Statistical Learning Models for Text and Graph Data Text Categorization 2: Clustering

Yangqiu Song
Hong Kong University of Science and Technology
yqsong@cse.ust.hk

October 18, 2019
*Contents are based on materials created by Noah Smith, Xiaojin (Jerry) Zhu, Eric Xing, Vivek Srikumar, Dan Roth

Reference Content

- Noah Smith. CSE 517: Natural Language Processing https://courses.cs.washington.edu/courses/cse517/16wi/
- Xiaojin (Jerry) Zhu. CS 769: Advanced Natural Language Processing. http://pages.cs.wisc.edu/~jerryzhu/cs769.html
- Eric Xing. 10715 Advanced Introduction to Machine Learning. https://www.cs.cmu.edu/~epxing/Class/10715/lectures/ lecture1.pdf
- Vivek Srikumar. CS 6355 Structured Prediction. https: //svivek.com/teaching/structured-prediction/spring2018/
- Dan Roth. CS546: Machine Learning and Natural Language . http://l2r.cs.uiuc.edu/~danr/Teaching/CS546-16/

Course Organization

- Representation: language models, word embeddings, topic models, knowledge graphs
- Learning: supervised learning,unsupervised learning, semi-supervised learning, distant supervision, indirect supervision, sequence models, deep learning, optimization techniques
- Inference: constraint modeling, joint inference, search algorithms

Overview

(1) Problem Definition

(2) Generative vs. Discriminative Classification

(3) General Linear Classification
4) Unsupervised Learning
(5) EM Algorithm
(6) Evaluation of Classification
(7) Evaluation of Clustering
*Contents are based on materials created by Noah Smith, Xiaojin Zhu, Eric Xing, Vivek Srikumar, Dan Roth

Clustering

- Clustering is an unsupervised learning method
- Given items $\mathbf{x}_{1}, \ldots, \mathbf{x}_{M} \in \mathbb{R}^{d}$, the goal is to group them into reasonable clusters
- We also need a pairwise distance/similarity function between items, and sometimes the desired number of clusters
- When documents are represented by feature vectors, a commonly used similarity measure is the cosine similarity

$$
\operatorname{sim}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\cos \left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{\mathbf{x}^{\top} \mathbf{x}^{\prime}}{\|\mathbf{x}\| \cdot\left\|\mathbf{x}^{\prime}\right\|}
$$

- This similarity has the nice property that document length is implicitly normalized (so that a long document can be similar to a short document)

K-Means Clustering

1 Randomly choose K centers $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$
2 Repeat
3 Assign $\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}$ to their nearest centers to obtain \hat{y}_{m}, respectively 4 Update $\boldsymbol{\mu}_{k}=\frac{1}{\sum_{m} l\left(\hat{y}_{m}=k\right)} \sum_{m} \mathbf{x}_{m} I\left(\hat{y}_{m}=k\right)$
5 Until the clusters no longer change
Step 3 is equivalent to creating a Voronoi diagram under the current centers

K-Means Clustering Remarks

- K-means clustering is sensitive to the initial cluster centers
- It is in fact an optimization problem with a lot of local optima
- To be exact, k-means clustering is a special case of Gaussian Mixture Model (GMM) when the covariance of the Gaussian components tends to zero
- It is of course sensitive to k too
- Both should be chosen with care

Recall Naive Bayes Classifier: A Generative View

Both y_{m} and
$\mathbf{x}_{m}=\left(x_{m}^{1}, \ldots, x_{m}^{d}\right)^{T}$
are observed variables;
$\boldsymbol{\pi}$ and $\boldsymbol{\theta}_{k}$ are
parameters

Naive Bayes from Class Conditional Unigram Model

- For $m=1, \ldots, M$
- Choose $y_{m} \sim$ Multinomial $\left(y_{m} \mid 1, \pi\right)$
- Choose $N_{m}=\sum_{j}^{d} x_{m}^{j} \sim \operatorname{Poisson}(\xi)$
- For $n=1, \ldots, N_{m}$
- Choose $v \sim$ Multinomial $\left(v \mid 1, \boldsymbol{\theta}_{* \mid y_{m}}\right)=$ $\prod_{j=1}^{d}\left(\theta_{* \mid y_{m}}^{j}\right)^{v=j}$

