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Course Organization

Representation: language models, word embeddings, topic models,
knowledge graphs

Learning: supervised learning, semi-supervised learning, distant supervision,
indirect supervision, sequence models, deep learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms
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Source-Channel Framework [Shannon ’48]

X̂ = arg maxX P(X |Y ) = arg maxX P(Y |X )P(X ) (Bayes Rule)

When X is text, P(X ) is a language model

X Y

Speech recognition Word sequence Speech signal
Machine translation English sentence Chinese sentence
Question answering Answer Question
Document summarization Summary Document
Image Captioning Caption Image
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Neural Language Generation

High level idea (by skipping a lot of important classical papers in
literature!)

Encoding and decoding
Take care: here, the terminology “encoder” and “decoder” are used
differently than in the noisy-channel pattern

Neural machine translation

Original idea of neural machine translation was proposed by Forcada
and Ñeco (1997); resurgence in interest starting around 2013
Sequence to sequence learning (Sutskever et al. (2014))

Strong starting point using attention (Bahdanau et al. (2014))
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Neural Language Generation (Cont’d)

Neural image captioning (Donahue et al. (2014); Vinyals et al.
(2015))

Encode image
Decode text
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High Level Model

P(W = output|I = input) = P(W = output|encode(input))

=
∏N

i=1 P(wi |w1, . . . ,wi−1, encode(input))

The encoding of the source sentence is a deterministic function of input.
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Building Block: Recurrent Neural Network

Each input element is understood to be an element of a sequence:
{x1, x2, . . . , xN}
At each timestep t:

The tth input element xt is processed alongside the previous state st−1
to calculate the new state st

st = frecurrent(xt , st−1)

The tth output is a function of the state st

yt = foutput(st)

The same functions are applied at each iteration
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RNN Language Model

The original version, by Mikolov et al.
(2010) used a “simple” RNN
architecture along these lines:

st = frecurrent(ext , st−1) =

sigmoid

((
e>xtM

)>
A + s>t−1B + c

)
yt = foutput(st) = softmax(s>t U)

P(v |w1, . . . ,wn−1) = [yt ]v

Note: this is not an n-gram (Markov)
model!
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Maximum Likelihood (Neural Language Model)

P(W) =
N∏
t=1

P(wt |w1,w2, . . . ,wt−1)
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Machine Translation: Encoder

If we have m words in the source language, we encode them into 2d ×m
matrix Ein
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Attention (Bahdanau et al. (2014))

Let Vst−1 be the “expected” input embedding for timestep t (V are
the parameters)

to make st−1 and Ein compatible

Attention to the historical words is computed as
at = softmax(E>inVst−1)

Context ct = Einat is a weighted sum of source words’ in-context
representations

Then we have a new recurrent function

st = frecurrent(ext , ct , st−1) = sigmoid

((
e>xtM

)>
A + s>t−1B + c>t C

)
yt = foutput(st) = softmax(s>t U)

in decoder
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Example of Neural MT Decoder
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Maximum Likelihood (Neural Machine Translation)

Put all together:

ct = Einat , where at = softmax(E>inVst−1)

st = frecurrent(ext , ct , st−1) = sigmoid

((
e>xtM

)>
A + s>t−1B + c>t C

)
yt = foutput(st) = softmax(s>t U)

P(v |w1, . . . ,wn−1,Ein) = [yt ]v

The likelihood for a sequence-to-sequence translation (sentence s) is

P(W) =
M∏
s=1

sN∏
t=1

P(w s
t |w s

1 , . . . ,w
s
t−1,E

s
in)

This is differentiable with respect to all parameters of the neural
network, allowing “end-to-end” training

Trick: train on shorter sentences first, then add in longer ones

Decoding typically uses beam search
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Beam Search

Beam inference
At each position keep the top k complete sequences
Extend each sequence in each local way
The extensions compete for the k slots at the next position

(a) Greedy (b) Beam Search

Advantages
Fast; beam sizes of 3-5 are almost as good as exact inference in many
cases
Easy to implement (no dynamic programming required)

Disadvantage
Inexact: the globally best sequence can fall off the beam
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Example of Image Captioning Encoder and Decoder
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Problem with Maximum Likelihood Training

