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Course Organization

Representation: language models, word embeddings, topic models,
knowledge graphs

Learning: supervised learning, semi-supervised learning, distant supervision,
indirect supervision, sequence models, deep learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms
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Motivation: Sparse Regularization

Recall the regularized empirical risk minimization problem:

min
w∈Rd

1

N

N∑
i=1

`(w, xi , yi )︸ ︷︷ ︸
Empirical Loss/Data Fitting

+ λr(w)︸ ︷︷ ︸
Regularization

Often, regularizer r is used to encourage sparsity pattern in w

For example, `1-regularized least squares,

min
w∈Rd

1

N
‖Xw − b‖2 + λ‖w‖1

Regularizes and encourages sparsity in w

The objective is non-differentiable when any wi = 0

Subgradient methods are optimal (slow) black-box methods

Faster methods for specific non-smooth problems?
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Smoothing Approximations of Non-Smooth Functions

Smoothing: replace non-smooth f with smooth fξ

Apply a fast method for smooth optimization

Smooth approximation to the absolute value:

|x | ≈
√

x2 + ν
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Smoothing Approximations of Non-Smooth Functions

Smoothing: replace non-smooth f with smooth fξ
Apply a fast method for smooth optimization

Smooth approximation to the absolute value:

|x | ≈
√

x2 + ν

Smooth approximation to the max function:

max{a, b} ≈ log(exp(a) + exp(b))

Smooth approximation to the hinge loss:

max{0, x} ≈


0 x ≥ 1

1− x2 t < x < 1
(1− t)2 + 2(1− t)(t − x) x ≤ t

Generic smoothing strategy: strongly-convex regularization of convex
conjugate (Nesterov (2005))
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Discussion of Smoothing Approach

Nesterov (2005) shows that:

Gradient method on smoothed problem has O(1/
√
t) subgradient rate

Accelerated gradient method has faster O(1/t) rate

In practice:

Slowly decrease level of smoothing (often difficult to tune)
Use faster algorithms like L-BFGS, SAG, or SVRG
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Converting to Constrained Optimization

Re-write non-smooth problem as constrained problem

The problem
min
w

f (w) + λ‖w‖1

is equivalent to the problem

min
w+≥0,w−≥0

f (w+ −w−) + λ(
∑
i

w+
i + w−i )

or
min

∀i ,−w′ i≤wi≤w′ i
f (w) + λ

∑
i

w′i

or
min
‖w‖1≤γ

f (w) + λγ

These are smooth objective with “simple” constraints

min
w∈C

f (w)
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Optimization with Simple Constraints

Recall: gradient descent minimizes quadratic approximation:

f (w′) ≤ f (w) +∇f (w)>(w′ −w) +
1

2η
‖w′ −w‖2

(Given the gradient is Lipschitz-continuous ∇2f (w) � LI )

wt+1 = arg min
w′
{f (wt) +∇f (wt)>(w′ −wt) +

1

2η
‖w′ −wt‖2}

(Guaranteed progress; Projected Newton requires last term to be
1

2η‖w
′ −wt‖2

∇2f (wt))
Consider minimizing subject to simple constraints:

wt+1 = arg min
w′∈C
{f (wt) +∇f (wt)>(w′ −wt) +

1

2η
‖w′ −wt‖2}

Equivalent to projection of gradient descent:

wGD
t = wt − ηt∇f (wt)

wt+1 = arg min
w′∈C
‖w′ −wGD

t ‖
Yangqiu Song (HKUST) COMP5222/MATH5471 October 11, 2019 11 / 40



Gradient Projection

Yangqiu Song (HKUST) COMP5222/MATH5471 October 11, 2019 12 / 40



Gradient Projection

Yangqiu Song (HKUST) COMP5222/MATH5471 October 11, 2019 12 / 40



Gradient Projection

Yangqiu Song (HKUST) COMP5222/MATH5471 October 11, 2019 12 / 40



Gradient Projection

Yangqiu Song (HKUST) COMP5222/MATH5471 October 11, 2019 12 / 40



Gradient Projection

Yangqiu Song (HKUST) COMP5222/MATH5471 October 11, 2019 12 / 40



Gradient Projection

Yangqiu Song (HKUST) COMP5222/MATH5471 October 11, 2019 12 / 40



Gradient Projection
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Discussion of Projected Gradient

Projected gradient has same rate as gradient method!