Parameter Estimation (based on Multinomial)

Both y_{m} and
$\mathbf{x}_{m}=x_{m}^{1}, \ldots, \mathbf{x}_{m}^{d}$ are observed variables; $\boldsymbol{\pi}$ and $\boldsymbol{\theta}_{k}$ are parameters

Maximum likelihood of the training set:

$$
\begin{gathered}
\mathcal{J}=\log \prod_{m=1}^{M} P_{\boldsymbol{\pi},\left\{\boldsymbol{\theta}_{k}\right\}}\left(\mathbf{x}_{m}, y_{m}\right) \\
\pi_{k}=\frac{\left|\left\{y_{m}=k\right\}\right|}{M} \\
\theta_{k}^{j}=\frac{\sum_{m, y_{m}=k} x_{m}^{j}}{\sum_{m, y_{m}=k} \sum_{j=1}^{d} x_{m}^{j}}
\end{gathered}
$$

What if the documents are not labeled?

In naive Bayes, both y_{m} and $\mathbf{x}_{m}=\left(x_{m}^{1}, \ldots, x_{m}^{d}\right)^{T}$ are observed variables; $\boldsymbol{\pi}$ and $\boldsymbol{\theta}_{k}$ are parameters

Figure: Native Bayes

Figure: Mixture Model

However, in clustering problems, y_{m} is not observed (labeled before feeding into machine learning algorithm)

Expectation Maximization (EM) Algorithm

- EM might look like a heuristic method. However, it is not.
- EM is guaranteed to find a local optimum of data log likelihood
- Recall if we have complete data set $\left\{\mathbf{x}_{m}, y_{m}\right\}_{m=1}^{M}$ and denote parameter set as $\Theta=\left\{\boldsymbol{\pi},\left\{\boldsymbol{\theta}_{k}\right\}\right\}$, the likelihood estimation of native Bayes is

$$
\mathcal{J}_{N B}(\Theta)=\log \prod_{m=1}^{M} P_{\boldsymbol{\pi},\left\{\boldsymbol{\theta}_{k}\right\}}\left(\mathbf{x}_{m}, y_{m}\right)=\log P\left(\left\{\mathbf{x}_{m}, y_{m}\right\}_{m=1}^{M} \mid \Theta\right)
$$

- However, now $\left\{y_{m}\right\}_{m=1}^{M}$ are not observed (labeled), so we treat them as hidden variables
- We instead maximize the marginal log likelihood:

$$
\mathcal{J}(\Theta)=\log P\left(\left\{\mathbf{x}_{m}\right\}_{m=1}^{M} \mid \Theta\right)
$$

Maximizing the Marginal Log Likelihood

We optimize following objective function:

$$
\begin{aligned}
\mathcal{J}(\Theta) & =\log P\left(\left\{\mathbf{x}_{m}\right\}_{m=1}^{M} \mid \Theta\right) \\
& =\sum_{m=1}^{M} \log P\left(\mathbf{x}_{m} \mid \Theta\right) \\
& =\sum_{m=1}^{M} \log \sum_{y=1}^{K} P\left(\mathbf{x}_{m}, y \mid \Theta\right) \\
& =\sum_{m=1}^{M} \log \sum_{y=1}^{K} P(y \mid \Theta) P\left(\mathbf{x}_{m} \mid y, \Theta\right) \\
& =\sum_{m=1}^{M} \log \sum_{y=1}^{K} P(y \mid \boldsymbol{\pi}) P\left(\mathbf{x}_{m} \mid y, \boldsymbol{\theta}_{* \mid y}\right)
\end{aligned}
$$

