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Course Organization

Representation: language models, word embeddings, topic models,
knowledge graphs

Learning: supervised learning, semi-supervised learning, distant supervision,
indirect supervision, sequence models, deep learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms
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Overview

1 Problem Definition

2 Generative vs. Discriminative Classification

3 General Linear Classification

4 Unsupervised Learning

5 EM Algorithm

6 Evaluation of Classification

7 Evaluation of Clustering
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Text Classification

Input: a piece of text x ∈ V, usually a document, e.g., a row vector of
X

Output: a label from a finite set

Standard line of attack:

Human experts label some data
Feed the data to a supervised machine learning algorithm that
constructs an automatic classifier f : x→ L
Apply f to as much data as you want!

Note: we assume the texts are segmented already, even the new ones
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Text Classification: Examples

Library-like subjects (e.g., the Dewey decimal system)

News stories: politics vs. sports vs. business vs. technology ...

Reviews of films, restaurants, products: positive vs. negative

Author attributes: identity, political stance, gender, age, ...

Email, arXiv submissions, etc.: spam vs. not

What is the language of an article?

Closely related: relevance to a query
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Features in Text Classification

Example (Running Example)

x =“The vodka was great, but don’t touch the hamburgers.”

A different representation of the text sequence r.v. X: feature vector
For j ∈ {1, 2, . . . , d}, let x j be a discrete random variable taking a
value in F

Often, these are term (word and perhaps n-gram) frequencies

e.g., xhamburgers = 1, x the = 2, xdelicious = 1, xdon’t touch = 1,

Can also be word “presence” features

e.g., xhamburgers = 1, x the = 1, xdelicious = 1, xdon’t touch = 1,

Transformations on word frequencies: logarithm, idf weighting

idf(v) = log
N

|i ∈ {1, . . . ,N}, cxi (v) > 0|

Disjunctions of terms
Clusters
Task-specific lexicons
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Probabilistic Classification

Classification rule

ŷ(x) = arg maxy∈Y P(y |f (x))

= arg maxy∈Y
P(y ,f (x))
P(f (x))

= arg maxy∈Y P(y , f (x))

Yangqiu Song (HKUST) COMP5222/MATH5471 October 16, 2019 9 / 45



Naive Bayes Classifier

P(x, y) = P(y)
d∏

j=1

P(X j = x j |y) = πy

d∏
j=1

(θj∗|y )x
j

Parameters:

π = (π1, . . . , πK )T is the “class prior”(sums to one): πk = P(y = k)
For each feature j and label y , a distribution over values θ∗|y=yk = θk

(sums to one for each y)
K + K × d parameters

Conditional independence assumption: given label observed, all the
features are conditionally independent
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Naive Bayes Classifier: A Generative View

Both ym and
xm = (x1

m, . . . , x
d
m)T

are observed variables;
π and θk are
parameters

Naive Bayes from Class Conditional Unigram Model

For m = 1, . . . ,M

Choose ym ∼ Multinomial(ym|1,π)

Choose Nm =
∑d

j x j
m ∼ Poisson(ξ)

For n = 1, . . . ,Nm

Choose v ∼ Multinomial(v |1,θ∗|ym ) =∏d
j=1(θj∗|ym )v=j

Alternative views

Choose xm ∼ Multinomial(X|Nm,θ∗|ym) =(
Nm

xm

)∏d
j=1(θj∗|ym)x

j
m

Choose xd
m ∼ Binomial(X |Nm, θ

j
∗|ym) =(

Nm

x j
m

)
(θj∗|ym)x

j
m(1− θj∗|ym)Nm−x jm
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Parameter Estimation (based on Multinomial)

Both ym and
xm = x1

m, . . . , x
d
m are

observed variables; π
and θk are parameters

Maximum likelihood of the training set:

J = log
∏M

m=1 Pπ,{θk}(xm, ym)

=
∑M

m=1 log Pπ,{θk}(xm, ym)

=
∑M

m=1 log P(ym|π)P(xm|ym,θ∗|ym)

We can formulate a constrained optimization
problem

max J
s.t.

∑K
k=1 πk = 1∑d
j=1 θ

j
k = 1(k = 1, . . . ,K )

It’s easy to solve with Lagrange multiplier and arrive
at:

πk = |{ym=k}|
M

θjk =
∑

m,ym=k x
j
m∑

m,ym=k

∑d
j=1 x

j
m
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Maximum Likelihood Estimation: θ̂ = arg maxθ P(W|θ)

P(W|θ) =
∏d

i θ
ui
i

(log likelihood)

⇒ log P(W|θ) =
∑d

i ui log θi

(Lagrange multiplier to make θ be a distribution)

⇒ L(W,θ) = log P(W|θ) =
∑d

i ui log θi + λ(
∑

i θi − 1)

(Set partial derivatives to zero)

