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Course Organization

Representation: language models, word embeddings, topic models,
knowledge graphs

Learning: supervised learning, semi-supervised learning, distant supervision,
indirect supervision, sequence models, deep learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms
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Big-N Problems

Recall the regularized empirical risk minimization problem:

min
w∈Rd

1

N

N∑
i=1

`(w, xi , yi )︸ ︷︷ ︸
Empirical Loss/Data Fitting

+ λr(w)︸ ︷︷ ︸
Regularization

What if number of training examples N is very large?
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing f (w) =
∑N

i=1 fi (w)

Deterministic gradient method (Cauchy (1847)):

wt+1 = wt − ηt∇f (wt) = wt − ηt

N

N∑
i=1

∇fi (wt)

Iteration cost is linear in N
Convergence with constant ηt or line-search

Stochastic gradient method (Robbins and Monro (1951)):
Random selection of i from {1, 2, . . . ,N}

wt+1 = wt − ηt f ′i (wt)

Gives unbiased estimate of true gradient,
E[f ′i (w)] = 1

N∇fi (w) = ∇f (w)
Iteration cost is independent of N
Convergence requires ηt → 0
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Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are N times faster, but how many iterations?

Assumption Deterministic Stochastic

Convex O( 1
T 2 ) O( 1√

T
)

Strongly-Convex O((1− µ/L)>) O( 1
T )

Proof:

https://www.cs.rochester.edu/u/jliu/CSC-576/class-note-10.pdf

Stochastic has low iteration cost but slow convergence rate

Sublinear rate even in strongly-convex case
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Stochastic vs. Deterministic Convergence Rates

Plot of convergence rates in strongly-convex case:

Stochastic will be superior for low-accuracy/time situations.
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Stochastic vs. Deterministic for Non-Smooth

Consider the binary support vector machine objective:

min
w∈Rd

N∑
i=1

max{0, 1− yi (w
>xi )}+

λ

2
‖w‖2

Rates for subgradient methods for non-smooth
objectives (Shalev-Shwartz et al. (2011)):

Assumption Deterministic Stochastic

Convex O( 1√
T

) O( 1√
T

)

Strongly-Convex O( 1
T ) O( 1

T )

Other black-box methods (cutting plane) are not faster

For non-smooth problems:
Stochastic methods have same rate as smooth case
Deterministic methods are not faster than stochastic method
So use stochastic subgradient (iterations are n times faster)
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

f (w′) ≥ f (w) +∇f (w)>(w′ −w), ∀w,w′

A vector d is a subgradient of a convex function f at w if

f (w′) ≥ f (w) + d>(w′ −w), ∀w,w′

At differentiable w:

Only subgradient is ∇f (w)

At non-differentiable w:

We have a set of subgradients
Called the sub-differential, ∂f (w)

Note that 0 ∈ ∂f (w) if w is a global minimum
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Sub-Differential of Absolute Value and Max Functions

Sub-differential of absolute value function (sign of the variable if
non-zero, anything in [-1, 1] at 0):

∂|x | =


1 x > 0
−1 x < 0

[−1, 1] x = 0
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Sub-Differential of Absolute Value and Max Functions

Sub-differential of absolute value function (sign of the variable if
non-zero, anything in [-1, 1] at 0):

∂|x | =


1 x > 0
−1 x < 0

[−1, 1] x = 0

Sub-differential of max function (any convex combination of the
gradients of the argmax):

∂max{f1(x), f2(x)} =


∇f1(x) f1(x) > f2(x)
∇f2(x) f1(x) < f2(x)

θ∇f1(x) + (1− θ)∇f2(x) f1(x) = f2(x)
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Subgradient and Stochastic Subgradient methods

The basic subgradient method:

wt+1 = wt − ηd

for some d ∈ ∂f (wt)

For convergence, we require η → 0

The basic stochastic subgradient method:

wt+1 = wt − ηd

for some d ∈ ∂fi (wt) for some random i ∈ {1, 2, . . . ,N}
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Stochastic Subgradient Methods in Practice