Compared to supervised learning:

$$
\begin{aligned}
\mathcal{J}_{N B}(\Theta) & =\log \prod_{m=1}^{M} P_{\boldsymbol{\pi},\left\{\boldsymbol{\theta}_{k}\right\}}\left(\mathbf{x}_{m}, y_{m}\right) \\
& =\sum_{m=1}^{M} \log P_{\boldsymbol{\pi},\left\{\boldsymbol{\theta}_{k}\right\}}\left(\mathbf{x}_{m}, y_{m}\right) \\
& =\sum_{m=1}^{M} \log P\left(y_{m} \mid \boldsymbol{\pi}\right) P\left(\mathbf{x}_{m} \mid y_{m}, \boldsymbol{\theta}_{* \mid y_{m}}\right)
\end{aligned}
$$

- It's more complicated with a summation inside the log!
- If we try to maximize the marginal log likelihood by setting the gradient to zero, we will find that there is no longer a nice closed form solution, unlike the joint log likelihood with complete data

EM Algorithm: General Idea

- EM is an iterative procedure to maximize the marginal log likelihood $\mathcal{J}(\Theta)$
- It constructs a concave, easy-to-optimize lower bound $\mathcal{J}(\Theta) \geq Q\left(\Theta, \Theta^{t}\right)$, where Θ is the variable and Θ^{t} is the previous, fixed, parameter
- The lower bound has an interesting property $Q\left(\Theta^{t}, \Theta^{t}\right)=\mathcal{J}\left(\Theta^{t}\right)$
- Therefore the new parameter Θ^{t+1} that maximizes $Q\left(\Theta^{t}, \Theta\right)$ is guaranteed to have $Q \geq \mathcal{J}\left(\Theta^{t}\right)$. Since Q lower bounds \mathcal{J}, we have $\mathcal{J}\left(\Theta^{t+1}\right) \geq \mathcal{J}\left(\Theta^{t}\right)$

Lower Bound $Q\left(\Theta, \Theta^{t}\right)$

- The lower bound is obtained via Jensens inequality (concavity of log function)

$$
\log \sum_{i} P_{i} f_{i}(x) \geq \sum_{i} P_{i} \log f_{i}(x)
$$

which holds if the p_{i} 's form a probability distribution

Lower Bound $Q\left(\Theta, \Theta^{t}\right)$ (Cont'd)

- The lower bound is obtained via Jensens inequality (concavity of log function)

$$
\log \sum_{i} P_{i} f_{i}(x) \geq \sum_{i} P_{i} \log f_{i}(x)
$$

which holds if the p_{i} 's form a probability distribution

- Then the lower bound can be derived:

$$
\begin{aligned}
\mathcal{J}\left(\Theta^{t}\right) & =\sum_{m=1}^{M} \log \sum_{y=1}^{K} P\left(\mathbf{x}_{m}, y \mid \Theta^{t}\right) \\
& =\sum_{m=1}^{M} \log \sum_{y=1}^{K} q_{\mathrm{x}_{m}, y}(\Theta) \frac{P\left(\mathbf{x}_{m}, y \mid \Theta^{t}\right)}{q_{x_{m}, y}(\Theta)} \\
& \geq \sum_{m=1}^{M} \sum_{y=1}^{K} q_{\mathrm{x}_{m}, y}(\Theta) \log \frac{P\left(\mathrm{x}_{m}, y \mid \Theta^{t}\right)}{q_{\mathrm{x}_{m}, y}(\Theta)} \\
& \doteq Q\left(\Theta, \Theta^{t}\right)
\end{aligned}
$$

where $\sum_{y=1}^{K} q_{\mathrm{x}_{m}, y}(\Theta)=1$ is some distribution

E-step

$$
\sum_{m=1}^{M} \log \sum_{y=1}^{K} q_{\mathbf{x}_{m}, y}(\Theta) \frac{P\left(\mathbf{x}_{m}, y \mid \Theta^{t}\right)}{q_{\mathbf{x}_{m}, y}(\Theta)} \geq \sum_{m=1}^{M} \sum_{y=1}^{K} q_{\mathbf{x}_{m}, y}(\Theta) \log \frac{P\left(\mathbf{x}_{m}, y \mid \Theta^{t}\right)}{q_{\mathbf{x}_{m}, y}(\Theta)}
$$