Can do many of the same tricks (i.e. line-search, acceleration,
Barzilai-Borwein, SAG, SVRG)

For projected Newton, you need to do an expensive projection under
‖ · ‖∇2f (wt)
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Proximal-Gradient Method

A generalization of projected-gradient is Proximal-gradient

The proximal-gradient method addresses problem of the form

min
w

f (w) + r(w)

where f is smooth but r is a general convex function

Applies proximity operator of r to gradient descent on f :

wGD
t = wt − ηt∇f (wt)

wt+1 = arg min
w′
‖w′ −wGD

t ‖2 + ηr(w′)

Equivalent to using the approximation

wt+1 = arg min
w′
{f (wt) +∇f (wt)>(w′−wt) +

1

2η
‖w′−wt‖2 + r(w′)}

Convergence rates are still the same as for minimizing f
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Proximal-Gradient Method

If L is known, we can do following update:

wt+1 = arg minw′
{
f (wt) +∇f (wt)>(w′ −wt) + L

2‖w
′ −wt‖2 + r(w′)

}
= arg minw′

{∥∥w′ − (wt − L
2∇f (wt)

)∥∥2

2
+ 1

L r(w′)
}

= Prox 1
L
r

(
wt − L

2∇f (wt)
)

If L is unknown, use line-search (Beck and Teboulle (2009))

Most update to date assumptions

f (w) is Lipschitz smooth, i.e.,
‖∇f (w)−∇f (w′)‖2 ≤ ‖w −w′‖2 or the gradient
is Lipschitz-continuous ∇2f (w) � LI
r(w) is lower semi-continuous (see the right figure)
f (w) + r(w) is bounded from below, i.e.,
inf f (w) + r(w) > −∞
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Proximal Operator, Iterative Soft Thresholding

For `1-regularization r(w) = λ
∑

i |wi |, we obtain iterative
soft-thresholding:

wt+1 = Proxη,λ[wt − η∇f (wt)] = softThreshη,λ[wt − η∇f (wt)]

where

softThreshλ(w) = (w − λ)+ − (−w − λ)+ =


wi − λ wi ≥ λ

0 |wi | ≤ λ
wi + λ wi ≤ −λ

http://stat.cmu.edu/~ryantibs/convexopt/scribes/prox-grad-scribed.pdf

Example (Example with λ = 1)

Input Threshold Soft-Threshold
0.6715
−1.2075
0.7172
1.6302
0.4889




0
−1.2075

0
1.6302

0




0
−0.2075

0
0.6302

0
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Special case of Projected-Gradient Methods

Projected-gradient methods are another special case:

r(w) =

{
0 if w ∈ C
∞ if w 6∈ C

gives
wt+1 = ProjectC[wt − η∇f (wt)]
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Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:

`1-Regularization
Group `1-Regularization
Lower and upper bounds
Small number of linear constraint
Probability constraints
A few other simple regularizers/constraints

Can solve these non-smooth/constrained problems as fast as
smooth/unconstrained problems!

We can again do many of the same tricks (line-search, acceleration,
Barzilai-Borwein, two-metric projection, inexact proximal operators,
SAG, SVRG)

e.g., Accelerated Proximal-Gradient Algorithm (Li and Lin (2015))
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Summary

Convex functions have special properties that allow us to efficiently
minimize them

Gradient-based methods allow elegant scaling with dimensionality of
problem

Stochastic-gradient methods allow scaling with number of training
examples, at cost of slower convergence rate

For finite datasets, SAG fixes convergence rate of stochastic gradient
methods, and SVRG fixes memory problem of SAG

These building blocks can be extended to solve a variety of
constrained and non-smooth problems
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Neural Network: A Running Example
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
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Neural Network: A Running Example
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

In order to have some
numbers to work with, here
are the initial weights, the
biases, and training
inputs/outputs

The forward pass:

neth1 = w1 ∗ i1 + w2 ∗ i2 + b1 ∗ 1 =
0.15∗0.05 + 0.2∗0.1 + 0.35∗1 = 0.3775

outh1 = 1

1+e
−neth1

= 1
1+e−0.3775 = 0.5933

Similarly, outh2 = 0.5969

neto1 = w5 ∗outh1 +w6 ∗outh2 +b2 ∗1 =
0.4 ∗ 0.5933 + 0.45 ∗ 0.5969 + 0.6 ∗ 1 =
1.1059

outo1 = 1
1+e−neto1

= 1
1+e−1.1059 = 0.7514

Similarly, outo2 = 0.7729
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Neural Network: A Running Example
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

In order to have some
numbers to work with, here
are the initial weights, the
biases, and training
inputs/outputs

