian modeling of topic models

Yangqiu Song (HKUST)

Yangqiu Song (HKUST)

COMP5222/MATH5471

October 23, 2019 28 / 50

Use of Topic Models

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

э

Image: A matrix and a matrix

Example of topics found from a Science Magazine papers collection

universe	0.0439	drug	0.0672	cells	0.0675	sequence	0.0818	years	0.156
galaxies	0.0375	patients	0.0493	stem	0.0478	sequences	0.0493	million	0.0556
clusters	0.0279	drugs	0.0444	human	0.0421	genome	0.033	ago	0.045
matter	0.0233	clinical	0.0346	cell	0.0309	dna	0.0257	time	0.0317
galaxy	0.0232	treatment	0.028	gene	0.025	sequencing	0.0172	age	0.0243
cluster	0.0214	trials	0.0277	tissue	0.0185	map	0.0123	year	0.024
cosmic	0.0137	therapy	0.0213	cloning	0.0169	genes	0.0122	record	0.0238
dark	0.0131	trial	0.0164	transfer	0.0155	chromosome	0.0119	early	0.0233
light	0.0109	disease	0.0157	blood	0.0113	regions	0.0119	billion	0.0177
density	0.01	medical	0.00997	embryos	0.0111	human	0.0111	history	0.0148
the extension									
bacteria	0.0983	male	0.0558	theory	0.0811	immune	0.0909	stars	0.0524
bacterial	0.0983	male females	0.0558 0.0541	theory physics	0.0811 0.0782	immune response	0.0909 0.0375	stars star	0.0524 0.0458
bacterial resistance	0.0983 0.0561 0.0431	male females female	0.0558 0.0541 0.0529	theory physics physicists	0.0811 0.0782 0.0146	immune response system	0.0909 0.0375 0.0358	stars star astrophys	0.0524 0.0458 0.0237
bacterial resistance coli	0.0983 0.0561 0.0431 0.0381	male females female males	0.0558 0.0541 0.0529 0.0477	theory physics physicists einstein	0.0811 0.0782 0.0146 0.0142	immune response system responses	0.0909 0.0375 0.0358 0.0322	stars star astrophys mass	0.0524 0.0458 0.0237 0.021
bacterial resistance coli strains	0.0983 0.0561 0.0431 0.0381 0.025	male females female males sex	0.0558 0.0541 0.0529 0.0477 0.0339	theory physics physicists einstein university	0.0811 0.0782 0.0146 0.0142 0.013	immune response system responses antigen	0.0909 0.0375 0.0358 0.0322 0.0263	stars star astrophys mass disk	0.0524 0.0458 0.0237 0.021 0.0173
bacterial resistance coli strains microbiol	0.0983 0.0561 0.0431 0.0381 0.025 0.0214	male females female males sex reproductive	0.0558 0.0541 0.0529 0.0477 0.0339 0.0172	theory physics physicists einstein university gravity	0.0811 0.0782 0.0146 0.0142 0.013 0.013	immune response system responses antigen antigens	0.0909 0.0375 0.0358 0.0322 0.0263 0.0184	stars star astrophys mass disk black	0.0524 0.0458 0.0237 0.021 0.0173 0.0161
bacterial resistance coli strains microbiol microbial	0.0983 0.0561 0.0431 0.0381 0.025 0.0214 0.0196	male females female males sex reproductive offspring	0.0558 0.0541 0.0529 0.0477 0.0339 0.0172 0.0168	theory physics physicists einstein university gravity black	0.0811 0.0782 0.0146 0.0142 0.013 0.013 0.013	immune response system responses antigen antigens immunity	0.0909 0.0375 0.0358 0.0322 0.0263 0.0184 0.0176	stars star astrophys mass disk black gas	0.0524 0.0458 0.0237 0.021 0.0173 0.0161 0.0149
bacterial resistance coli strains microbiol microbial strain	0.0983 0.0561 0.0431 0.0381 0.025 0.0214 0.0196 0.0165	male females female males sex reproductive offspring sexual	0.0558 0.0541 0.0529 0.0477 0.0339 0.0172 0.0168 0.0166	theory physics physicists einstein university gravity black theories	0.0811 0.0782 0.0146 0.0142 0.013 0.013 0.013 0.0127 0.01	immune response system responses antigen antigens immunity immunology	0.0909 0.0375 0.0358 0.0322 0.0263 0.0184 0.0176 0.0145	stars star astrophys mass disk black gas stellar	0.0524 0.0458 0.0237 0.021 0.0173 0.0161 0.0149 0.0127
bacterial resistance coli strains microbiol microbial strain salmonella	0.0983 0.0561 0.0431 0.025 0.0214 0.0196 0.0165 0.0163	male females female males sex reproductive offspring sexual reproduction	0.0558 0.0541 0.0529 0.0477 0.0339 0.0172 0.0168 0.0166 0.0143	theory physics physicists einstein university gravity black theories aps	0.0811 0.0782 0.0146 0.0142 0.013 0.013 0.013 0.0127 0.01 0.00987	immune response system responses antigen antigens immunity immunology antibody	0.0909 0.0375 0.0358 0.0322 0.0263 0.0184 0.0176 0.0145 0.014	stars star astrophys mass disk black gas stellar astron	0.0524 0.0458 0.0237 0.021 0.0173 0.0161 0.0149 0.0127 0.0125
bacterial resistance coli strains microbiol microbial strain salmonella resistant	0.0983 0.0561 0.0431 0.025 0.0214 0.0196 0.0165 0.0163 0.0145	male females female sex reproductive offspring sexual reproduction eggs	0.0558 0.0541 0.0529 0.0477 0.0339 0.0172 0.0168 0.0166 0.0143 0.0138	theory physics physicists einstein university gravity black theories ap\$ matter	0.0811 0.0782 0.0146 0.0142 0.013 0.013 0.0127 0.01 0.00987 0.00954	immune response system responses antigen antigens immunity immunology antibody autoimmune	0.0909 0.0375 0.0358 0.0322 0.0263 0.0184 0.0176 0.0145 0.014 0.0128	stars star astrophys mass disk black gas stellar astron hole	0.0524 0.0458 0.0237 0.021 0.0173 0.0161 0.0149 0.0127 0.0125 0.00824

