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Course Organization

Representation: language models, word embeddings, topic models,
knowledge graphs

Learning: supervised learning,unsupervised learning, semi-supervised
learning, distant supervision, indirect supervision, sequence models, deep
learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms
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Overview

1 Problem Definition

2 Generative vs. Discriminative Classification

3 General Linear Classification

4 Unsupervised Learning

5 EM Algorithm

6 Evaluation of Classification

7 Evaluation of Clustering
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Clustering

Clustering is an unsupervised learning method

Given items x1, . . . , xM ∈ Rd , the goal is to group them into
reasonable clusters

We also need a pairwise distance/similarity function between items,
and sometimes the desired number of clusters

When documents are represented by feature vectors, a commonly
used similarity measure is the cosine similarity

sim(x, x′) = cos(x, x′) =
x>x′

||x|| · ||x′||

This similarity has the nice property that document length is
implicitly normalized (so that a long document can be similar to a
short document)
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K -Means Clustering

1 Randomly choose K centers µ1, . . . ,µK

2 Repeat
3 Assign x1, . . . , xM to their nearest centers to obtain ŷm, respectively
4 Update µk = 1∑

m I (ŷm=k)

∑
m xmI (ŷm = k)

5 Until the clusters no longer change

Step 3 is equivalent to creating a Voronoi diagram under the current
centers

http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html
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K -Means Clustering Remarks

K -means clustering is sensitive to the initial cluster centers

It is in fact an optimization problem with a lot of local optima

To be exact, k-means clustering is a special case of Gaussian Mixture
Model (GMM) when the covariance of the Gaussian components tends
to zero

It is of course sensitive to k too

Both should be chosen with care
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Recall Naive Bayes Classifier: A Generative View

Both ym and
xm = (x1

m, . . . , x
d
m)T

are observed variables;
π and θk are
parameters

Naive Bayes from Class Conditional Unigram Model

For m = 1, . . . ,M

Choose ym ∼ Multinomial(ym|1,π)

Choose Nm =
∑d

j x
j
m ∼ Poisson(ξ)

For n = 1, . . . ,Nm

Choose v ∼ Multinomial(v |1,θ∗|ym ) =∏d
j=1(θj∗|ym )v=j
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Parameter Estimation (based on Multinomial)

Both ym and
xm = x1

m, . . . , x
d
m are

observed variables; π
and θk are parameters

Maximum likelihood of the training set:

J = log
∏M

m=1 Pπ,{θk}(xm, ym)

πk = |{ym=k}|
M

θjk =
∑

m,ym=k x
j
m∑

m,ym=k

∑d
j=1 x

j
m
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What if the documents are not labeled?

In naive Bayes, both ym and xm = (x1
m, . . . , x

d
m)T are observed variables; π

and θk are parameters

Figure: Native Bayes Figure: Mixture Model

However, in clustering problems, ym is not observed (labeled before feeding
into machine learning algorithm)
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Expectation Maximization (EM) Algorithm

EM might look like a heuristic method. However, it is not.

EM is guaranteed to find a local optimum of data log likelihood

Recall if we have complete data set {xm, ym}Mm=1 and denote
parameter set as Θ = {π, {θk}}, the likelihood estimation of native
Bayes is

JNB(Θ) = log
M∏

m=1

Pπ,{θk}(xm, ym) = logP({xm, ym}Mm=1|Θ)

However, now {ym}Mm=1 are not observed (labeled), so we treat them
as hidden variables

We instead maximize the marginal log likelihood:

J (Θ) = logP({xm}Mm=1|Θ)
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Maximizing the Marginal Log Likelihood

We optimize following objective function:

J (Θ) = logP({xm}Mm=1|Θ)

=
∑M

m=1 logP(xm|Θ)

=
∑M

m=1 log
∑K

y=1 P(xm, y |Θ)

=
∑M

m=1 log
∑K

y=1 P(y |Θ)P(xm|y ,Θ)

=
∑M

m=1 log
∑K

y=1 P(y |π)P(xm|y ,θ∗|y )

Compared to supervised learning:

JNB(Θ) = log
∏M

m=1 Pπ,{θk}(xm, ym)

=
∑M

m=1 logPπ,{θk}(xm, ym)

=
∑M

m=1 logP(ym|π)P(xm|ym,θ∗|ym)

It’s more complicated with a summation inside the log!