Recall:

outo1 = 1
1+e−neto1

= 1
1+e−1.1059 = 0.7514

Similarly, outo2 = 0.7729

Consider square loss as total error
Etotal =

∑
i

1
2 (target − output)2

Eo1 = 1
2 (targeto1 − outputo1)2 =

1
2 (0.01− 0.7514)2 = 0.2748

Similarly Eo2 = 0.0236

Etotal = 0.2748 + 0.0236 = 0.2984
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Neural Network: A Running Example
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

In the backward pass, we consider the chain
rule for w5:

∂Etotal
∂w5

= ∂Etotal
∂outo1

∂outo1
∂neto1

∂neto1
∂w5

Compute ∂Etotal
∂outo1

:

Etotal = 1
2 (targeto1 − outputo1)2 +

1
2 (targeto2 − outputo2)2

∂Etotal
∂outo1

=
∂Eo1
∂outo1

= (outputo1 −
targeto1) = 0.7514− 0.01 = 0.7414

Compute ∂outo1
∂neto1

:

outo1 = 1
1+e−neto1

.
= σ(neto1)

∂outo1
∂neto1

= e−neto1

(1+e−neto1 )2
=

(1− σ(neto1))σ(neto1) =
0.7514(1− 0.7514) = 0.1868

Yangqiu Song (HKUST) COMP5222/MATH5471 October 11, 2019 24 / 40

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/


Neural Network: A Running Example
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Compute ∂neto1
∂w5

:

neto1 = w5 ∗ outh1 + w6 ∗ outh2 + b2 ∗ 1
∂neto1
∂w5

= outh1 = 0.5933

Put all together:
∂Etotal
∂w5

= ∂Etotal
∂outo1

∂outo1
∂neto1

∂neto1
∂w5

=
0.7414 ∗ 0.1868 ∗ 0.5932 = 0.0822

We update w5 as:

w ′5 = w5 − η ∂Etotal
∂w5

=
0.4− 0.5 ∗ 0.0822 = 0.3589

Yangqiu Song (HKUST) COMP5222/MATH5471 October 11, 2019 25 / 40

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/


Neural Network: A Running Example
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

The chain rule for w1:
∂Etotal
∂w1

= (
∂Eo1
∂outh1

+
∂Eo2
∂outh1

)∂outh1
∂neth1

∂neth1
∂w1

where
∂Eo1
∂outh1

=
∂Eo1
∂outo1

∂outo1
∂neto1

∂neto1
∂outh1

and
∂Eo2
∂outh1

=
∂Eo2
∂outo2

∂outo2
∂neto2

∂neto2
∂outh1

Note that here
∂Eo1
∂outo1

∂outo1
∂neto1

have been
computed before and can be reused

After simple calculation as before, we
have ∂Etotal

∂w1
= 0.0004

w ′1 = w1 − η ∂Etotal
∂w1

=
0.15− 0.5 ∗ 0.0004 = 0.1498
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Neural Network: A Running Example
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Similarly we can compute all the weights:

w ′1 = 0.1498

w ′2 = 0.1996

w ′3 = 0.2498

w ′4 = 0.2995

w ′5 = 0.3589

w ′6 = 0.4087

w ′7 = 0.5113

w ′8 = 0.5614

The total error is then: 0.2910 (<0.2984 as
initial)
http://playground.tensorflow.org/
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Neural Network Optimization: General Ideas

We can in general use first-order stochastic gradient descent methods
for neural network optimization

wt+1 = wt − η 1
|Bt |

∑|Bt |
i∈Bt ∇fi (wt)

Usually called mini-batch in neural network context

Momentum update (Polyak (1964); Goodfellow et al. (2016)):

Improve the condition of Hessian matrix and reduce variance in the
stochastic gradient

vt+1 = αvt − η 1
|Bt |

∑|Bt |
i∈Bt ∇fi (wt)

wt+1 = wt + vt+1

http://www.deeplearningbook.org/contents/optimization.html

Yangqiu Song (HKUST) COMP5222/MATH5471 October 11, 2019 28 / 40

http://www.deeplearningbook.org/contents/optimization.html


Neural Network Optimization: General Ideas (Cont’d)

Momentum update (Goodfellow et al. (2016)):

vt+1 = αvt − η 1
|Bt |

∑|Bt |
i∈Bt ∇fi (wt)

wt+1 = wt + vt+1

Nesterov Momentum
Sutskever et al. (2013) introduced a variant of the momentum
algorithm that was inspired by Nesterovs accelerated gradient method

vt+1 = αvt − η 1
|Bt |

∑|Bt |
i∈Bt ∇fi (wt+αvt)

wt+1 = wt + vt+1

Unfortunately, in the stochastic gradient case, Nesterov momentum
does not improve the rate of convergence
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Neural Network Optimization: General Ideas (Cont’d)

