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Course Organization

Representation: language models, word embeddings, topic models,
knowledge graphs

Learning: supervised learning, semi-supervised learning, distant supervision,
indirect supervision, sequence models, deep learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms

Yangqiu Song (HKUST) COMP5222/MATH5471 October 4, 2019 3 / 47



Overview

1 Introduction

2 Background

3 Unconstrained Convex Optimization
Gradient Based Optimization
Stochastic Subgradient
Finite-Sum Methods
Non-Smooth Objectives

4 Optimization for Neural Networks

Yangqiu Song (HKUST) COMP5222/MATH5471 October 4, 2019 4 / 47



Overview

1 Introduction

2 Background

3 Unconstrained Convex Optimization
Gradient Based Optimization
Stochastic Subgradient
Finite-Sum Methods
Non-Smooth Objectives

4 Optimization for Neural Networks

Yangqiu Song (HKUST) COMP5222/MATH5471 October 4, 2019 5 / 47



Log-Linear Models: Definitions

We define a conditional log-linear model P(Y |X ) as:

Y is the set of events (for language modeling, V)
X is the set of contexts (for n-gram language modeling, Vn−1)
φ : X × Y → Rd is a feature vector function
w ∈ Rd are the model parameters

Pw(Y = y |X = x) =
exp(w>φ(x , y))∑

y ′∈Y exp(w>φ(x , y ′))

∗ Pw(Y = y |X = x) , P(Y = y |X = x ,w)
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Breaking It Down

Pw(Y = y |X = x) =
exp(w>φ(x , y))∑

y ′∈Y exp(w>φ(x , y ′))

linear score w>φ(x , y)

nonnegative exp(w>φ(x , y))

normalizer
∑

y ′∈Y exp(w>φ(x , y ′)) , Zw(x)

“Log-linear” comes from the fact that:

logPw(Y = y |X = x) = w>φ(x , y)− logZw(x)︸ ︷︷ ︸
constant in y

This is an instance of the family of generalized linear models
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Other Learning Problems: Least Square Regression

min
w∈Rd

1

N

N∑
i=1

(yi −w>xi )
2

︸ ︷︷ ︸
Empirical Loss

+
λ

2
||w||22︸ ︷︷ ︸

Regularization

xi ∈ Rd : d-dimensional feature vector
yi : target variable
w ∈ Rd : model parameters
N: number of data points
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Other Learning Problems: Classification

min
w∈Rd

1

N

N∑
i=1

`(yiw
>xi ) +

λ

2
||w||22

yi ∈ {+1,−1}
Loss function `(z), z = yiw

>xi
SVMs: (squared) hinge loss `(z) = max(0, 1− z)p where p = 1, 2
Logistic regression: `(z) = log(1 + exp(−z))
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Other Learning Problems: Logistic Regression

Consider the case where Y ∈ {+1,−1}

Pw(Y = +1|X = x) = exp(w>φ(x ,+1))
exp(w>φ(x ,+1))+exp(w>φ(x ,−1))

= 1
1+exp(w>(φ(x ,−1)−φ(x ,+1)))

= σ(w>φ(x ,+1)− φ(x ,−1))
notation change

= σ(yw>f(x))

where σ(z) = 1
1+e−z is logistic function
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Other Learning Problems: Feature Selection

min
w∈Rd

1

N

N∑
i=1

`(yiw
>xi ) + λ||w||1

`1 regularization: ||w||1 =
∑d

i=1 |wi |
λ controls sparsity level

(Elements of Statistical Learning by Hastie, Tibshirani, and Friedman)
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Other Learning Problems: Feature Selection

Feature Selection using Elastic Net

min
w∈Rd

1

N

N∑
i=1

`(yiw
>xi ) + λ(||w||1 + γ||w||22)

Elastic net regularizer, more robust than `1 regularizer

Yangqiu Song (HKUST) COMP5222/MATH5471 October 4, 2019 12 / 47



Why (Unconstrained) Stochastic Optimization?