If we try to maximize the marginal log likelihood by setting the
gradient to zero, we will find that there is no longer a nice closed
form solution, unlike the joint log likelihood with complete data
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EM Algorithm: General Idea

EM is an iterative procedure to maximize the marginal log likelihood
J (Θ)

It constructs a concave, easy-to-optimize lower bound
J (Θ) ≥ Q(Θ,Θt), where Θ is the variable and Θt is the previous,
fixed, parameter

The lower bound has an interesting property Q(Θt ,Θt) = J (Θt)

Therefore the new parameter Θt+1 that maximizes Q(Θt ,Θ) is
guaranteed to have Q ≥ J (Θt). Since Q lower bounds J , we have
J (Θt+1) ≥ J (Θt)
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Lower Bound Q(Θ,Θt)

The lower bound is obtained via Jensens inequality (concavity of log
function)

log
∑
i

Pi fi (x) ≥
∑
i

Pi log fi (x)

which holds if the pi ’s form a probability distribution
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Lower Bound Q(Θ,Θt) (Cont’d)

The lower bound is obtained via Jensens inequality (concavity of log
function)

log
∑
i

Pi fi (x) ≥
∑
i

Pi log fi (x)

which holds if the pi ’s form a probability distribution

Then the lower bound can be derived:

J (Θt) =
∑M

m=1 log
∑K

y=1 P(xm, y |Θt)

=
∑M

m=1 log
∑K

y=1 qxm,y (Θ)P(xm,y |Θt)
qxm,y (Θ)

≥
∑M

m=1

∑K
y=1 qxm,y (Θ) log P(xm,y |Θt)

qxm,y (Θ).
= Q(Θ,Θt)

where
∑K

y=1 qxm,y (Θ) = 1 is some distribution
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E-step

M∑
m=1

log
K∑

y=1

qxm,y (Θ)
P(xm, y |Θt)

qxm,y (Θ)
≥

M∑
m=1

K∑
y=1

qxm,y (Θ) log
P(xm, y |Θt)

qxm,y (Θ)

To make the bound tight for a particular value of Θ, we need for the
step involving Jensens inequality in our derivation above to hold with
equality

For this to be true, we know it is sufficient that that the expectation

be taken over a constant-valued random variable P(xm,y |Θt)
qxm,y (Θ) = c

This is easily done by choosing qxm,y (Θ) ∝ P(xm, y |Θt)

Since
∑K

y=1 qxm,y (Θ) = 1, we have (considered as E-step)

qxm,y (Θ) =
P(xm, y |Θt)∑K
y=1 P(xm, y |Θt)

= P(y |xm,Θt)

The equation holds in the inequality iff qxm,y = P(y |xm,Θt)

Yangqiu Song (HKUST) COMP5222/MATH5471 October 18, 2019 16 / 37



M-step

In M-step, we maximize the lower bound

Q(Θt ,Θ) =
∑M

m=1

∑K
y=1 qxm,y log P(xm,y |Θ)

qxm,y

=
∑M

m=1

∑K
y=1 qxm,y log

P(ym|π)P(xm|ym,θ∗|ym )

qxm,y

Now we can set the gradient of Q w.r.t. π and θk ’s to zero and
obtain a closed form solution

πk =
∑

m qxm,y

M

θjk =
∑

m qxm,yx
j
m∑

m

∑d
j=1 qxm,yx

j
m

Compared to naive Bayes:

πk = |{ym=k}|
M

θjk =
∑

m,ym=k x
j
m∑

m,ym=k

∑d
j=1 x

j
m
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EM Algorithm

Repeat

E-step: compute posterior of
hidden variables

qxm,y = P(y |xm,Θ)

M-step: parameter estimation
by maximizing the lower
bound

πk =
∑

m qxm,y

M

θjk =
∑

m qxm,y x
j
m∑

m

∑d
j=1 qxm,y x

j
m

Until the convergence of the
objective function

Randomly choose K centers
µ1, . . . ,µK

Repeat

Assign x1, . . . , xM to their
nearest centers to obtain ŷm,
respectively
Update µk =

1∑
m I (ŷm=k)

∑
m xmI (ŷm = k)

Until the clusters no longer
change

In practice, K -means is cheaper. We can run multiple times to find good
initialization to mixture models.
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Convergence of EM Algorithm

E-step: With qxm,y (Θ) = P(y |xm,Θt), the equation holds, which
leads

Q(Θt ,Θt) = J (Θt)