Yangqiu Song (HKUST)

- A document is now characterized as a mixture of corpus-universal topics (each of which is a unigram model).
- Topic mixtures can be incorporated into language models; see lyer and Ostendorf (1999), for example.
- Compared to LSI/A: PLSA is more interpretable (e.g., LSI/A can give negative values!).
- PLSA cannot assign probability to a text not in W; it only defines conditional distributions over words given texts in W.
- The next model overcomes this problem by adding another level of randomness: P(z|d) becomes a random variable, not a parameter.

- 1 Language Models: Recap
- 2 Topic Models
- 3 Probabilistic Latent Semantic Analysis (PLSA)
- 4
- Latent Dirichlet Allocation (LDA)
- Motivation: Bayesian Modeling

- Data corpus: a collection of words, $\mathcal{W} = \{w_1, w_2, \dots, w_N\}$
- Model: multinomial distribution $P(W|\theta)$ with parameters $\theta = (\theta_1, \dots, \theta_V)$, where
 - $\theta_i = P(v_i)$
 - $v_i \in \mathcal{V}$
 - ${\mathcal V}$ is the vocabulary
 - $|\mathcal{V}| = V$
- Count of words in corpus u = (u₁,..., u_V) where u_i = c(v_i) is the count of v_i shown in W, ∑_i u_i = N

Unigram Modeling

• "Bag of words" assumes the words are sampled from a multinomial distribution $u \sim {\rm Multi}(\theta)$

$$P(\mathbf{u}|\boldsymbol{\theta}) = \begin{pmatrix} N \\ \mathbf{u} \end{pmatrix} \prod_{i=1}^{V} \theta_i^{u_i} \triangleq \operatorname{Mult}(\mathbf{u}|\boldsymbol{\theta}, N), where \begin{pmatrix} N \\ \mathbf{u} \end{pmatrix} = \frac{N!}{\prod_i u_i!}$$

If we focus on a single trial, we have:

$$P(w|\theta) = P(w = v_i) = \prod_{i=1}^{V} \theta_i^{\delta_{w=v_i}} \triangleq \operatorname{Mult}(w|\theta)$$

• Maximum likelihood estimator: $\hat{m{ heta}} = rg\max_{m{ heta}} P(\mathcal{W}|m{ heta})$

$$P(\mathcal{W}|\boldsymbol{\theta}) = \prod_{j=1}^{N} P(w_j|\boldsymbol{\theta}) = \prod_{i=1}^{V} P(v_i)^{u_i} = \prod_{i=1}^{V} \theta^{u_i}$$

Maximum Likelihood Estimation: $\hat{\theta} = \arg \max_{\theta} P(\mathcal{W}|\theta)$

$$P(\mathcal{W}|\boldsymbol{ heta}) = \prod_{i}^{V} \theta_{i}^{u_{i}}$$

(log likelihood)

$$\Rightarrow \log P(W|\theta) = \sum_{i}^{V} u_i \log \theta_i$$

(Lagrange multiplier to make θ be a distribution)

$$\Rightarrow L(\mathcal{W}, \boldsymbol{\theta}) = \log P(\mathcal{W}|\boldsymbol{\theta}) = \sum_{i}^{V} u_i \log \theta_i + \lambda(\sum_{i} \theta_i - 1)$$

