
Statistical Learning Models for Text and Graph Data
Lecture 2: Language Models

Yangqiu Song

Hong Kong University of Science and Technology

yqsong@cse.ust.hk

September 11, 2019

∗Contents are based on materials created by Hongning Wang, Julia Hockenmaier,

Dan Jurafsky, Dan Klein, Noah Smith, Slav Petrov, Yejin Choi, Gregor Heinrich,

and Michael Collins

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 1 / 90

Reference Content

Noah Smith. CSE 517: Natural Language Processing
https://courses.cs.washington.edu/courses/cse517/16wi/

Julia Hockenmaier. CS447: Natural Language Processing.
http://courses.engr.illinois.edu/cs447

Hongning Wang. CS6501 Text Mining. http://www.cs.virginia.

edu/~hw5x/Course/Text-Mining-2015-Spring/_site/

Dan Jurafsky. cs124/ling180: From Languages to Information.
http://web.stanford.edu/class/cs124/

Dan Klein. CS 288: Statistical Natural Language Processing.
https://people.eecs.berkeley.edu/~klein/cs288/sp10/

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 2 / 90

https://courses.cs.washington.edu/courses/cse517/16wi/
http://courses.engr.illinois.edu/cs447
http://www.cs.virginia.edu/~hw5x/Course/Text-Mining-2015-Spring/_site/
http://www.cs.virginia.edu/~hw5x/Course/Text-Mining-2015-Spring/_site/
http://web.stanford.edu/class/cs124/
https://people.eecs.berkeley.edu/~klein/cs288/sp10/

Reference Content (Cont’d)

Slav Petrov. Statistical Natural Language Processing.
https://cs.nyu.edu/courses/fall16/CSCI-GA.3033-008/

Chris Manning. CS 224N/Ling 237. Natural Language Processing.
https://web.stanford.edu/class/cs224n/

Yejin Choi. CSE 517 (Grad) Natural Language Processing.
http://courses.cs.washington.edu/courses/cse517/15wi/

Michael Collins. COMS W4705: Natural Language Processing.
www.cs.columbia.edu/~mcollins/courses/nlp2011/

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 3 / 90

https://cs.nyu.edu/courses/fall16/CSCI-GA.3033-008/
https://web.stanford.edu/class/cs224n/
http://courses.cs.washington.edu/courses/cse517/15wi/
www.cs.columbia.edu/~mcollins/courses/nlp2011/

Course Organization

Representation: language models, word embeddings, topic models,
knowledge graphs

Learning: supervised learning, semi-supervised learning, distant supervision,
indirect supervision, sequence models, deep learning, optimization techniques

Inference: constraint modeling, joint inference, search algorithms

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 4 / 90

Overview

1 Language Models

2 Parameter Estimation
Maximum Likelihood
Unseen Events (Words)
Add-one Smoothing
Add-K Smoothing and Bayesian Estimation
Good-Turing Smoothing
Interpolation Smoothing

Kneser-Ney Smoothing

3 Evaluation

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 5 / 90

What is a Statistical Language Model (LM)?

A model specifying probability distribution over word sequences

P(“Today is Wednesday”) ≈ 0.001
P(“Today Wednesday is”) ≈ 0.0000000000001
P(“The eigenvalue is positive”) ≈ 0.00001

It can be regarded as a probabilistic mechanism for “generating” text,
thus also called a “generative” model

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 6 / 90

Why is a LM Useful?

Provide a principled way to quantify the uncertainties associated with
natural language

Allow us to answer questions like:

Given that we see “John” and “feels”, how likely will we see “happy”
as opposed to “habit” as the next word? (speech recognition)

Given that we observe “baseball” three times and “game” once in a
news article, how likely is it about “sports” v.s. “politics” (text
categorization)

Given that a user is interested in sports news, how likely would the user
use “baseball” in a query? (information retrieval)

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 7 / 90

Measure the Fluency of Documents

How likely this document is generated by a given language model

If Pmachine−learning (d) > Phealth(d), document d belongs to machine
learning related topics

If Pusera(d1) > Pusera(d2), recommend d1 to usera

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 8 / 90

Source-Channel Framework [Shannon ’48]

X̂ = arg maxX P(X |Y) = arg maxX P(Y |X)P(X) (Bayes Rule)

When X is text, P(X) is a language model

X Y

Speech recognition Word sequence Speech signal
Machine translation English sentence Chinese sentence
OCR Error Correction Correct word Erroneous word
Information Retrieval Document Query
Summarization Summary Document

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 9 / 90

Language Model for Text

Goal: Assign useful probabilities P(X) to sentences/documents X

Input: many observations of training sentences X
Output: system capable of computing P(X)

Probabilities should broadly indicate plausibility of sentences

P(I saw a van) � P(eyes awe of an)
Not grammaticality: P(artichokes intimidate zippers) ≈ 0
In principle, “plausible” depends on the domain, context, speaker...