M-step: Since Θt+1 maximizes Q(Θt ,Θ), we have

Q(Θt ,Θt+1) ≥ Q(Θt ,Θt) = J (Θt)

On the other hand, Q is lower bound of J , we have:

J (Θt+1) ≥ Q(Θt ,Θt+1) ≥ Q(Θt ,Θt) = J (Θt)

This shows EM algorithm always increase the objective function (log
likelihood)

By iterating, we arrive at a local maximum of it
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A More General View of EM

EM is general and applied to joint probability models whenever some
random variables are missing

EM is advantageous when the marginal is difficult to optimize, but
the joint is easy

To be general, consider a joint distribution P(X ,Z |Θ), where X is the
collection of observed variables, and Z unobserved variables

The quantity we want to maximize is the marginal log likelihood

J (Θ) = logP(X |Θ) = log
∑
Z

P(X ,Z |Θ)

which we assume difficult to optimize
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A More General View of EM (Cont’d)

One can introduce an arbitrary distribution over hidden variables
Q(Z )

J (Θ) = logP(X |Θ) = log
∑

Z P(X ,Z |Θ)
=
∑

Z Q(Z ) logP(X |Θ)

=
∑

Z Q(Z ) log P(X |Θ)Q(Z)P(X ,Z |Θ)
P(X ,Z |Θ)Q(Z)

=
∑

Z Q(Z ) log P(X ,Z |Θ)
Q(Z) +

∑
Z Q(Z ) log P(X |Θ)Q(Z)

P(X ,Z |Θ)

=
∑

Z Q(Z ) log P(X ,Z |Θ)
Q(Z) +

∑
Z Q(Z ) log Q(Z)

P(Z |X ,Θ)

= F (Q,Θ) + KL[Q(Z )||P(Z |X ,Θ)]

Note F (Q,Θ) is the right hand side of Jensen’s inequality
If KL > 0, F (Q,Θ) is a lower bound of J (Θ)

First consider the maximization of F on Q with Θt fixed
F (Q,Θ) is maximized by Q(Z ) = P(Z |X ,Θt) since J (Θ) is fixed and
KL attends its minimum zero (E-Step)

Next consider the maximization of F on Θ with Q fixed as above
Note in this case F (Q,Θ) = Q(Θt ,Θ) (M-Step)
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Variations of EM

Generalized EM (GEM) finds Θ that improves, but not necessarily
maximizes, F (Q,Θ) = Q(Θ,Θt) in the M-step. This is useful when
the exact M-step is difficult to carry out. Since this is still coordinate
ascent, GEM can find a local optimum.

Stochastic EM: The E-step is computed with Monte Carlo sampling.
This introduces randomness into the optimization, but asymptotically
it will converge to a local optimum.

Variational EM: Q(Z ) is restricted to some easy-to-compute subset of
distributions, for example the fully factorized distributions
Q(Z ) =

∏
i Q(zi ). In general P(Z |X ,Θ), which might be intractable

to compute, will not be in this subset. There is no longer guarantee
that variational EM will find a local optimum.

If Q(Z |Φ) and P(X |Z ,Θ) can be parameterized by neural networks,
variational auto-encoder can be developed (Kingma and Welling
(2014)).

Note a reparameterization trick should be applied to sample z
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Evaluation

Accuracy:

A(f ) = P(f (X) = Y )

=
∑

x∈V,y∈Y P(X = x,Y = y) ·
{

1 if f (x) = y
0 otherwise

=
∑

x∈V,y∈Y P(X = x,Y = y)I (f (x) = y)

where P is the true distribution over data

Error is 1− A(f )

This is estimated using a test dataset 〈x̄1, ȳ1〉, . . . , 〈x̄m, ȳm〉:

Â(f ) =
1

m

m∑
i=1

I (f (x̄i ) = ȳi )
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Issues with Test-Set Accuracy

Class imbalance: if P(L = not spam) = 0.99, then you can get
Â ≈ 0.99 by always guessing “not spam”

Relative importance of classes or cost of error types

Variance due to the test data
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Evaluation in the Two-Class Case

Precision

Fraction of predicted positive documents that
are indeed positive, i.e., P(human label = 1 |
prediction = 1)

Recall

Fraction of positive documents that are
predicted to be positive, i.e., P(prediction = 1
| human label = 1)

F-1 Score:

F1 = 2 · precesion · recall
precesion + recall
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Evaluation in the Multi-Class Case