- To make the bound tight for a particular value of Θ, we need for the step involving Jensens inequality in our derivation above to hold with equality
- For this to be true, we know it is sufficient that that the expectation be taken over a constant-valued random variable $\frac{P\left(x_{m}, y \mid \Theta^{t}\right)}{q_{x_{m}, y}(\Theta)}=c$
- This is easily done by choosing $q_{\mathrm{x}_{m}, y}(\Theta) \propto P\left(\mathbf{x}_{m}, y \mid \Theta^{t}\right)$
- Since $\sum_{y=1}^{K} q_{x_{m}, y}(\Theta)=1$, we have (considered as E-step)

$$
q_{\mathbf{x}_{m}, y}(\Theta)=\frac{P\left(\mathbf{x}_{m}, y \mid \Theta^{t}\right)}{\sum_{y=1}^{K} P\left(\mathbf{x}_{m}, y \mid \Theta^{t}\right)}=P\left(y \mid \mathbf{x}_{m}, \Theta^{t}\right)
$$

- The equation holds in the inequality iff $q_{\mathbf{x}_{m}, y}=P\left(y \mid \mathbf{x}_{m}, \Theta^{t}\right)$

M-step

- In M-step, we maximize the lower bound

$$
\begin{aligned}
Q\left(\Theta^{t}, \Theta\right) & =\sum_{m=1}^{M} \sum_{y=1}^{K} q_{\mathbf{x}_{m}, y} \log \frac{P\left(\mathbf{x}_{m}, y \mid \Theta\right)}{q_{x_{m}, y}} \\
& =\sum_{m=1}^{M} \sum_{y=1}^{K} q_{\mathbf{x}_{m}, y} \log \frac{P\left(y_{m} \mid \boldsymbol{\pi}\right) P\left(\mathbf{x}_{m} \mid y_{m}, \boldsymbol{\theta}_{* \mid y_{m}}\right)}{q_{\mathrm{x}_{m}, y}}
\end{aligned}
$$

- Now we can set the gradient of Q w.r.t. $\boldsymbol{\pi}$ and $\boldsymbol{\theta}_{k}$'s to zero and obtain a closed form solution

$$
\begin{aligned}
& \pi_{k}=\frac{\sum_{m} q_{x_{m}, y}}{M} \\
& \theta_{k}^{j}=\frac{\sum_{m} q_{x_{m}, y} x_{m}^{j}}{\sum_{m} \sum_{j=1}^{d} q_{m}, y x_{m}^{j}}
\end{aligned}
$$

- Compared to naive Bayes:

$$
\begin{aligned}
\pi_{k} & =\frac{\left|\left\{y_{m}=k\right\}\right|}{M} \\
\theta_{k}^{j} & =\frac{\sum_{m, y_{m}=k} x_{m}^{j}}{\sum_{m, y_{m}=k} \sum_{j=1}^{d} x_{m}^{j}}
\end{aligned}
$$

EM Algorithm

- Repeat
- E-step: compute posterior of hidden variables

$$
q_{\mathbf{x}_{m}, y}=P\left(y \mid \mathbf{x}_{m}, \Theta\right)
$$

- M-step: parameter estimation by maximizing the lower bound

$$
\begin{aligned}
& \pi_{k}=\frac{\sum_{m} q_{x}, v}{\sum_{x}, v} \\
& \theta_{k}^{j}=\frac{\sum_{m} q_{x_{m}, v} x_{m}^{j}}{\sum_{m} \sum_{j=1}^{d} x_{m}, v x_{m}^{j}} .
\end{aligned}
$$

- Until the convergence of the objective function
- Randomly choose K centers

$$
\mu_{1}, \ldots, \mu_{K}
$$

- Repeat
- Assign $\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}$ to their nearest centers to obtain \hat{y}_{m}, respectively
- Update $\boldsymbol{\mu}_{k}=$

$$
\frac{1}{\sum_{m} I\left(\hat{y}_{m}=k\right)} \sum_{m} \mathbf{x}_{m} I\left(\hat{y}_{m}=k\right)
$$

- Until the clusters no longer change

In practice, K-means is cheaper. We can run multiple times to find good initialization to mixture models.