Once trained, one can use the model to generate an entire sequence as
follows

Let wg
t denote the word generated by the model at the t-th time

step. Then the next word is generated by:

wg
t+1 = arg max

v
Pθ(v |wg

t , st+1)

where we denote θ = {M,A,B,C,U} as the parameters
However, the model was trained to maximize arg maxv Pθ(v |wt , st+1)
shown in training data (Ranzato et al. (2016))

During training, the model is only exposed to the ground truth words
(exposure bias)
At test time the model has only access to its own predictions, which
may not be correct
During generation the model can potentially deviate quite far from the
actual sequence to be generated

This phenomena is commonly known as a search error (compounding
error)
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Text Generation as a MDP

A Markov Decision Process (MDP) is defined as

A set of states s ∈ S of the environment
A set of actions a ∈ A
A transition function T (s, a, s ′) = P(s ′|s, a)
A reward function R(s, a, s ′)
A discount factor γ ∈ [0, 1) downweights future rewards
A start state

For MDPs, we want an optimal policy π∗ : S → A
A policy π gives an action for each state
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Text Generation as a MDP (Cont’d)

State st = {Ein,w1, · · · ,wt}.
The current state is a configuration based on the input encoder and all
historical words.

Action at ← st .
Taking an action means given the current state, we choose to generate
a new word, and the action space corresponds to the whole vocabulary.

Reward r(s, a, s ′) =

{
0 if a 6= END

β(s) otherwise
.

A non-zero reward β(s) is only evaluated at the end of a sentence since
at intermediate positions we do not know how good the generation is
compared to human labeled sentences.

Transition probability Psa(s ′) = P(s ′|s, a) is the probability of
generating a new state based on an action.

We set Psa(s ′) = I (s ′ = s ∪ {a}) where I (·) is the indicator function.
This is because given a selected action, there is no randomness of
failure of using the selected words to generate a next state.

We set discounting factor γ = 1 if we do not penalize longer text
generation.

Yangqiu Song (HKUST) COMP5222/MATH5471 October 2, 2019 22 / 46



Problems Involving MDPs

Polycies

Deterministic policies: a = π(s)
Stochastic policies: a ∼ π(s) (our case)

Policy optimization: maximize expected reward with respect to policy
π

max
π

E

[ ∞∑
t=0

rt

]
Policy evaluation: compute expected return for fixed policy π

return := sum of future rewards in an episode (i.e., a trajectory)

Discounted return: rt + γrt+1 + γ2rt+2 + . . .
Undiscounted return: rt + rt+1 + rt+2 + . . .

Performance of policy: η(π) = E[
∑∞

t=0 γ
trt ]

State value function: V π(s) = E[
∑∞

t=0 γ
trt |s0 = s]

State-action value function: Qπ(s, a) = E[
∑∞

t=0 γ
trt |s0 = s, a0 = a]
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Reinforcement Learning

Basic idea:

Receive feedback in the form of rewards
Agents utility is defined by the reward function
Must (learn to) act so as to maximize expected rewards
All learning is based on observed samples of outcomes!
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Episodic Setting

s0 ∼ P(s0)
a0 ∼ π(a0|s0), s1 ∼ P(s1|s0, a0), receive r1 = r(s0, a0, s1)
a1 ∼ π(a1|s1), s2 ∼ P(s2|s1, a1), receive r2 = r(s1, a1, s2)

· · ·
aT−1 ∼ π(aT−1|sT−1), sT ∼ P(sT |sT−1, aT−1), receive

rT = r(sT−1, aT−1, sT )

Objective:
maxEP(τ) [r0 + rt+1 + rt+2 + . . .+ RT ]

where

P(τ) = P(s0, a0, s1, a1, . . . , sT , aT ) = P(s0)
T−1∏
t=1

P(st |st−1, at−1)π(at−1|st−1)

A family of policies indexed by parameter vector θ ∈ Rd

Deterministic a = π(s, θ)
Stochastic a ∼ π(a|s, θ)
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Parameterization of π for Text Generation

Copy the parameterized probability here:

Pθ(τ) = P(s0, a0, s1, a1, . . . , sT , aT |θ)

Action at ← st .
Taking an action means given the current state, we choose to generate
a new word, and the action space corresponds to the whole vocabulary.

Transition probability Psa(s ′) = P(s ′|s, a) is the probability of
generating a new state based on an action.