Accuracy
F1

Let TPt , FPt , FNt denote the true-positives, false-positives, and
false-negatives for the t-th label in label set L respectively

Micro-averaged F1 = 2PR
P+R where P =

∑
t∈L TPt∑

t∈L TPt+FPt
and

R =
∑

t∈L TPt∑
t∈L TPt+FNt

Macro-averaged F1 = 1
|L|
∑

t∈L
2PtRt

Pt+Rt
where Pt = TPt

TPt+FPt
and

Rt = TPt

TPt+FNt
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Model Estimation and Selection

k-fold cross-validation

Partition all training data into k equal size disjoint subsets
Leave one subset for validation and the other k-1 for training
Repeat step (2) k times with each of the k subsets used exactly once
as the validation data
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Statistical Significance

Suppose we have two classifiers f1 and f2

Is f1 better? The “null hypothesis,” denoted H0, is that it isn’t. But
if Â(f1)� Â(f2), we are tempted to believe otherwise

How much larger must Â(f1) be than Â(f2) to reject H0?

Frequentist view: how (im)probable is the observed difference, given
H0 = true?

Caution: statistical significance is neither necessary nor sufficient for
research significance or practical usefulness!
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A Hypothesis Test for Text Classifiers
McNemar (1947)

The null hypothesis: A(f1) = A(f2)

Pick significance level α, an “acceptably” high probability of
incorrectly rejecting H0

Calculate the test statistic, k (explained in the next slide)

Calculate the probability of a more extreme value of k, assuming H0

is true; this is the p-value

Reject the null hypothesis if the p-value is less than α

The p-value is P(this observation |H0 is true), not the other way around
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McNemar’s Test: Details

Assumptions: independent (test) samples and binary measurements.
Count test set error patterns:
The test is applied to a 2 × 2 contingency table, which tabulates the
outcomes of two tests on a sample of n subjects

f1 is incorrect f1 is correct

f2 is incorrect a b a + b

f2 is correct c d n · Â(f2) = c + d

a + c n · Â(f1) = b + d n

Evaluate imbalance in the discordant b and c according to
Binomial(k, b + c , 1

2 ) (The probability of getting k successes in b + c
trials)

test statistic k = min(b, c)

p − value = 2
k∑
0

Binomial(k ; b + c ,
1

2
) =

1

2b+c−1

k∑
j=0

(
b + c
j

)
Yangqiu Song (HKUST) COMP5222/MATH5471 October 18, 2019 31 / 37



McNemar’s Test: Details
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Other Tests

Different tests make different assumptions

Sometimes we calculate an interval that would be “unsurprising”
under H0 and test whether a test statistic falls in that interval (e.g.,
t-test and Wald test)

In many cases, there is no closed form for estimating p-values, so we
use random approximations (e.g., permutation test and paired
bootstrap test)

Read lots more in (Smith (2011)), appendix B
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Metrics for Clustering

Purity between two random variables CAT (category label) and CLS
(cluster label) is defined as:

Purity (CAT; CLS) =
1

n

∑
j

max nij ,

n is the number of documents
ni,j is the number of documents in category i as well as in cluster j

Sometimes Hungarian algorithm is used to match category and cluster
1
n max

∑
i ni ,f (i→j)
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Metrics for Clustering

In probability theory and information theory, the mutual information
(MI) of two random variables is a measure of the mutual dependence
between the two variables.

More specifically, it quantifies the “amount of information” (in units
such as Shannons, more commonly called bits) obtained about one
random variable, through the other random variable.

NMI between two random variables CAT (category label) and CLS
(cluster label) is defined as:

NMI(CAT; CLS) =
I(CAT; CLS)√
H(CAT)H(CLS)

,

where I(CAT; CLS) is the mutual information between CAT and CLS.
The entropies H(CAT) and H(CLS) are used for normalizing the
mutual information to be in the range of [0, 1].
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Metrics for Clustering

In practice, we made use of the following formulation to estimate the
NMI score (Strehl and Ghosh (2002)):

NMI =

∑k
i=1

∑k
j=1 ni ,j log

(
n·ni,j
ni ·nj

)
√(∑

i ni log ni
n

) (∑
j nj log

nj
n

) ,

n is the number of documents
ni and nj denote the number of documents in category i and cluster j
ni,j is the number of documents in category i as well as in cluster j

The NMI score is 1 if the clustering results perfectly match the
category labels, and the score is 0 if data are randomly partitioned.

The higher the NMI score, the better the clustering quality.
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