Big data challenge

Google processes 5.13B queries/day (2013)
Twitter receives 340M tweets/day (2012)
Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
(1PB=1015bytes=1000terabytes)
eBay has 6.5 PB of user data + 50 TB/day (5/2009)

Foundation of deep learning optimization

Yangqiu Song (HKUST) COMP5222/MATH5471 October 4, 2019 13 / 47



Why Learning from Big Data is Hard??

Too many data points

Issue: can’t afford go through data set many times
Solution: Stochastic Optimization

High dimensional data

Issue: can’t afford second order optimization (Newton’s method)
Solution: first order method (i.e., gradient based method)
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Vector, Norm, Inner product, Dual Norm

Bold letters x ∈ Rd (data vector), w ∈ Rd (model parameter):
d-dimensional vectors, yi denotes response variable of ith data

w,w′ ∈ X finite dimensional variable, X a normed space

Norm ‖w‖ : Rd → R+, e.g.,

`1 norm: ‖w‖1 =
∑

i |wi |
`2 norm: ‖w‖2 =

√∑
i w

2
i

`∞ norm: ‖w‖∞ = maxi |wi |

Inner product 〈w,w〉 = w>w =
∑d

i=1 xi · wi
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Convex Optimization

w = arg min
w∈X

f (w)

(a) X is a convex domain (b) f (x) is a convex function
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Convex Function: Three Characterizations (1)

A function f is convex if for all wx and wy we have

f (αwx + (1− α)wy ) ≤ αf (wx) + (1− α)f (wy ),∀wx ,wy ∈ X , α ∈ [0, 1]

Function is below linear interpolation between wx and wy

Implies that all local minima are global minima
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Convex Function: Three Characterizations (2)

A function f is convex if for all wx and wy we have

f (wy ) ≥ f (wx) +∇f (wx)>(wy −wx)

The function is globally above the tangent at wx (first-order
condition, differentiable f with convex domain)

If ∇f (wx) = 0, implies wx is a global minimizer
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Convex Function: Three Characterizations (3)

A twice-differentiable function f is convex if for all w we have

∇2f (w) � 0

All eigenvalues of ‘Hessian” are non-negative

The function is at or curved upwards in every direction

This is usually the easiest way to show a function is convex
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Convergence Measure

Most optimization algorithms are
iterative

wt+1 = wt −∆wt

Convergence Rate: after T iterations,
how good is the solution

f (wT )− min
w∈X

f (w) ≤ ε(T )

Iteration Complexity: the number of
iterations T (ε) needed to have

f (wT )− min
w∈X

f (w) ≤ ε (ε� 1)

Total Runtime = Per-iteration Cost×Iteration Complexity
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More on Convergence Measure

Convergence Rate: after T iterations, how good is the solution
Iteration Complexity: the number of iterations T (ε) needed to have

Big O(·) notation: explicit dependence on T or ε

Convergence Rate Iteration Complexity

Linear O
(
µT
)

(µ < 1) O
(
log
(
1
ε

))
(ε� 1)

Sub-linear O
(

1
Tα

)
(α > 0) O

(
log
(

1
ε1/α

))
(ε� 1)

Why are we interested in Bounds?
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Why Are We Interested in Bounds?

Convergence Rate Iteration Complexity

Linear O
(
µT
)

(µ < 1) O
(
log
(
1
ε

))
(ε� 1)

Sub-linear O
(

1
Tα

)
(α > 0) O

(
log
(

1
ε1/α

))
(ε� 1)

Theoretically, we consider O
(
µT
)
≺ O

(
1
T 2

)
≺ O

(
1
T

)
≺ O

(
1√
T

)
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Factors that affect Iteration Complexity

Property of function: e.g., smoothness of function

Domain X : size and geometry

Size of problem: dimension and number of data points
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Why In Particular Learn About Convex Optimization?

Among only efficiently-solvable continuous problems

You can do a lot with convex models: least squares, lasso, generlized
linear models, SVMs, CRFs, etc.

Empirically effective non-convex methods are often based on methods
with good properties for convex objectives (functions are locally
convex around minimizers)

Tools from convex analysis are being extended to non-convex

Yangqiu Song (HKUST) COMP5222/MATH5471 October 4, 2019 26 / 47



How Hard Is Real-valued Optimization?