Convergence of EM Algorithm

- E-step: With $q_{\mathbf{x}_{m}, y}(\Theta)=P\left(y \mid \mathbf{x}_{m}, \Theta^{t}\right)$, the equation holds, which leads

$$
Q\left(\Theta^{t}, \Theta^{t}\right)=\mathcal{J}\left(\Theta^{t}\right)
$$

- M-step: Since Θ^{t+1} maximizes $Q\left(\Theta^{t}, \Theta\right)$, we have

$$
Q\left(\Theta^{t}, \Theta^{t+1}\right) \geq Q\left(\Theta^{t}, \Theta^{t}\right)=\mathcal{J}\left(\Theta^{t}\right)
$$

- On the other hand, Q is lower bound of \mathcal{J}, we have:

$$
\mathcal{J}\left(\Theta^{t+1}\right) \geq Q\left(\Theta^{t}, \Theta^{t+1}\right) \geq Q\left(\Theta^{t}, \Theta^{t}\right)=\mathcal{J}\left(\Theta^{t}\right)
$$

- This shows EM algorithm always increase the objective function (log likelihood)
- By iterating, we arrive at a local maximum of it

A More General View of EM

- EM is general and applied to joint probability models whenever some random variables are missing
- EM is advantageous when the marginal is difficult to optimize, but the joint is easy
- To be general, consider a joint distribution $P(X, Z \mid \Theta)$, where X is the collection of observed variables, and Z unobserved variables
- The quantity we want to maximize is the marginal log likelihood

$$
\mathcal{J}(\Theta)=\log P(X \mid \Theta)=\log \sum_{Z} P(X, Z \mid \Theta)
$$

which we assume difficult to optimize

A More General View of EM (Cont'd)

- One can introduce an arbitrary distribution over hidden variables $Q(Z)$

$$
\begin{aligned}
\mathcal{J}(\Theta) & =\log P(X \mid \Theta)=\log \sum_{Z} P(X, Z \mid \Theta) \\
& =\sum_{Z} Q(Z) \log P(X \mid \Theta) \\
& =\sum_{Z} Q(Z) \log \frac{P(X \mid \Theta) Q(Z) P(X, Z \mid \Theta)}{P(X, Z \mid \Theta) Q(Z)} \\
& =\sum_{Z} Q(Z) \log \frac{P(X, Z \mid \Theta)}{Q(Z)}+\sum_{Z} Q(Z) \log \frac{P(X \mid \Theta) Q(Z)}{P(X, Z \mid \Theta)} \\
& =\sum_{Z} Q(Z) \log \frac{P(X, Z \Theta)}{Q(Z)}+\sum_{Z} Q(Z) \log \frac{Q(Z)}{P(Z \mid X, \Theta)} \\
& =F(Q, \Theta)+K L[Q(Z) \| P(Z \mid X, \Theta)]
\end{aligned}
$$

- Note $F(Q, \Theta)$ is the right hand side of Jensen's inequality
- If $K L>0, F(Q, \Theta)$ is a lower bound of $\mathcal{J}(\Theta)$
- First consider the maximization of F on Q with Θ^{t} fixed
- $F(Q, \Theta)$ is maximized by $Q(Z)=P\left(Z \mid X, \Theta^{t}\right)$ since $\mathcal{J}(\Theta)$ is fixed and KL attends its minimum zero (E -Step)
- Next consider the maximization of F on Θ with Q fixed as above
- Note in this case $F(Q, \Theta)=Q\left(\Theta^{t}, \Theta\right)$ (M-Step)