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 10 / 90

Language Model for Text

Probability distribution over word sequences (chain rule)
P(w1,w2, . . . ,wn) = P(w1)P(w2|w1) . . .P(wn|w1,w2, . . . ,wn−1)

Complexity – O(V n∗)

V : vocabulary size
n∗: maximum document (or sentence) length
We need independence assumptions!

Example

475,000 main headwords in Webster’s Third New International
Dictionary

Average English sentence length is 14.3 words

A rough estimate: O(475, 00014) ≈ 3.38e66TB

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 11 / 90

Unigram Language Model

Generate a piece of text by generating each word independently

P(w1,w2, . . . ,wn) = P(w1)P(w2) . . .P(wn)

Essentially a multinomial distribution over the vocabulary

The simplest and most popular choice!

Example (Unigram Language Model)

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 12 / 90

More Sophisticated LMs

N-gram language models

Assumes each word depends only on the last n-1 words

bigram P(w1,w2, . . . ,wn) = P(w1)P(w2|w1) . . .P(wn|wn−1)
trigram P(w1,w2, . . . ,wn) = P(w1)P(w2|w1) . . .P(wn|wn−1,wn−2)

Such independence assumptions are called Markov assumptions (of
order n-1)
P(wi |w1, . . . ,wi−1) = P(wi |wi−n+1, . . . ,wi−1)

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 13 / 90

Markov Models

Value of X at a given time is called the state

Parameters: called transition probabilities, specify how the state
evolves over time (also, initial state probabilities)

Stationarity assumption: transition probabilities the same at all times

Example (First-order Markov Chain)

“Markov” generally means that given the present state, the future and the
past are independent

P(X1,X2, . . . ,Xn) = P(X1)P(X2|X1) . . .P(Xn|Xn−1) =
P(X1)

∏n
t=1 P(Xt |Xt−1)

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 14 / 90

Why Just Unigram Models (in most cases)?

Difficulty in moving toward more complex models

They involve more parameters, so need more data to estimate
They increase the computational complexity significantly, both in time
and space

Capturing word order or structure may not add so much value for
“topical inference”

But, using more sophisticated models can still be expected to improve
performance ...

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 15 / 90

Generative View of Text Documents

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 16 / 90

Computer Simulation

Sample from a discrete distribution P(X), assuming n outcomes in the
event space X

Algorithm 1 Sample from a distribution P(X)

1: for t = 1 to T do
2: Divide the interval [0, 1] into n intervals according to the probabilities

of the outcomes
3: Generate a random number r between 0 and 1
4: Return xi where r falls into [

∑i−1
0 pi ,

∑i
0 pi]

5: end for

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 17 / 90

Generating Text from Language Models

Example

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 18 / 90

Generating Text from Language Models

Example

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 19 / 90

N-gram Language Models Will Help

Example (Generated from language models of New York Times)

Unigram

Months the my and issue of year foreign new exchanges september
were recession exchange new endorsed a q acquire to six executives.

Bigram

Last December through the way to preserve the Hudson corporation
N.B.E.C. Taylor would seem to complete the major central planners
one point five percent of U.S.E. has already told M.X. corporation of
living on information such as more frequently fishing to keep her.

Trigram

They also point to ninety nine point six billon dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and
Brazil on market conditions.

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 20 / 90

Overview

1 Language Models

2 Parameter Estimation
Maximum Likelihood
Unseen Events (Words)
Add-one Smoothing
Add-K Smoothing and Bayesian Estimation
Good-Turing Smoothing
Interpolation Smoothing

Kneser-Ney Smoothing

3 Evaluation

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 21 / 90

Estimation of Language Models

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 22 / 90

Parameter Estimation

General setting

Given a (hypothesized & probabilistic) model that governs the random
experiment
The model gives a probability of any data P(X|θ) that depends on the
parameter θ
Now, given actual sample data X = x1, . . . , xn, what can we say about
the value of θ?

Intuitively, take our best guess of θ

“best” means “best explaining/fitting the data”

Generally an optimization problem

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 23 / 90

Maximum Likelihood vs. Bayesian

Maximum likelihood estimation

“Best” means “data likelihood reaches maximum”

θ̂ = arg maxθ P(X|θ)

Issue: small sample size

Bayesian estimation

“Best” means being consistent with our “prior” knowledge and
explaining data well

θ̂ = arg maxθ P(θ|X) = arg maxθ P(X|θ)P(θ)

A.k.a, maximum a posterior estimation
Issue: how to define prior?