(Set partial derivatives to zero)

$$\Rightarrow \frac{\partial L}{\partial \theta_i} = \frac{u_i}{\theta_i} + \lambda$$

Since $\sum_{i}^{V} \theta_{i} = 1$, we have $\lambda = -\sum_{i}^{V} u_{i}$

$$\Rightarrow \theta_i = \frac{u_i}{\sum_i^V u_i} = \frac{u_i}{N} (Maximum \ Likelihood \ Estimation \ , MLE)$$

Problem: Add-one moves too much probability mass from seen to unseen events!

- Variant of Add-One smoothing
 - Add a constant k to the counts of each word
 - For any k > 0 (typically, k < 1), a unigram model is

$$\Rightarrow \theta_i = \frac{u_i + k}{\sum_i^V u_i + kV} = \frac{u_i + k}{N + kV}$$

• If *k* = 1

- "Add one" Laplace smoothing
- This is still too simplistic to work well.

Any explanation?

- Conjugate distribution
 - Adding a conjugate prior to a likelihood will result in a posterior in the same distribution family as the prior, then the prior and the likelihood are called conjugate distributions
 - Conjugate distribution makes us easier to formulate Bayesian belief and inference the model

Bayesian Interpretation

- The conjugate prior of a multinomial is Dirichlet distribution: $P(\theta|\alpha) = \text{Dir}(\theta|\alpha) \triangleq \frac{\Gamma(\sum_{i=1}^{V} \alpha_i)}{\prod_{i=1}^{V} \Gamma(\alpha_i)} \prod_{i=1}^{V} \theta_i^{\alpha_i - 1} \triangleq \frac{1}{\Delta(\alpha)} \prod_{i=1}^{V} \theta_i^{\alpha_i - 1}$
 - The "Dirichlet Delta function" $\Delta(lpha)$ is introduced for convenience

•
$$\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_V)^\top \in \mathbb{R}^d$$

- The Gamma function satisfies $\Gamma(x+1) = x\Gamma(x)$
 - For integer variable, Gamma function is $\Gamma(x) = (x 1)!$
 - For real numbers, it is $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$
- The Dirichlet distribution can be seen as the *"distribution of a distribution"*
 - We can sample a multinomial distribution from Dirichlet distribution, satisfied the constraint $\sum_i \theta_i = 1$

Beta Distribution

Called Beta distribution when there are two choices of variable values

Bayesian Interpretation

- The Dirichlet distribution can be seen as the *"distribution of a distribution"*
 - We can sample a multinomial distribution from Dirichlet distribution, satisfied the constraint $\sum_i \theta_i = 1$

Bayesian Estimation

• Remember Maximum likelihood estimator: $\hat{\theta} = \arg \max_{\theta} P(\mathcal{W}|\theta)$

$$P(\mathcal{W}|\boldsymbol{\theta}) = \prod_{j=1}^{N} P(w_j|\boldsymbol{\theta}) = \prod_{i=1}^{V} P(v_i)^{u_i} = \prod_{i=1}^{V} \theta^{u_i} (\theta_i = \frac{u_i}{\sum_{i=1}^{V} u_i} = \frac{u_i}{N})$$

 The posterior of the parameters θ based on the prior and the observation of N words:

$$P(\boldsymbol{\theta}|\mathcal{W}, \boldsymbol{\alpha}) = \frac{P(\mathcal{W}|\boldsymbol{\theta})P(\boldsymbol{\theta}|\boldsymbol{\alpha})}{P(\mathcal{W}|\boldsymbol{\alpha})} = \frac{\prod_{i=1}^{N} P(w_i|\boldsymbol{\theta})P(\boldsymbol{\theta}|\boldsymbol{\alpha})}{\int_{\boldsymbol{\theta}} \prod_{i=1}^{N} P(w_i|\boldsymbol{\theta})P(\boldsymbol{\theta}|\boldsymbol{\alpha}) \mathrm{d}\boldsymbol{\theta}} \\ = \frac{\prod_{i=1}^{N} P(w_i|\boldsymbol{\theta})P(\boldsymbol{\theta}|\boldsymbol{\alpha})}{Z} \\ = \frac{1}{Z} \prod_{i=1}^{V} \theta_i^{u_i} \frac{1}{\Delta(\boldsymbol{\alpha})} \prod_{i=1}^{V} \theta_i^{\alpha_i-1} \\ = \frac{1}{\Delta(\boldsymbol{\alpha}+\mathbf{u})} \prod_{i=1}^{V} \theta_i^{\alpha_i+u_i-1} = \mathrm{Dir}(\boldsymbol{\theta}|\boldsymbol{\alpha}+\mathbf{u})$$