How long to find an ε-optimal minimizer of a real-valued function?

min
w∈Rd

f (w)

General function: impossible!
We need to make some assumptions about the function:

Assume f is Lipschitz-continuous: (can not change too quickly)

|f (w)− f (w′)| ≤ L‖w −w′‖

After T iterations, the error of any algorithm is O( 1
T 1/d ) (and

grid-search is nearly optimal)

Optimization is hard, but assumptions make a big difference (we went
from impossible to very slow)
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Motivation for Gradient Methods

We can solve convex optimization problems in polynomial-time by
interior-point methods

But these solvers require O(d2) or worse cost per iteration

Infeasible for applications where d may be in the billions

Large-scale problems have renewed interest gradient methods:

wt+1 = wt − ηt∇f (wt)

Only have O(d) iteration cost!
But how many iterations are needed?
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Logistic Regression with `2-Norm Regularization

Let’s consider logistic regression with 2-norm regularization

f (w) =
N∑
i=1

log(1 + exp(−yi (w>xi ))) +
λ

2
‖w‖22

Objective f is convex

First term is Lipschitz continuous, second term is not

But we have
µI � ∇2f (w) � LI

for some µ and L; I is a diagonal matrix

We say that the gradient is Lipschitz-continuous

We say that the function is strongly-convex
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Properties of Lipschitz-Continuous Gradient

From Taylor’s theorem, for some z we have:

f (w′) = f (w) +∇f (w)>(w′ −w) +
1

2
(w′ −w)>∇2f (z)(w′ −w)

Use that ∇2f (w) � LI

f (w′) ≤ f (w) +∇f (w)>(w′ −w) +
L

2
‖w′ −w‖2

Global quadratic upper bound on function value
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Properties of Lipschitz-Continuous Gradient

f (w′) ≤ f (w) +∇f (w)>(w′ −w) +
L

2
‖w′ −w‖2

Variant of gradient method if we set wt+1 to minimum w′ value
(right side gradient (w′) = 0):

wt+1 = arg min
w′
{f (wt) +∇f (wt)>(w′ −wt) +

L

2
‖w′ −wt‖2}

⇒wt+1 = wt − 1

L
∇f (wt)

Plugging this value in:

f (wt+1) ≤ f (wt)− 1

2L
‖∇f (wt)‖2
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Properties of Lipschitz-Continuous Gradient

Guaranteed decrease of objective

f (wt+1) ≤ f (wt)− 1

2L
‖∇f (wt)‖2
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Properties of Strong-Convexity

From Taylor’s theorem, for some z we have:

f (w′) = f (w) +∇f (w)>(w′ −w) +
1

2
(w′ −w)>∇2f (z)(w′ −w)

Use that µI � ∇2f (w)

f (w) +∇f (w)>(w′ −w) +
µ

2
‖w′ −w‖2 ≤ f (w′)

Global quadratic lower bound on function value
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Properties of Strong-Convexity

f (w) +∇f (w)>(w′ −w) +
µ

2
‖w′ −w‖2 ≤ f (w′)

Minimizing both sides in terms of w′ gives

f (w∗) ≥ f (wt)− 1

2µ
‖∇f (wt)‖2

Upper bound on how far we are from the solution
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Linear Convergence of Gradient Descent

We have bounds on wt+1 and w∗:

f (wt+1) ≤ f (wt)− 1

2L
‖∇f (wt)‖2 f (w∗) ≥ f (wt)− 1

2µ
‖∇f (wt)‖2
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Linear Convergence of Gradient Descent

We have bounds on wt+1 and w∗:

f (wt+1) ≤ f (wt)− 1

2L
‖∇f (wt)‖2 f (w∗) ≥ f (wt)− 1

2µ
‖∇f (wt)‖2

Combine them we have:

f (wt+1)− f (w∗) ≤
(

1− µ

L

)
[f (wt)− f (w∗)]