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 24 / 90

Illustration of Bayesian Estimation

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 25 / 90

Corpora

A corpus is a collection of text

Annotated in some way: supervised learning
Sometimes just lots of text without any annotations: unsupervised
learning
Balanced vs. uniform corpora

Examples

Newswire collections: 500M+ words
Brown corpus: 1M words of tagged balanced text
Penn Treebank: 1M words of parsed WSJ
Canadian Hansards: 10M+ words of aligned French / English sentences
The Web: billions of words of who knows what

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 26 / 90

Unigram Modeling

Data corpus: a collection of words, W = {w1,w2, . . . ,wN}
Model: multinomial distribution P(W|θ) with parameters
θ = (θ1, . . . , θV), where

θi = P(vi)
vi ∈ V
V is the vocabulary
|V| = V

Count of words in corpus u = (u1, . . . , uV) where ui = c(vi) is the
count of vi shown in W,

∑
i ui = N

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 27 / 90

Unigram Modeling

“Bag of words” assumes the words are sampled from a multinomial
distribution u ∼ Multi(θ)

P(u|θ) =

(
N
u

) V∏
i=1

θuii , Mult(u|θ,N),where

(
N
u

)
=

N!∏
i ui !

If we focus on a single trial, we have:

P(w |θ) = P(w = vi) =
V∏
i=1

θ
δw=vi
i , Mult(w |θ)

Maximum likelihood estimator: θ̂ = arg maxθ P(W|θ)

P(W|θ) =
N∏
j=1

P(wj |θ) =
V∏
i=1

P(vi)
ui =

V∏
i=1

θuii

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 28 / 90

Maximum Likelihood Estimation: θ̂ = argmaxθ P(W|θ)

P(W|θ) =
∏V

i θ
ui
i

(log likelihood)

⇒ log P(W|θ) =
∑V

i ui log θi

(Lagrange multiplier to make θ be a distribution)

⇒ L(W,θ) = log P(W|θ) =
∑V

i ui log θi + λ(
∑

i θi − 1)

(Set partial derivatives to zero)

⇒ ∂L
∂θi

= ui
θi

+ λ = 0

Since
∑V

i θi = 1, we have λ = −
∑V

i ui

⇒ θi =
ui∑V
i ui

=
ui

N
(Maximum Likelihood Estimation ,MLE)

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 29 / 90

The Problems with Unigram Modeling

Pros:

Easy to understand
Cheap
Good enough for information retrieval (maybe)

Cons:
“Bag of words” assumption is linguistically inaccurate

P(the the the the) � P(I want ice cream)

Data sparseness; high variance in the estimator
“Out of vocabulary” problem

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 30 / 90

N-gram model

Markov modeling

P(w1, . . . ,wN)

=
∏N

i=1 P(wi |w1, . . . ,wi−1) (chain rule)

=
∏N

i=1 P(wi |wi−1, . . . ,wi−n+1) (Markov model)

(n - 1)th-order Markov assumption ≡ n-gram model

Unigram model is the n = 1 case
For a long time, trigram models (n = 3) were widely used
5-gram models (n = 5) are not uncommon now in machine translation
systems

Parameter estimation

P(wi |wi−1, . . . ,wi−n+1) =
c(v 1 = wi , . . . , v

n = wi−n+1)

c(v 1 = wi−1, . . . , vn−1 = wi−n+1)

v j is a unique word v at position j

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 31 / 90

Estimating N-gram models: A Running Example

Example (Bigram Model)

Bracket each sentence by special start and end symbols:
〈s〉 Alice was beginning to get very tired ... 〈s〉
(We only assign probabilities to strings 〈s〉...〈s〉)
Count the frequency of each n-gram
c(〈s〉, Alice) = 1, c(Alice, was) = 1,

Normalize to get the probability

P(wi |wi−1) =
c(wi ,wi−1)
c(wi−1)

P(was|Alice) = c(was,Alice)
c(Alice)

This is called a relative frequency estimate of P(wi |wi−1)

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 32 / 90

The Problems with N-gram Modeling

The curse of dimensionality: the number of parameters grows
exponentially in n

Pros:

Easy to understand
Cheap (with modern hardware; Lin and Dyer (2010))
Good enough for machine translation, speech recognition, ...

Cons:
Markov assumption is linguistically inaccurate

(But not as bad as unigram models!)