• According to the property of Dirichlet distribution, the posterior is with mean $\theta_i = \frac{u_i + \alpha_i}{\sum_{i}^{V} u_i + V \alpha_i}$ and mode $\theta_i = \frac{u_i + \alpha_i - 1}{\sum_{i}^{V} u_i + V (\alpha_i - 1)}$ (MAP, maximum a posterior estimation, estimation), and $\alpha_i = 1$ equals to MLE

Yangqiu Song (HKUST)

Graphical Representation of Two Versions

Figure: Unigram Language Model

$$P(\mathcal{W}|\boldsymbol{\theta}) = \prod_{j=1}^{N} P(w_j|\boldsymbol{\theta})$$

Figure: Bayesian Esitmation

$$P(\boldsymbol{\theta}|\mathcal{W},\boldsymbol{\alpha}) = \frac{P(\mathcal{W}|\boldsymbol{\theta})P(\boldsymbol{\theta}|\boldsymbol{\alpha})}{P(\mathcal{W}|\boldsymbol{\alpha})}$$

Alternative Way for PLSA to Generate Texts

$$P(\mathcal{D}, W) = \prod_{m=1}^{M} \prod_{i=1}^{N_m} \sum_{k=1}^{K} P(z_{m,i} = k) P(d_m | \theta_k) P(w_i | \phi_k) \\ = \prod_{m=1}^{M} \prod_{i=1}^{V} \left(\sum_{k=1}^{K} P(z_{m,i} = k) P(d_m | \theta_k) P(w_i | \phi_k) \right)^{c_{d_m}(w_i)}$$

$$P(\mathcal{D},\mathcal{W}) = \prod_{m=1}^{M} \prod_{i=1}^{V} P(d_m) \left(\sum_{k=1}^{K} P(z_{m,i} = k | \boldsymbol{\theta}_m) P(w_i | \boldsymbol{\phi}_k) \right)^{c_{d_m}(w_i)}$$

< 🗗 🕨 🔸

э

$$P(\mathcal{D},\mathcal{W}) = \prod_{m=1}^{M} \prod_{i=1}^{V} P(d_m) \left(\sum_{k=1}^{K} P(z_{m,i} = k | \boldsymbol{\theta}_m) P(w_i | \boldsymbol{\phi}_k) \right)^{c_{d_m}(w_i)}$$

Comparison of Mixture Models and PLSA

Figure: Mixture Models (with notation change)

Figure: PLSA

Bayesian Modeling: Language Models

Figure: Unigram Language Model

Figure: Bayesian Esitmation

Bayesian Modeling: Mixture Models

Figure: Unigram Language Model

Figure: Bayesian Esitmation

ラト

47 / 50

October 23, 2019

Bayesian Modeling: Topic Models

Figure: LDA

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

COMP5222/MATH5471

October 23, 2019 48 / 50

3

- ∢ ≣ →

Generative Process of Latent Dirichlet Allocation

Figure: LDA

- For all clusters/components $k \in [1, K]$:
 - Choose mixture components $\phi_k \sim {
 m Dir}(\phi|oldsymbol{eta})$
- For all documents $m \in [1, M]$:
 - Choose $N_m \sim \text{Poisson}(\xi)$
 - Choose mixture probability $oldsymbol{ heta}_m \sim \mathrm{Dir}(oldsymbol{ heta}|oldsymbol{lpha})$
 - For all words $n \in [1, N_m]$ in document d_m :
 - Choose a component index
 - $z_{m,n} \sim \operatorname{Mult}(z|\theta_m)$
 - Choose a word $w_{m,n} \sim \operatorname{Mult}(w | \phi_{z_{m,n}})$

- Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993–1022.
- Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., and Harshman, R. A. (1990). Indexing by latent semantic analysis. *Journal of the American Society for Information Science (JASIS)*, 41(6):391–407.
- Firth, J. R. (1957). A synopsis of linguistic theory 1930-55., volume 1952-59, pages 1–32. The Philological Society, Oxford.
- Harris, Z. (1954). Distributional structure. Word, 10(23):146-162.
- Hofmann, T. (1999). Probabilistic latent semantic analysis. In UAI, pages 289-296.
- Salton, G., Wong, A., and Yang, C. (1975). A vector space model for automatic indexing. Commun. ACM, 18(11):613–620.

3

イロト イポト イヨト イヨト