This gives a linear convergence rate:

f (wt)− f (w∗) ≤
(

1− µ

L

)t
[f (w0)− f (w∗)]

Each iteration multiplies the error by a fixed amount (very fast if µ/L
is not too close to zero)
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Maximum Likelihood Logistic Regression

What about maximum-likelihood logistic regression?

f (w) =
N∑
i=1

log(1 + exp(−yi (w>xi )))

We now only have
0 � ∇2f (w) � LI

Convexity only gives a linear upper bound on f (w∗):

f (w∗) ≥ f (w) +∇f (w)>(w∗ −w)
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Maximum Likelihood Logistic Regression

What about maximum-likelihood logistic regression?

f (w) =
N∑
i=1

log(1 + exp(−yi (w>xi )))

We now only have
0 � ∇2f (w) � LI

Convexity only gives a linear upper bound on f (w∗):

f (w∗) ≥ f (w) +∇f (w)>(w∗ −w)

If w∗ exists, we have the sublinear convergence rate:

f (wt)− f (w∗) = O(1/t)

(compare to slower O( 1
T 1/d ) for general Lipschitz functions)

Proof: http://www.stat.cmu.edu/~ryantibs/convexopt-F13/scribes/lec6.pdf

If f is convex, then f + λ‖w‖2 is strongly-convex.
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Gradient Method: Practical Issues

In practice, searching for step size (line-search) is usually much faster
than η = 1/L (and doesn’t require knowledge of L)

Basic Armijo backtracking line-search:
1 Start with a large value of η
2 Divide η in half until we satisfy (typically value is γ = 0.0001):

f (wt+1) ≤ f (wt)− γη‖∇f (wt)‖2

Also, check your derivative code:

∇fi (w) ≈ f (w + δei )− f (w)

δ

For large-scale problems you can check a random direction d:

∇f (w)>d ≈ f (w + δd)− f (w)

δ
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Accelerated Gradient Method

Is this the best algorithm under these assumptions?

Nesterov’s accelerated gradient method (Nesterov (1983)):

wt+1 = vt − ηt∇f (vt), vt+1 = wt + βt(wt+1 −wt)

Algorithm Assumptions Rate

Gradient Convex O( 1
T )

Nesterov Convex O( 1
T 2 )

Gradient Strongly-Convex O((1− µ/L)>)

Nesterov Strongly-Convex O((1−
√
µ/L)>)

For logistic regression and many other losses, we can get linear
convergence without strong-convexity (Luo and Tseng (1993))

Nesterovs method is much more general than linear CG

Linear CG is much faster than Nesterov for convex quadratics

Nonlinear CG is typically faster than Nesterov but has no complexity
guarantees and sometimes fails
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Newton’s Method

The oldest differentiable optimization method is Newton’s

Modern form uses the update

wt+1 = wt − ηd

where d is a solution to the system

∇2f (w)d = ∇f (w) (∇2f (w) � 0)

Equivalent to minimizing the quadratic approximation:

f (w′) ≈ f (w)+∇f (w)>(w′−w)+
1

2η
‖w′−w‖2∇2f (w) (‖w‖2H = w>Hw)
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Newton’s Method
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Newton’s Method
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Newton’s Method
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Convergence Rate of Newton’s Method

If ∇2f (w) is Lipschitz-continuous and ∇2f (w) � µ, then close to w∗

Newton’s method has local superlinear convergence:

f (wt+1 −w∗) ≤ ρt [f (wt −w∗)]

with limt→∞ ρ
t = 0

Converges very fast, use it if you can!

But requires solving ∇2f (w)d = ∇f (w)
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Newton’s Method: Practical Issues

There are many practical variants of Newton’s method:

Modify the Hessian to be positive-definite.

Only compute the Hessian every m iterations.

Only use the diagonals of the Hessian.

Quasi-Newton: Update a (diagonal plus low-rank) approximation of
the Hessian (BFGS, L-BFGS).

Hessian-free: Compute d inexactly using Hessian-vector products:

∇2f (w)d ≈ lim
δ→0

∇f (w + δd)−∇f (w)

δ
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