Data sparseness; high variance in the estimator

most n-grams will never be observed, even if they are linguistically
plausible

“Out of vocabulary” problem

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 33 / 90

Overview

1 Language Models

2 Parameter Estimation
Maximum Likelihood
Unseen Events (Words)
Add-one Smoothing
Add-K Smoothing and Bayesian Estimation
Good-Turing Smoothing
Interpolation Smoothing

Kneser-Ney Smoothing

3 Evaluation

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 34 / 90

Problem with MLE: Unseen Events

We estimated a model on 440K word tokens, but:
Only 30,000 unique words occurred
Only 0.04% of all possible bigrams occurred

This means any word/n-gram that does not occur in the training data
has zero probability!
No future documents can contain those unseen words/n-grams

In natural language:

A small number of events
(e.g. words) occur with high
frequency
A large number of events
occur with very low frequency
Zipfs law: the long tail

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 35 / 90

Dealing with Unseen Events

Relative frequency (maximum likelihood) estimation assigns all
probability mass to events in the training corpus

But we need to reserve some probability mass to events that don’t
occur in the training data

Unseen events = new words, new bigrams

Important questions:

What possible events are there?
How much probability mass should they get?

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 36 / 90

Dealing with Unseen Events

If we want to assign non-zero probabilities to unseen events

Unseen events = new words, new n-grams
Discount the probabilities of observed words

General procedure

Reserve some probability mass of words seen in a document/corpus
Re-allocate it to unseen words

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 37 / 90

Illustration of N-gram Language Model Smoothing

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 38 / 90

Examples

Example

Training data: The wolf is an endangered species

Test data: The wallaby is endangered

Unigram Bigram Trigram

P(the) P(the|〈s〉) P(the|〈s〉)
× P(wallaby) × P(wallaby |the) × P(wallaby |the, 〈s〉)
× P(is) × P(is|wallaby) × P(is|wallaby , the)

× P(endangered) × P(endangered |is) × P(endangered |is,wallaby)

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 39 / 90

Examples

Example

Training data: The wolf is an endangered species

Test data: The wallaby is endangered

Unigram Bigram Trigram

P(the) P(the|〈s〉) P(the|〈s〉)
× P(wallaby) × P(wallaby |the) × P(wallaby |the, 〈s〉)
× P(is) × P(is|wallaby) × P(is|wallaby , the)

× P(endangered) × P(endangered |is) × P(endangered |is,wallaby)

Case 1:

P(wallaby), P(wallaby |the), P(wallaby |the, 〈s〉)
What is the probability of an unknown word (in any context)?

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 40 / 90

Examples

Example

Training data: The wolf is an endangered species

Test data: The wallaby is endangered

Unigram Bigram Trigram

P(the) P(the|〈s〉) P(the|〈s〉)
× P(wallaby) × P(wallaby |the) × P(wallaby |the, 〈s〉)
× P(is) × P(is|wallaby) × P(is|wallaby , the)

× P(endangered) × P(endangered |is) × P(endangered |is,wallaby)

Case 2:

P(endangered |is)
What is the probability of a known word in a known context, if that
word hasn’t been seen in that context?

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 41 / 90

Examples

Example

Training data: The wolf is an endangered species

Test data: The wallaby is endangered

Unigram Bigram Trigram

P(the) P(the|〈s〉) P(the|〈s〉)
× P(wallaby) × P(wallaby |the) × P(wallaby |the, 〈s〉)
× P(is) × P(is|wallaby) × P(is|wallaby , the)

× P(endangered) × P(endangered |is) × P(endangered |is,wallaby)

Case 3:

P(is|wallaby), P(is|wallaby , the), P(endangered |is,wallaby)
What is the probability of a known word in an unseen context?

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 42 / 90

Formally, What Unseen Events May Occur?

Simple distributions:

P(X = x)

(e.g. unigram models)

Possibility:

The outcome x has not occurred during training (i.e. is unknown)
We need to reserve mass in P(X) for x

What outcomes x are possible?

How much mass should they get?

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 43 / 90

Formally, What Unseen Events May Occur?

Simple conditional distributions:

P(X = x |Y = y)

(e.g. bigram models)

Possibility:

The outcome x has been seen, but not in the context of Y = y :
We need to reserve mass in P(X |Y = y) for X = x

The conditioning variable y has not been seen:

We have no P(X |Y = y) distribution.
We need to drop the conditioning context Y = y and use P(X)
instead.

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 44 / 90

Formally, What Unseen Events May Occur?

Complex conditional distributions:

P(X = x |Y = y ,Z = z)

(e.g. trigram models)

Possibility:

The outcome x has been seen, but not in the context of
(Y = y ,Z = z):
We need to reserve mass in P(X |Y = y ,Z = z) for X = x

The joint conditioning event (Y = y ,Z = z) has not been seen:

We have no P(X |Y = y ,Z = z) distribution.
We need to drop z and use P(X |Y = y) instead.