The difference between Nesterov momentum and standard
momentum is where the gradient is evaluated
Momentum update (Goodfellow et al. (2016)):

vt+1 = αvt − η 1
|Bt |

∑|Bt |
i∈Bt ∇fi (wt)

wt+1 = wt + vt+1

Nesterov Momentum
vt+1 = αvt − η 1

|Bt |
∑|Bt |

i∈Bt ∇fi (wt+αvt)

wt+1 = wt + vt+1

http://cs231n.github.io/neural-networks-3/
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Neural Network Optimization: General Ideas (Cont’d)

Momentum update (Goodfellow et al. (2016)):

vt+1 = αvt − η 1
|Bt |

∑|Bt |
i∈Bt ∇fi (wt)

wt+1 = wt + vt+1

Nesterov Momentum (Sutskever et al. (2013))

vt+1 = αvt − η 1
|Bt |

∑|Bt |
i∈Bt ∇fi (wt+αvt)

wt+1 = wt + vt+1

Original Nesterov’s accelerated gradient method (Nesterov (1983)):

wt+1 = vt − ηt∇f (vt) (regular gradient step)
vt+1 = wt +βt(wt+1−wt) = βtwt+1 + (1−β)wt (“slide” in dir. of w)
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More about Learning Rates

Higher learning rates will decay the loss faster, but they get stuck at worse
values of loss (green line). This is because there is too much “energy” in
the optimization and the parameters are bouncing around chaotically,
unable to settle in a nice spot in the optimization landscape.
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Options to Tune Learning Rate

Global tuning methods

Step decay: Reduce the learning rate by some factor every few epochs
(Depend heavily on the type of problem and the model)

Exponential decay: ηt = η0e
−kt , where η0 and k are hyper-parameters

1/t decay: ηt = η0/(1 + kt), where η0 and k are hyper-parameters
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Options to Tune Learning Rate

Adaptive tuning (let gt = 1
|Bt |
∑|Bt |

i∈Bt ∇fi (w
t))

Adagrad (Duchi et al. (2011)) (larger partial derivative has a rapid
decrease in learning rate)

rt+1 = rt + gt � gt

wt+1 = wt − η 1
δ+

√
rt
� gt (Division and square root applied

element-wise)

RMSprop (Hinton (2012))
rt+1 = ρrt + (1− ρ)gt � gt (exponentially weighted moving average)
wt+1 = wt − η 1√

δ+rt
� gt

Adam (Kingma and Ba (2014)) (adaptive moments)
st+1 = ρ1st + (1− ρ1)gt (gradient moments)
rt+1 = ρ2rt + (1− ρ2)gt � gt (partial derivative size moments)

ˆst+1 = st+1/(1− ρt1) (ρt1: ρ1 to power t)
ˆrt+1 = rt+1/(1− ρt2) (ρt2: ρ2 to power t)

wt+1 = wt − η 1

δ+
√

ˆrt+1
� ˆst+1

ρ1 and ρ2 are hyper-parameters (suggested defaults: 0.9 and 0.999
respectively)
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Animations of the Learning Process Dynamics
Images credit: Alec Radford

Contours of a loss surface and time evolution of different optimization algorithms. Notice the “overshooting” behavior of

momentum-based methods, which make the optimization look like a ball rolling down the hill.
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Animations of the Learning Process Dynamics
Images credit: Alec Radford

SGD has a very hard time breaking symmetry and gets stuck on the top. Conversely, algorithms such as RMSprop will see very

low gradients in the saddle direction. Due to the denominator term in the RMSprop update, this will increase the effective

learning rate along this direction, helping RMSProp proceed.

Yangqiu Song (HKUST) COMP5222/MATH5471 October 11, 2019 36 / 40



Further Reading

Kingma and Ba (2014). Adam: A Method for Stochastic
Optimization

Reddi and Kumar (2018). On the Convergence of Adam and Beyond

Smith et al. (2017). Don’t Decay the Learning Rate, Increase the
Batch Size
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Brief Summary

We have introduced stochastic gradient decent methods for

Convex optimization
Neural network optimization

There is still less theoretical work on non-convex optimization,
especially for deep learning

But for most of the cases, people just try different adaptive SGD w/o
momentum
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