Variations of EM

- Generalized EM (GEM) finds Θ that improves, but not necessarily maximizes, $F(Q, \Theta)=Q\left(\Theta, \Theta^{t}\right)$ in the M -step. This is useful when the exact M-step is difficult to carry out. Since this is still coordinate ascent, GEM can find a local optimum.
- Stochastic EM: The E-step is computed with Monte Carlo sampling. This introduces randomness into the optimization, but asymptotically it will converge to a local optimum.
- Variational EM: $Q(Z)$ is restricted to some easy-to-compute subset of distributions, for example the fully factorized distributions $Q(Z)=\prod_{i} Q\left(z_{i}\right)$. In general $P(Z \mid X, \Theta)$, which might be intractable to compute, will not be in this subset. There is no longer guarantee that variational EM will find a local optimum.
- If $Q(Z \mid \Phi)$ and $P(X \mid Z, \Theta)$ can be parameterized by neural networks, variational auto-encoder can be developed (Kingma and Welling (2014)).
- Note a reparameterization trick should be applied to sample z

Overview

(1) Problem Definition

(2) Generative vs. Discriminative Classification
(3) General Linear Classification

4 Unsupervised Learning
(5) EM Algorithm
(6) Evaluation of Classification
(7) Evaluation of Clustering

Evaluation

- Accuracy:

$$
\begin{aligned}
A(f) & =P(f(\mathbf{X})=Y) \\
& =\sum_{\mathbf{x} \in \mathcal{V}, y \in \mathcal{Y}} P(\mathbf{X}=\mathbf{x}, Y=y) \cdot\left\{\begin{aligned}
1 & \text { if } f(\mathbf{x})=y \\
0 & \text { otherwise }
\end{aligned}\right. \\
& =\sum_{\mathbf{x} \in \mathcal{V}, y \in \mathcal{Y}} P(\mathbf{X}=\mathbf{x}, Y=y) I(f(\mathbf{x})=y)
\end{aligned}
$$

where P is the true distribution over data

- Error is $1-A(f)$
- This is estimated using a test dataset $\left\langle\overline{\mathbf{x}}_{1}, \bar{y}_{1}\right\rangle, \ldots,\left\langle\overline{\mathbf{x}}_{m}, \bar{y}_{m}\right\rangle$:

$$
\hat{A}(f)=\frac{1}{m} \sum_{i=1}^{m} I\left(f\left(\bar{x}_{i}\right)=\bar{y}_{i}\right)
$$

Issues with Test-Set Accuracy

- Class imbalance: if $P(L=$ not spam $)=0.99$, then you can get $\hat{A} \approx 0.99$ by always guessing "not spam"
- Relative importance of classes or cost of error types
- Variance due to the test data

Evaluation in the Two-Class Case

selected elements

How many selected
items are relevant?

How many relevant
items are selected?

- Precision
- Fraction of predicted positive documents that are indeed positive, i.e., P (human label $=1 \mid$ prediction $=1$)
- Recall
- Fraction of positive documents that are predicted to be positive, i.e., P (prediction $=1$ | human label =1)
- F-1 Score:

$$
F_{1}=2 \cdot \frac{\text { precesion } \cdot \text { recall }}{\text { precesion }+ \text { recall }}
$$

Evaluation in the Multi-Class Case

- Accuracy
- F1
- Let $T P_{t}, F P_{t}, F N_{t}$ denote the true-positives, false-positives, and false-negatives for the t-th label in label set \mathcal{L} respectively
- Micro-averaged $F_{1}=\frac{2 P R}{P+R}$ where $P=\frac{\sum_{t \in \mathcal{L}} T P_{t}}{\sum_{t \in \mathcal{L}} T P_{t}+F P_{t}}$ and

$$
R=\frac{\sum_{t \in \mathcal{L}} T P_{t}}{\sum_{t \in \mathcal{L}} T P_{t}+F N_{t}}
$$