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 45 / 90

Dealing with Unknown Words: A Simple Solution

Training:

Assume a fixed vocabulary (e.g. all words that occur at least twice (or
n times) in the corpus)
Replace all other words by a token 〈UNK 〉 (or a special OOV)
Estimate the model on this corpus

Testing:

Replace all unknown words by 〈UNK 〉
Run the model

This requires a large training corpus to work well!
Note: You cannot fairly compare two language models that apply different
UNK treatments!

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 46 / 90

Overview

1 Language Models

2 Parameter Estimation
Maximum Likelihood
Unseen Events (Words)
Add-one Smoothing
Add-K Smoothing and Bayesian Estimation
Good-Turing Smoothing
Interpolation Smoothing

Kneser-Ney Smoothing

3 Evaluation

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 47 / 90

Dealing with Unknown Words

Use a different estimation technique:

Add-one (Laplace) Smoothing
Good-Turing Discounting

Idea: Replace MLE estimate P(w) = c(w)
N

Combine a complex model with a simpler model:

Linear Interpolation
Modified Kneser-Ney smoothing
Idea: use bigram probabilities P(wi |wi−1) to calculate trigram
probabilities P(wi |wi−1,wi−2) of w

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 48 / 90

Smoothing: Intuition

When we have sparse statistics (P(w |denied the)):

Steal probability mass to generalize better

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 49 / 90

Add-one (Laplace) Smoothing

Assume every (seen or unseen) event occurred once more than it did
in the training data

Example: unigram probabilities

Estimated from a corpus with N tokens and a vocabulary (number of
word types) of size V .
MLE:

⇒ θi =
ui∑V
i ui

=
ui

N

Add one:

⇒ θi =
ui + 1∑V
i (ui + 1)

=
ui + 1

N + V

where ui = c(vi) is the count of vi shown in training set W,
∑

i ui = N

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 50 / 90

Add One Smoothing for Bigrams

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 51 / 90

Add One Smoothing for Bigrams

Problem: Add-one moves too much probability mass from seen to unseen
events!

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 52 / 90

Summary: Add-One smoothing

Advantage:

Very simple to implement

Disadvantage:

Takes away too much probability mass from seen events
Assigns too much total probability mass to unseen events

Example (The Shakespeare example)

V = 30, 000 word types; “the” occurs 25, 545 times

Bigram probabilities for “the...”:
P(wi |wi−1 = the) = c(the,wi)+1

25,545+30,000

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 53 / 90

Overview

1 Language Models

2 Parameter Estimation
Maximum Likelihood
Unseen Events (Words)
Add-one Smoothing
Add-K Smoothing and Bayesian Estimation
Good-Turing Smoothing
Interpolation Smoothing

Kneser-Ney Smoothing

3 Evaluation

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 54 / 90

Generalization: Add-K smoothing

Problem: Add-one moves too much probability mass from seen to unseen
events!

Variant of Add-One smoothing

Add a constant k to the counts of each word
For any k > 0 (typically, k < 1), a unigram model is

⇒ θi =
ui + k∑V
i ui + kV

=
ui + k

N + kV

If k = 1

“Add one” Laplace smoothing

This is still too simplistic to work well.

Any explanation?

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 55 / 90

Bayesian Interpretation

Conjugate distribution

Adding a conjugate prior to a likelihood will result in a posterior in the
same distribution family as the prior, then the prior and the likelihood
are called conjugate distributions
Conjugate distribution makes us easier to formulate Bayesian belief and
inference the model

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 56 / 90

Bayesian Interpretation

The conjugate prior of a multinomial is Dirichlet distribution:

P(θ|α) = Dir(θ|α) , Γ(
∑V

i=1 αi)∏V
i=1 Γ(αi)

∏V
i=1 θ

αi−1
i , 1

∆(α)

∏V
i=1 θ

αi−1
i

The “Dirichlet Delta function” ∆(α) is introduced for convenience
α = (α1, α2, . . . , αV)> ∈ RV

The Gamma function satisfies Γ(x + 1) = xΓ(x)

For integer variable, Gamma function is just factorial Γ(x) = (x − 1)!
For real numbers, it is Γ(x) =

∫∞
0

tx−1e−tdt

The Dirichlet distribution can be seen as the “distribution of a
distribution”

We can sample a multinomial distribution from Dirichlet distribution,
satisfied the constraint

∑
i θi = 1

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 57 / 90

Bayesian Interpretation

The Dirichlet distribution can be seen as the “distribution of a
distribution”

We can sample a multinomial distribution from Dirichlet distribution,
satisfied the constraint

∑
i θi = 1

In two variables case, multinomial reduces to binomial and Dirichlet
reduces to Beta distribution

Figure copied from Heinrich (2008)
Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 58 / 90