The theory says to use decreasing sequence ηt = 1/λt

it = rand(1, . . . ,N), ηt = 1/λt

wt+1 = wt − ηt f ′it (w
t)

O(1/t) for smooth objectives
O(log(t)/t) for non-smooth objectives (Shamir and Zhang (2013))

Except for some special cases, you should not do this
Initial steps are huge: usually λ = O(1/N) or O(1/

√
N)

Later steps are tiny: 1/t gets small very quickly
Convergence rate is not robust to mis-specification of λ

Tricks that can improve theoretical and practical properties
1 Use smaller initial step-sizes, that go to zero more slowly
2 Take a (weighted) average of the iterations or gradients:

w̄t =
t∑

i=1

ωtwt d̄t =
t∑

i=1

δtdt
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Speeding up Stochastic Subgradient Methods

Works that support using large steps and averaging:

Gradient averaging all previous steps improves constants (“dual
averaging”) (Nesterov (2007)); Finds non-zero variables with sparse
regularizers. (Xiao (2010))

Averaging later iterations achieves O(1/t) in non-smooth case.
(Rakhlin et al. (2012))

ηt = O(1/tβ) for β ∈ (0.5, 1) more robust than ηt = O(1/t) (Bach
and Moulines (2011))
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Big-N Problems

Recall the regularized empirical risk minimization problem:

min
w∈Rd

1

N

N∑
i=1

`(w, xi , yi )︸ ︷︷ ︸
Empirical Loss/Data Fitting

+ λr(w)︸ ︷︷ ︸
Regularization

Stochastic methods:

O(1/t) convergence but requires 1 gradient per iterations
Rates are unimprovable for general stochastic objectives

Deterministic methods:

O(ρt) convergence but requires N gradients per iteration
The faster rate is possible because N is finite

For minimizing finite sums, can we design a better method?
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Motivation for Hybrid Methods
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Motivation for Hybrid Methods
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Hybrid Deterministic-Stochastic

Control the sample size

The FG method uses all N gradients,

∇f (wt) =
1

N

N∑
i=1

∇fi (wt)

The SG method approximates it with 1 sample,

∇fit (wt) ≈ 1

N

N∑
i=1

∇fi (wt)

A common variant is to use larger sample Bt ,

|Bt |∑
i=1

∇fi (wt) ≈ 1

N

N∑
i=1

∇fi (wt)
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Batching

The SG method with a sample Bt uses iterations

wt+1 = wt − ηt

|Bt |

|Bt |∑
i∈Bt
∇fi (wt)

For a fixed sample size |Bt |, the rate is sublinear

Gradient error decreases as sample size |Bt | increases

Common to gradually increase the sample size |Bt | (Bertsekas and
Tsitsiklis (1996))

We can choose |Bt | to achieve a linear convergence rate:

Early iterations are cheap like SG iterations
Later iterations can use a Newton-like method
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Evaluation on Chain-Structured CRFs

Results on chain-structured conditional random field:
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Stochastic Average Gradient (SAG)

Growing |Bt | eventually requires O(N) iteration cost

Can we have a rate of O(µt) with only 1 gradient evaluation per
iteration?

YES! The stochastic average gradient (SAG) algorithm (Roux et al.
(2012)):

Randomly select it from {1, 2, . . . ,N} and compute ∇fit (wt)

wt+1 = wt − ηt

N

N∑
i=1

g t
i

where

g t
i =

{
∇fit (wt) if it is selected
g t−1
i otherwise

Memory: g t = ∇fit (wt) from the last t where it was selected

Keep in memory the gradients of all functions fi
Extra memory requirement: same size as original data
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Convergence Rate of SAG

If each f ′i is Lipschitz continuous and f is strongly-convex, with
ηt = 1/16L, SAG has:

E[f (wt)− f (w∗)] ≤
(

1−min

{
µ

16L
,

1

8N

})t

C

where

C = [f (w0)− f (w∗)] +
4L

N
‖w0 −w∗‖2 +

σ2

16L

Linear convergence rate but only 1 gradient per iteration

For well-conditioned problems, constant reduction per pass:(
1− 1

8N

)N

≤ exp

(
−1

8

)
= 0.8825

For ill-conditioned problems, almost same as deterministic method (but
N times faster).
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Rate of Convergence Comparison
(Assuming Strongly-convex)