We set Psa(s ′) = I (s ′ = s ∪ {a}) where I (·) is the indicator function.
This is because given an selected action, there is no randomness of
failure of using the selected words to generate a next state.

We use the RNN model to parameterize the text generation:

πθ(at |st) = Pθ(v |wt , st−1)

where we denote θ = {M,A,B,C,U} as the parameters
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Score Function Gradient Estimator

Consider an expectation Ex∼P(x)[f (x)], we compute gradient w.r.t. θ

∇θEx∼P(x)[f (x)] = ∇θ
∫
x dxP(x |θ)f (x)

=
∫
x dx∇θP(x |θ)f (x)

=
∫
x dxP(x |θ)∇θP(x |θ)

P(x |θ) f (x)

=
∫
x dxP(x |θ)∇θ logP(x |θ)f (x)

= Ex∼P(x)[f (x)∇θ logP(x |θ)]

Last expression gives us an unbiased gradient estimator. So we can
sample xi ∼ P(x |θ) and compute

ĝi = f (xi )∇θ logP(xi |θ)

for stochastic gradient decent

Valid even if f (x) is discontinuous, and unknown, or sample space
(containing x) is a discrete set
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Score Function Gradient Estimator for Policies

Now the random variable is from the whole trajectory
τ = s0, a0, s1, a1, . . . , sT , aT

∇θEτ [R(τ)] = Eτ [R(τ)∇θ logP(xi |θ)]

where R(τ) =
∑

t rt

Since Pθ(τ) = P(s0)
∏T

t=1 P(st |st−1, at−1)π(at−1|st−1, θ)

logPθ(τ) = logP(s0) +
T∑
t=1

[logP(st |st−1, at−1) + log π(at−1|st−1, θ)]

So ∇θ logPθ(τ) =
∑T−1

t=0 ∇θ log π(at |st , θ) and

∇θEτ [R(τ)] = Eτ [R(τ)
T−1∑
t=0

∇θ log π(at |st , θ)]

Note that for text generation we set P(st |st−1, at−1) = I (s ′ = s ∪ {a}).
Think about: do we need Q-learning then?
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Comparison to Maximum Likelihood

Policy gradient

∇θEτ [R(τ)] ≈ 1

N

N∑
i=1

(
T−1∑
t=0

∇θ log π(at |st , θ)

)(
T∑
t=1

rt

)

Maximum likelihood

∇θ logP(W) ≈ 1

N

N∑
i=1

(
T−1∑
t=0

∇θ log π(at |st , θ)

)
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Comparison of ML and RL

We can sample τ from πθ(at |st) (self play)

(Ranzato et al. (2016))
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Policy Gradient: Introduce Baseline

Policy at time t ′ cannot affect reward at time t where t < t ′, by
denoting

∑T
t′=t rt′ as “reward to go” we have

∇θEτ [R(τ)] = Eτ

[
T−1∑
t=0

∇θ log π(at |st , θ)

(
T∑

t′=t

rt′

)]
Then at every time step t we can compute stochastic gradient

Further reduce variance by introducing a baseline b(s)

∇θEτ [R(τ)] = Eτ

[
T−1∑
t=0

∇θ log π(at |st , θ)

(
T∑

t′=t

rt′ − b(st)

)]
For any choice of b, gradient estimator is unbiased

Near optimal choice is expected return b(st) = E[rt + rt+1 + . . .+ rT ]

Interpretation: increase log prob of action at proportionally to how
much returns

∑T
t′=t rt′ are better than expected
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REINFORCE Algorithm

Initialize policy parameters θ, baseline b

for iterations= 1,2,...

Sample a set of trajectories{τi} from πθ(at |st)
At each time in each trajectory, compute return Rt =

∑T−1
t′=t rt′ and

Rt − b(st)
Update the policy, using policy gradient estimate∑
∇θ log π(at |st , θ)(Rt − b(st)) (plug into SGD or ADAM)

Re-fit baseline by min ||b(st)− Rt ||2
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Practical Algorithm by Ranzato et al. (2016)
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Evaluation (Machine Translation)

BLEU (bilingual evaluation understudy) (Papineni et al. (2002))

BLEU was one of the first metrics to claim a high correlation with
human judgements of quality, and remains one of the most popular
automated and inexpensive metrics
BLEUs output is always a number between 0 and 1
1 means identical to the reference translations