- Macro-averaged $F_{1}=\frac{1}{|\mathcal{L}|} \sum_{t \in \mathcal{L}} \frac{2 P_{t} R_{t}}{P_{t}+R_{t}}$ where $P_{t}=\frac{T P_{t}}{T P_{t}+F P_{t}}$ and

$$
R_{t}=\frac{T P_{t}}{T P_{t}+F N_{t}}
$$

Actual/ Predicted	Class 1	2	3	4	5	6	7	8	9	10	Total	Recall	
Class 1	$\mathbf{9 . 0 6}$		0.07	0.05	0.01	0.03	0.06	0.59	0.01	0.14	10	90.60	
Class 2		$\mathbf{8 . 2 0}$			0.52	0.04	0.30		0.53	0.42	10	82.00	
Class 3	0.03		$\mathbf{9 . 5 2}$	0.03	0.01	0.02	0.01	0.15	0.02	0.22	10	95.20	
Class 4	0.01	0.01	0.01	$\mathbf{9 . 0 1}$	0.13	0.12	0.52	0.10	0.05	0.06	10	90.10	
Class 5		0.48	0.01	0.05	$\mathbf{2 . 6 7}$	1.87	1.40		2.63	0.90	10	26.70	
Class 6		0.11			0.86	$\mathbf{7 . 7 5}$	0.56		0.10	0.62	10	77.50	
Class 7	0.02	0.18		0.32	1.47	1.50	$\mathbf{3 . 6 6}$	0.11	2.08	0.67	10	36.60	
Class 8	0.20		0.05	0.01			0.02	$\mathbf{9 . 7 0}$		0.03	10	97.00	
Class 9		0.39	0.01		1.21	0.11	0.42		$\mathbf{6 . 8 4}$	1.02	10	68.40	
Class 10		0.24	0.13	0.01	0.95	1.01	0.43	0.01	1.85	$\mathbf{5 . 3 7}$	10	53.70	
Total	9.32	9.61	9.80	9.48	7.83	12.45	7.38	10.66	14.11	9.45	100	56.83	

Model Estimation and Selection

- k-fold cross-validation
- Partition all training data into k equal size disjoint subsets
- Leave one subset for validation and the other $k-1$ for training
- Repeat step (2) k times with each of the k subsets used exactly once as the validation data

Statistical Significance

- Suppose we have two classifiers f_{1} and f_{2}
- Is f_{1} better? The "null hypothesis," denoted H_{0}, is that it isn't. But if $\hat{A}\left(f_{1}\right) \gg \hat{A}\left(f_{2}\right)$, we are tempted to believe otherwise
- How much larger must $\hat{A}\left(f_{1}\right)$ be than $\hat{A}\left(f_{2}\right)$ to reject H_{0} ?
- Frequentist view: how (im)probable is the observed difference, given $H_{0}=$ true?
- Caution: statistical significance is neither necessary nor sufficient for research significance or practical usefulness!

A Hypothesis Test for Text Classifiers

McNemar (1947)

- The null hypothesis: $A\left(f_{1}\right)=A\left(f_{2}\right)$
- Pick significance level α, an "acceptably" high probability of incorrectly rejecting H_{0}
- Calculate the test statistic, k (explained in the next slide)
- Calculate the probability of a more extreme value of k, assuming H_{0} is true; this is the p-value
- Reject the null hypothesis if the p-value is less than α

The p-value is P (this observation $\mid H_{0}$ is true), not the other way around

McNemar's Test: Details

- Assumptions: independent (test) samples and binary measurements. Count test set error patterns:
- The test is applied to a 2×2 contingency table, which tabulates the outcomes of two tests on a sample of n subjects

	f_{1} is incorrect	f_{1} is correct	
f_{2} is incorrect	a	b	$a+b$
f_{2} is correct	c	d	$n \cdot \hat{A}\left(f_{2}\right)=c+d$
	$a+c$	$n \cdot \hat{A}\left(f_{1}\right)=b+d$	n