Bayesian Interpretation

The Dirichlet distribution can be seen as the “distribution of a
distribution”

We can sample a multinomial distribution from Dirichlet distribution,
satisfied the constraint

∑
i θi = 1

Three variables: distribution defined over a simplex

Figure copied from Wikipedia:
https://en.wikipedia.org/wiki/Dirichlet_distribution

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 59 / 90

https://en.wikipedia.org/wiki/Dirichlet_distribution

Bayesian Estimation

Remember Maximum likelihood estimator: θ̂ = arg maxθ P(W|θ)

P(W|θ) =
N∏
j=1

P(wj |θ) =
V∏
i=1

P(vi)
ui =

V∏
i=1

θui (θi =
ui∑V
i ui

=
ui

N
)

The posterior of the parameters θ based on the prior and the
observation of N words:

P(θ|W,α) = P(W|θ)P(θ|α)
P(W|α) =

∏N
i=1 P(wi |θ)P(θ|α)∫

θ
∏N

i=1 P(wi |θ)P(θ|α)dθ

=
∏N

i=1 P(wi |θ)P(θ|α)
Z

= 1
Z

∏V
i=1 θ

ui
i

1
∆(α)

∏V
i=1 θ

αi−1
i

= 1
∆(α+u)

∏V
i=1 θ

αi+ui−1
i = Dir(θ|α + u)

According to the property of Dirichlet distribution, the posterior is
with mean θi = ui+αi∑V

i ui+Vαi
and mode θi = ui+αi−1∑V

i ui+V (αi−1)
(MAP,

maximum a posterior estimation, estimation), and αi = 1 equals to
MLE

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 60 / 90

Overview

1 Language Models

2 Parameter Estimation
Maximum Likelihood
Unseen Events (Words)
Add-one Smoothing
Add-K Smoothing and Bayesian Estimation
Good-Turing Smoothing
Interpolation Smoothing

Kneser-Ney Smoothing

3 Evaluation

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 61 / 90

Good-Turing Smoothing

Question: why the same discount for all n-grams?

Good-Turing Discounting: invented during WWII by Alan Turing and
later published by Good (1953)

Motivation

P(seen) + P(unseen) = 1
MLE: ⇔ N

N + 0 = 1

Good Turing: ⇔ 2·N2+...+m·Nm∑m
i=1 i·Ni

+ 1·N1∑m
i=1 i·Ni

= 1

Nr : number of event types that occur r times (c(w1, ...,wn) = r)
N1: number of event types that occur once (c(w1, ...,wn) = 1)
N =

∑m
i=1 i · Ni : total number of observed event tokens

Quick idea

Now, use the modified counts c∗(w1, ...,wn) = (r + 1)Nr+1

Nr
for events

that occur r times

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 62 / 90

Good-Turing Smoothing Intuition

You are fishing (a scenario from Josh Goodman), and caught:
10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish

How likely is it that next species is trout?
1/18

How likely is it that next species is new (i.e. catfish or bass)
Let’s use our estimate of things-we-saw-once to estimate the new
things
3/18 (because N1 = 3)

Assuming so, how likely is it that next species is trout?
Must be less than 1/18
How to estimate?

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 63 / 90

Good-Turing Smoothing: More Details

General principle: Reassign the probability mass of all events that
occur r times in the training data to all events that occur r − 1 times

The probability mass of all words that appear r − 1 times becomes:∑
w :c(w)=r−1 PGT (w) =

∑
w ′:c(w ′)=r PMLE (w ′) =

∑
w ′:c(w ′)=r

r
N = r ·Nr

N

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 64 / 90

Good-Turing Smoothing Example

You are fishing (a scenario from Josh Goodman), and caught:

10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish

Unseen (bass or catfish)

c = 0
PMLE = 0/18 = 0
PGT (unseen) = N1/N = 3/18

Seen once (trout)

c = 1
PMLE = 1/18
c∗(trout) = 2 ∗ N2/N1 = 2 ∗ 1/3 = 2/3
PGT (trout) = 2/3/18 = 1/27

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 65 / 90

Problems with Good-Turing

Problem 1:

What happens to the most frequent event?

Problem 2:

We don’t observe events for every k.