Example (Poor machine translation output with high precision)

Candidate the the the the the the the

Reference 1 the cat is on the mat

Reference 2 there is a cat on the mat

Precision is 7
7 , since all the seven words in the candidate translation appear

in the reference translations.
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BLEU Score

First define brevity penalty (BP)

BP =

{
1 if c > r

e(1−r/c) if c ≤ r

where c is the length of the candidate translation and r is the
effective reference corpus length

pn: n-gram precision

BLEU score is defined as weighed geometric mean multiplied by
brevity penalty

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
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Google Neural Machine Translation (Wu et al. (2016))

Yangqiu Song (HKUST) COMP5222/MATH5471 October 2, 2019 38 / 46



Results (Refine with RL)

Single models and Ensemble Models

Yangqiu Song (HKUST) COMP5222/MATH5471 October 2, 2019 39 / 46



Results (Human Evaluation)

Compared to the best phrase based translations as downloaded from
http://matrix.statmt.org/systems/show/2065

Even though RL refinement can achieve better BLEU scores, it barely
improves the human impression of the translation quality.

The relatively small sample size for the experiment (only 500
examples for side-by-side)
The improvement in BLEU score by RL is relatively small after model
ensembling (0.81)
The possible mismatch between BLEU as a metric and real
translation quality as perceived by human raters
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Possible Improvements

Imitation Learning

Instead of directly learning from evaluation scores, e.g., BLEU,
imitation learning assumes the reward is unknown, and directly learns a
policy from human references

Firstly proposed as “behavioral cloning” (Pomerleau (1991)) and
“inverse reinforcement learning” (Russell (1998); Ng et al. (2000))

Recently, people have built relationships between adversarial training
of imitation learning and generative adversarial networks (Goodfellow
et al. (2014))

Ho and Ermon (2016); Finn et al. (2016)

Many algorithms are (being) developed
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Baseline – Derivation of Unbiased

Eτ [∇θ log π(at |st , θ)b(st)]
= Es0:t ,a0:t−1

[
Est+1:T ,at:T−1

[∇θ log π(at |st , θ)b(st)]
]

(break up expectation)
= Es0:t ,a0:t−1

[
b(st)Est+1:T ,at:T−1

[∇θ log π(at |st , θ)]
]

(pull baseline term out)
= Es0:t ,a0:t−1 [b(st)Eat [∇θ log π(at |st , θ)]] (remove irrelevant variables)
= Es0:t ,a0:t−1 [b(st) · 0]

This equals to 0 because

Eat [∇θ log π(at |st , θ)]
=

∫
at
π(at |st , θ)∇θ log π(at |st , θ)dat

=
∫
at
∇θπ(at |st , θ)dat

= ∇θ
∫
at
π(at |st , θ)dat = ∇θ1
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Baseline – Derivation of Variance Reduction

We denote a simplified form of gradient as Eτ [∇θ log πθ(τ)(R(τ)−b)]

Var[x ] = E[x2]− E [x ]2

Var = Eτ
[
(∇θ log πθ(τ)(R(τ)− b))2

]
− Eτ [∇θ log πθ(τ)(R(τ)− b)]2

Eτ [∇θ log πθ(τ)(R(τ)− b)] = Eτ [∇θ log πθ(τ)R(τ)] according to
unbiased, which is irrelevant to b

Denote ∇θ log πθ(τ) = gθ(τ). We have

dVar

db
=

d

db
Eτ
[
(gθ(τ)(R(τ)− b))2

]
= −2Eτ [gθ(τ)2R(τ)] + 2bEτ [gθ(τ)2] = 0

So we have

b =
Eτ [gθ(τ)2R(τ)]

Eτ [gθ(τ)2]
(expected reward weighted by gradient magnitudes)
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Forcada, M. L. and Ñeco, R. P. (1997). Recursive hetero-associative memories for
translation. In IWANN, pages 453–462.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. C., and Bengio, Y. (2014). Generative adversarial nets. In NIPS, pages
2672–2680.

Ho, J. and Ermon, S. (2016). Generative adversarial imitation learning. In NIPS, pages
4565–4573.

Yangqiu Song (HKUST) COMP5222/MATH5471 October 2, 2019 44 / 46



References II

Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., and Khudanpur, S. (2010).
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