Evaluate imbalance in the discordant b and c according to Binomial $\left(k, b+c, \frac{1}{2}\right)$ (The probability of getting k successes in $b+c$ trials) test statistic $k=\min (b, c)$

$$
p-\text { value }=2 \sum_{0}^{k} \operatorname{Binomial}\left(k ; b+c, \frac{1}{2}\right)=\frac{1}{2^{b+c-1}} \sum_{j=0}^{k}\binom{b+c}{j}
$$

McNemar's Test: Details

Important:

Pr (observation | hypothesis) $\neq \operatorname{Pr}$ (hypothesis | observation)
The probability of observing a result given that some hypothesis is true is not equivalent to the probabilky that a hypothesis is true given that some resul has been observed.

Using the p-value as a "score" is committing an egregious logical error: the transposed conditional fallacy.

Set of possible results

A p-value (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

Other Tests

- Different tests make different assumptions
- Sometimes we calculate an interval that would be "unsurprising" under H_{0} and test whether a test statistic falls in that interval (e.g., t-test and Wald test)
- In many cases, there is no closed form for estimating p-values, so we use random approximations (e.g., permutation test and paired bootstrap test)
- Read lots more in (Smith (2011)), appendix B

Metrics for Clustering

- Purity between two random variables CAT (category label) and CLS (cluster label) is defined as:

$$
\text { Purity }(C A T ; C L S)=\frac{1}{n} \sum_{j} \max n_{i j}
$$

- n is the number of documents
- $n_{i, j}$ is the number of documents in category i as well as in cluster j

- Figure 16.1 Purity as an external evaluation criterion for cluster quality. Majority class and number of members of the majority class for the three clusters are: $x, 5$ (cluster 1); $\mathrm{o}, 4$ (cluster 2); and $\circ, 3$ (cluster 3). Purity is $(1 / 17) \times(5+4+3) \approx 0.71$.

Sometimes Hungarian algorithm is used to match category and cluster $\frac{1}{n} \max \sum_{i} n_{i, f(i \rightarrow j)}$

Metrics for Clustering

- In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables.
- More specifically, it quantifies the "amount of information" (in units such as Shannons, more commonly called bits) obtained about one random variable, through the other random variable.
- NMI between two random variables CAT (category label) and CLS (cluster label) is defined as:

$$
\mathrm{NMI}(\mathrm{CAT} ; \mathrm{CLS})=\frac{\mathrm{I}(\mathrm{CAT} ; \mathrm{CLS})}{\sqrt{\mathrm{H}(\mathrm{CAT}) \mathrm{H}(\mathrm{CLS})}}
$$

where $\mathrm{I}(\mathrm{CAT}$; CLS) is the mutual information between CAT and CLS. The entropies $\mathrm{H}(\mathrm{CAT})$ and $\mathrm{H}(\mathrm{CLS})$ are used for normalizing the mutual information to be in the range of $[0,1]$.

Metrics for Clustering

- In practice, we made use of the following formulation to estimate the NMI score (Strehl and Ghosh (2002)):

$$
\mathrm{NMI}=\frac{\sum_{i=1}^{k} \sum_{j=1}^{k} n_{i, j} \log \left(\frac{n \cdot n_{i, j}}{n_{i} \cdot n_{j}}\right)}{\sqrt{\left(\sum_{i} n_{i} \log \frac{n_{i}}{n}\right)\left(\sum_{j} n_{j} \log \frac{n_{j}}{n}\right)}}
$$

- n is the number of documents
- n_{i} and n_{j} denote the number of documents in category i and cluster j
- $n_{i, j}$ is the number of documents in category i as well as in cluster j
- The NMI score is 1 if the clustering results perfectly match the category labels, and the score is 0 if data are randomly partitioned.
- The higher the NMI score, the better the clustering quality.

References I

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. In ICLR. McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12(2):153-157.

Smith, N. A. (2011). Linguistic Structure Prediction. Synthesis Lectures on Human Language Technologies. Morgan and Claypool.

Strehl, A. and Ghosh, J. (2002). Cluster ensembles - A knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3:583-617.