⇒ ∂L
∂θi

= ui
θi

+ λ

Since
∑d

i θi = 1, we have λ = −
∑d

i ui

⇒ θi =
ui∑d
i ui

=
ui

N
(Maximum Likelihood Estimation ,MLE )
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Naive Bayes as a Linear Classifier

Given

P(x, y) = P(y)
d∏

j=1

P(X j = x j |y) = πy

d∏
j=1

(θj∗|y )x
j

Consider a binary classification problem where y = {1,−1}, the
prediction probability of the first class is

P(y = 1|x) =
exp(log θ>1 x + log π1)

exp(log θ>1 x + log π1) + exp(log θ>−1x + log π−1)

Classification rule with arg max can equivalently be expressed with log
odds ratio:

f (x) = log P(y=1|x)
P(y=−1|x)

= log P(y = 1|x)− log P(y = −1|x)
= (log θ1 − log θ−1)>x + (log π1 − log π−1)
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Naive Bayes: The Predictive Distribution

Classification rule with arg max can equivalently be expressed with log
odds ratio:

f (x) = (log θ1 − log θ−1)>x + (log π1 − log π−1)

The decision rule is to classify x with y = 1 if f (x) > 0, and y = −1
otherwise

The Naive Bayes classifier induces a linear decision boundary in
feature space X ; The boundary takes the form of a hyperplane,
defined by f (x) = 0
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Naive Bayes: Remarks

Estimation by (smoothed) relative frequency estimation: easy!

For continuous or integer-valued features, use different distributions

The bag of words version equates to building a conditional language
model for each label
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Generative vs. Discriminative Classification

Naive Bayes is the prototypical generative classifier

It describes a probabilistic process: “generative story” for x and y
Models P(x, y) = P(x|y)P(y) to interpret the data generation for each
class
Assumes conditional independence on the features given class label
But why model x? It’s always observed? What if our goal is just
classification P(y |x)?

Discriminative models instead:

seek to optimize a performance measure, like accuracy, or a
computationally convenient surrogate
do not worry about P(X)
directly model P(y |x)
tend to perform better when you have reasonable amounts of data
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Discriminative Text Classifiers

(Multinomial) logistic regression (also known as “max ent” and
“log-linear” model)

Support vector machines

Neural networks

Yangqiu Song (HKUST) COMP5222/MATH5471 October 16, 2019 18 / 45



Logistic Regression

Consider binary classification with y ∈ {−1, 1}, find a parameter
vector to map w:

P(y |x) =
1

1 + exp(−yw>x)

Linear decision rule:

f (x) = log P(y=1|x)
P(y=−1|x)

= log
1

1+exp(−w>x)

exp(−w>x)

1+exp(−w>x)

= log exp(w>x)
= w>x
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Theoretic Analysis (Ng and Jordan (2001))

Theorem (Compare Two Models)

Let hD and hG be any generative-discriminative pair of classifier, and hD,∞
and hG ,∞ be their asymptotic/population versions. Then for
ε(hD,∞) ≤ ε(hG ,∞) + ε0 to hold with high probability, it suffices to pick
m = Ω(log d), where d is dimensionality and m is number of training
examples.

When model assumption correct

NB and LR produce identical classifiers

When model assumption incorrect

LR is less biased: does not assume conditional independence
Therefore expect to outperform NB
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Results on UCI datasets (Ng and Jordan (2001))
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Results on UCI datasets (Ng and Jordan (2001))

Yangqiu Song (HKUST) COMP5222/MATH5471 October 16, 2019 22 / 45



Results on UCI datasets (Ng and Jordan (2001))
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Generative vs. Discriminative Neural Network Text
Classifiers
(Yogatama et al. (2017))
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Neural Network Text Classifiers Results
(Yogatama et al. (2017))
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Binary to Multi-class

Can we use a binary classifier to construct a multi-class classifier
Decompose the prediction into multiple binary decisions

One-vs-all
All-vs-all
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One-vs-all Classification

Assumption: Each class individually separable from all the others

Train K binary classifiers w1,w2, . . .wK using any binary classification
algorithm we have seen

Prediction: “Winner Takes All”: label = arg maxi w
>
i x
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One-vs-all Classification

Easy to learn
Use any binary classifier learning algorithm

Problems
No theoretical justification
Calibration issues: We are comparing scores produced by K classifiers
trained independently. No reason for the scores to be in the same
numerical range!
Might not always work: Yet, works fairly well in many cases, especially
if the underlying binary classifiers are tuned, regularized
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All-vs-all Classification
Sometimes called one-vs-one

Assumption: Every pair of classes is separable

Train K(K−1)
2 classifiers to separate every pair of labels from each

other

Prediction: More complex, each label get K-1 votes
How to combine the votes? e.g.,

Majority: Pick the label with maximum votes
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All-vs-all Classification

Every pair of labels is linearly separable here

When a pair of labels is considered, all others are ignored

Problems

O(K 2) weight vectors to train and store
Size of training set for a pair of labels could be very small, leading to
overfitting of the binary classifiers
Prediction is often ad-hoc and might be unstable. E.g., What if two
classes get the same number of votes?
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Training a Single Classifier