Variant (tricks): Simple Good-Turing

Replace Nn with a fitted function f (n) = a + b log(n):
Requires parameter tuning (on held-out data):

Set a, b so that f (n) ≈ Nn for known values.
Use c∗n only for small n

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 66 / 90

Overview

1 Language Models

2 Parameter Estimation
Maximum Likelihood
Unseen Events (Words)
Add-one Smoothing
Add-K Smoothing and Bayesian Estimation
Good-Turing Smoothing
Interpolation Smoothing

Kneser-Ney Smoothing

3 Evaluation

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 67 / 90

Linear Interpolation

Linear interpolation: Use (n-1)-gram probabilities to smooth n-gram
probabilities:
P̄(wi |wi−1, . . . ,wi−n+1) =
λPMLE (wi |wi−1, . . . ,wi−n+1) + (1− λ)P̄(wi |wi−1, . . . ,wi−n+2)

P̄(wi |wi−1, . . . ,wi−n+1) is smoothed n-gram
PMLE (wi |wi−1, . . . ,wi−n+1) is MLE result
P̄(wi |wi−1, . . . ,wi−n+2) is smoothed (n-1)-gram

Example (We never see the trigram “Bob was reading,”)

But we might have seen the bigram “was reading”, and we have certainly
seen “reading” (or 〈UNK 〉)

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 68 / 90

Linear Interpolation (Cont’d)

Linear interpolation: further generalization

P̄(wi |wi−1, . . . ,wi−n+1)
= λ1PMLE (wi |wi−1, . . . ,wi−n+1)
+ λ2P̄(wi |wi−1, . . . ,wi−n+2)
+ . . .
+ λnP̄(wi)

Again PMLE (wi |wi−1, . . . ,wi−n+1) is MLE result

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 69 / 90

Linear Interpolation (Cont’d)

Estimating λi ’s

Using a hold-out data set to find the optimal λi ’s
An evaluation metric is needed to define “optimality”
We will come back to this later

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 70 / 90

Absolute Discounting

Absolute discounting

Subtract a constant δ from each nonzero n-gram count and then
interpolate

P̄(wi |wi−1, . . . ,wi−n+1)

= max(0,c(wi ,...,wi−n+1)−δ)
c(wi−1,...,wi−n+1) + λP̄(wi |wi−1, . . . ,wi−n+2)

If S seen word types (unique words in vocabulary) occur after
wi−1, . . . ,wi−n+1 in the training data, this reserves the probability
mass P(u) = δS

c(wi−1,...,wi−n+1) to be reallocated according to

P̄(wi |wi−1, . . . ,wi−n+2)

We set λ = δS
c(wi−1,...,wi−n+1)

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 71 / 90

Overview

1 Language Models

2 Parameter Estimation
Maximum Likelihood
Unseen Events (Words)
Add-one Smoothing
Add-K Smoothing and Bayesian Estimation
Good-Turing Smoothing
Interpolation Smoothing

Kneser-Ney Smoothing

3 Evaluation

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 72 / 90

Kneser-Ney Smoothing

Observation: “San Francisco” is frequent, but “Francisco” only
occurs after “San”

“Francisco” will get a high unigram probability, and so absolute
discounting will give a high probability to “Francisco“ appearing after
novel bigram histories.
Better to give “Francisco“ a low unigram probability, because the only
time it occurs is after San, in which case the bigram model fits well.

Solution: the unigram probability P(w) should not depend on the
frequency of w , but on the number of contexts in which w appears

N+1(·,w): number of contexts in which w appears = number of word
types (unique words in vocabulary) w ′ which precede w
(w=“Francisco”, count “San” only once)
N+1(·, ·) =

∑
w N+1(·,w)

Kneser-Ney smoothing: Use absolute discounting, but use
P(w) = N+1(·,w)/N+1(·, ·) to smooth bigram language model

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 73 / 90

Overview

1 Language Models

2 Parameter Estimation
Maximum Likelihood
Unseen Events (Words)
Add-one Smoothing
Add-K Smoothing and Bayesian Estimation
Good-Turing Smoothing
Interpolation Smoothing

Kneser-Ney Smoothing

3 Evaluation

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 74 / 90

Language Model Evaluation

Train the models on the same training set

Parameter tuning can be done by holding off some training set for
validation

Test the models on an unseen test set

This data set must be disjoint from training data

Language model A is better than model B

If A assigns higher probability to the test data than B

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 75 / 90

Measuring Model Quality

The goal isn’t to pound out fake sentences!

Obviously, generated sentences get “better” as we increase the model
order
More precisely: using ML estimators, higher order is always better
likelihood on train, but not test

What we really want to know is:

Will our model prefer good sentences to bad ones?
Bad 6= ungrammatical!
Bad ≈ unlikely
Bad = sentences that our model really likes but aren’t the correct
answer

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 76 / 90

Measuring Model Quality (Cont’d)

The Shannon Game (by Claude Shannon, 1916–2001):

How well can we predict the next word?

grease 0.5
sauce 0.4
dust 0.05

When I eat pizza, I wipe off the ...
mice 0.0001
...
the 1e − 100

Unigrams are terrible at this game.

How good are we doing?