Assume that N = 700, 000, L = 0.25, µ = 1/N:

Gradient method has rate
(

L+µ
L−µ

)
= 0.99999

Accelerated gradient method has rate
(
1−

√
µ
L

)
= 0.99761

SAG (N iterations) has rate
(
1−min

{
µ
16L ,

1
8N

})N
= 0.88250

Fastest possible first-order method:
(

1−
√
L−√µ√
L+
√
µ

)2
= 0.99048

SAG beats two lower bounds:
Stochastic gradient bound (of O(1/T ))
Deterministic gradient bound (for typical L, µ, and N)

Number of fi evaluations to reach ε: (iteration complexity)

Stochastic O( L
µ (1/ε))

Gradient O(N L
µ log(1/ε))

Accelerated O(N
√

L
µ log(1/ε))

SAG O(max
{
N, L

µ

}
log(1/ε))
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Comparing Deterministic and Stochatic Methods

quantum (N = 50,000, d = 78) and rcv1 (N = 697,641, d = 47,236)

ASG: The average of the iterations generated by the SG method
AFG: Accelerated Full Gradient
IAG: increment average gradient (Blatt et al. (2007))
SAG-LS: SAG with line search for step sizes
More results: https://hal.inria.fr/hal-00674995v3/document
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Comparing Deterministic and Stochatic Methods

protein dataset (N = 145,751, d = 74), dataset split in two
(training/testing)

ASG: The average of the iterations generated by the SG method
AFG: Accelerated Full Gradient
RDA: Dual Averaging for Regularized Stochastic Learning (Xiao (2010))
pegasos: SGD for SVM (Shalev-Shwartz et al. (2011))
More results: https://hal.inria.fr/hal-00674995v3/document
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Comparing Deterministic and Stochatic Methods

cover type dataset (N = 581,012, d = 54), dataset split in two
(training/testing)

ASG: The average of the iterations generated by the SG method
AFG: Accelerated Full Gradient
RDA: Dual Averaging for Regularized Stochastic Learning (Xiao (2010))
pegasos: SGD for SVM (Shalev-Shwartz et al. (2011))
More results: https://hal.inria.fr/hal-00674995v3/document
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Minimizing Finite Sums: Dealing with the Memory

A major disadvantage of SAG is the memory requirement

Use mini-batches (only store gradient of the mini-batch)
Use structure in the objective, e.g.,

For fi (w) = L(x>i w), only need to store N values of x>i w

If the above don’t work, use stochastic variance-reduced gradient
(SVRG)... (Johnson and Zhang (2013); Mahdavi et al. (2013))
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Stochastic Variance-Reduced Gradient (SVRG)

For s = 0, 1, . . ., do
(Maintain an estimate w̃s that is close to the optimal w∗)

Compute the gradient at w̃s : ds = 1
N

∑N
i=1∇fi (w̃s)

Let w0 = w̃s

For t = 1, . . . ,m (e.g., choose m = 2N for convex problem and
m = 5N in non-convex problems), do

Randomly select it from {1, 2, . . . ,N}
wt = wt − ηt(∇fit (w

t−1)−∇fit (w̃s) + ds)

Option 1: set w̃s = w̄
Option 2: set w̃s = wt for randomly chosen t from t = 1, . . . ,m

Requires 2 gradients per iteration but only requires storing ds and w̃s

E[∇fit (wt−1)−∇fit (w̃s) + ds)] = 1
N∇fi (w

t−1) = ∇f (wt−1)
When w̃s and wt−1 converged to the same parameter w∗, then ds → 0
Therefore if ∇fit (w̃s)→ ∇fit (w∗), then
∇it f (wt−1)−∇fit (w̃s) + ds → ∇it f (wt−1)−∇fit (w∗)→ 0
Unlike SGD, the learning rate ηt for SVRG does not have to decay,
which leads to faster convergence as one can use a relatively large
learning rate.
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