Rewrite input features and weight vector

Define a feature vector for label i being associated to input x
Stack all weight vectors into an nK -dimensional vector

This is called the Kesler construction

Yangqiu Song (HKUST) COMP5222/MATH5471 October 16, 2019 33 / 45



Let Us Examine One-vs-all Again

For an example with label i , we want w>i x > w>j x for all j

This is equivalent to

w>φ(x, i) > w>φ(x, j)

or
w>[φ(x, i)− φ(x, j)] > 0
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Notes

The number of weights is still same as one-vs-all, much less than
all-vs-all K(K-1)/2

Still account for all pairwise label preferences

Come with theoretical guarantees for generalization

Important idea that is applicable when we move to arbitrary structures
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Linear Models for Classification

“Linear” decision rule

ŷ = arg max
y∈Y

w>φ(x, y)

where φ : V × Y → Rd

Parameters: w ∈ Rd

What does this remind you of?
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MLE for Multinomial Logistic Regression

When we discussed log-linear language models, we transformed the
score into a probability distribution. Here, that would be

P(y |x) =
exp(w>φ(x, y))∑
y ′ exp(w>φ(x, y ′))

MLE can be rewritten as a maximization problem:

w∗ = arg max
w

∑
x,y

w>φ(x, y)︸ ︷︷ ︸
hope

− log
∑
y ′

exp(w>φ(x, y ′))︸ ︷︷ ︸
fear

Recall from language models:

Be wise and regularize!
Solve with batch or stochastic gradient methods
wi has an interpretation
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Log Loss for (x, y)

Another view is to minimize the negated log-likelihood, which is
known as “log loss”:

min
w

∑
x,y

log
∑
y ′

exp(w>φ(x, y ′))︸ ︷︷ ︸
fear

−w>φ(x, y)︸ ︷︷ ︸
hope
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Compare Loss

For an example with label i , we want for all j

w>φ(x, i) > w>φ(x, j)

Average log-loss

min
w

∑
x,y

log
∑
y ′

exp(w>φ(x, y ′))︸ ︷︷ ︸
fear

−w>φ(x, y)︸ ︷︷ ︸
hope

Hinge loss

min
w

∑
x,y

max
y ′

(w>φ(x, y ′))︸ ︷︷ ︸
fear

−w>φ(x, y)︸ ︷︷ ︸
hope

The function can be not differentiable
But it’s still sub-differentiable. Solution: (stochastic) sub-gradient
descent!
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Hinge Loss for (x, y)

min
w

∑
x,y

max
y ′

(w>φ(x, y ′))︸ ︷︷ ︸
fear

−w>φ(x, y)︸ ︷︷ ︸
hope

In binary case:

⇒ min
w

∑
x,y

max{0,−yw>x}

Any thoughts about negative sampling?
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Minimizing Hinge Loss: Perceptron

min
w

M∑
m=1

max
y ′

(w>φ(xm, y
′))−w>φ(xm, ym)

Stochastic subgradient descent on the above is called the perceptron
algorithm

For t = 1, . . . ,T

Pick it randomly from {1, . . . , n}
ŷit = arg maxy′ w

>φ(x, y ′)
w← w − η

(
w>φ(xit , ŷit )− w>φ(xit , yit )

)
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Error Costs

Suppose that not all mistakes are equally bad

E.g., false positives vs. false negatives in spam detection

Let cost(y ′, y) quantify the “badness” of substituting y ′ for correct
label y

Intuition: estimate the scoring function so that
score(y)− score(y ′) ∝ cost(y ′, y)(

max
y ′

(w>φ(x, y ′)) + cost(y , y ′)

)
−w>φ(x, y)
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General Remarks

Text classification: many problems, all solved with supervised learners

Lexicon features can provide problem-specific guidance

Naive Bayes, log-linear, and linear SVM are all linear methods that
tend to work reasonably well, with good features and
smoothing/regularization

Rumor: random forests are widely used in industry when performance
matters more than interpretability

Lots of papers about neural networks, though with hyper-parameter
tuning applied fairly to linear models, the advantage is not
clear (Yogatama et al. (2015))

Lots of work on feature design
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Further Reading

Michael Collins. The naive Bayes model, maximum-likelihood
estimation, and the EM algorithm (Collins (2011))

Koby Crammer and Yoram Singer. On the algorithmic
implementation of multiclass kernel-based vector machines. Journal
of Machine Learning Research (Crammer and Singer (2001))

Daniel Jurafsky and James H. Martin. Logistic regression (Jurafsky
and Martin (2017))
https://web.stanford.edu/~jurafsky/slp3/7.pdf

Daniel Jurafsky and James H. Martin.Naive Bayes and sentiment
classification (Jurafsky and Martin (2017))
https://web.stanford.edu/~jurafsky/slp3/6.pdf
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