Compute per word log likelihood (N words, M test sentences Si):

An intuitive way: l = 1
N

∑N
i log P(Si)

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 77 / 90

Perplexity

Standard evaluation metric for language models

A function of the probability that a language model assigns to a data
set
Rooted in the notion of cross-entropy in information theory

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 78 / 90

Perplexity

Perplexity of a probability distribution

2H(P) = 2−
∑

x P(x) log2 P(x)

H(P): entropy
Perplexity of a random variable X may be defined as the perplexity of
the distribution over its possible values x
In the special case where P models a uniform distribution over k
discrete events, its perplexity is k

Perplexity of a probability model

2H(P̂,Q) = 2−
∑

x P̂(x) log2 Q(x)

H(P̂,Q): cross entropy
P̂ denotes the empirical distribution of the test sample (i.e.,
P̂(x) = n/N if x appeared n times in the test sample of size N)
Q: a proposed probability model
One may evaluate Q by asking how well it predicts a separate test
sample x1, x2, ..., xN also drawn from unknown P

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 79 / 90

The Shannon Game Intuition for Perplexity

How hard is the task of recognizing digits “0,1,2,3,4,5,6,7,8,9” at
random

Perplexity 10

How hard is recognizing (30,000) names at random

Perplexity 30,000

If a system has to recognize

Operator (1 in 4)
Sales (1 in 4)
Technical Support (1 in 4)
30,000 names (1 in 120,000 each)
Perplexity is 53

Perplexity is weighted equivalent branching factor

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 80 / 90

Perplexity as Branching Factor

Language with higher perplexity means the number of words
branching from a previous word is larger on average

The difference between the perplexity of a language model and the
true perplexity of the language is an indication of the quality of the
model

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 81 / 90

Perplexity Per Word for Language Models

Given a test corpus with N tokens, w1, . . . ,wN , and an n-gram model
P(wi |wi1, . . . ,win+1) the perplexity PP(w1, . . . ,wN) is defined as
follows (Brown et al. (1992)):

The inverse of the likelihood of the test set as assigned by the
language model, normalized by the number of words

PP(w1, . . . ,wN) = P(w1, . . . ,wN)−
1
N

= N

√
1

P(w1,...,wN)

= N

√
1∏N

i=1 P(wi |w1,...,wi−1)
(chain rule)

= N

√
1∏N

i=1 P(wi |wi−1,...,wi−n+1)
(n − gram model)

Minimizing perplexity = maximizing probability!

Language model LM1 is better than LM2 if LM1 assigns lower
perplexity (= higher probability) to the test corpus w1, . . . ,wN

Note: the perplexity of LM1 and LM2 can only be directly compared
if both models use the same vocabulary.

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 82 / 90

Practical Issues

Since language model probabilities are very small, multiplying them
together often yields to underflow

It is often better to use logarithms instead, so replace

PP(w1, . . . ,wN) = N

√
1∏N

i=1 P(wi |wi−1, . . . ,wi−n+1)

with

PP(w1, . . . ,wN) = exp

(
− 1

N

N∑
i=1

log P(wi |wi−1, . . . ,wi−n+1)

)

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 83 / 90

An Experiment

Models

Unigram, bigram, trigram models (with proper smoothing)

Training data

38M words of WSJ text (vocabulary: 20K types)

Test data

1.5M words of WSJ text

Results

Unigram Bigram Trigram

Perplexity 962 170 109

Conclusion: The bigram is much better than the unigram, and the
trigram is even better

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 84 / 90

What Actually Works?

Trigrams and beyond

Unigrams, bigrams generally useless for speech or machine translation
Trigrams much better (when there’s enough data)
4-, 5-grams really useful in MT, but not so much for speech

Discounting

Absolute discounting, Good-Turing, held-out estimation, Witten-Bell,
etc.

See Chen and Goodman (1996) reading for tons of graphs

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 85 / 90

Data vs. Method?

Having more data is better...

...but so is using a better estimator

Another issue: n > 3 has huge costs in speech recognizers

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 86 / 90

Tons of Data?

Tons of data closes gap, for extrinsic MT evaluation

http://www.aclweb.org/anthology/D07-1090.pdf
Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 87 / 90

http://www.aclweb.org/anthology/D07-1090.pdf

Overview

1 Language Models

2 Parameter Estimation
Maximum Likelihood
Unseen Events (Words)
Add-one Smoothing
Add-K Smoothing and Bayesian Estimation
Good-Turing Smoothing
Interpolation Smoothing

Kneser-Ney Smoothing

3 Evaluation

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 88 / 90

Further Reading

Manning et al. (2008). Introduction to information retrieval. Chapter
12: Language models for information retrieval.

Jurafsky and Martin (2017). Speech and Language Processing.
Chapter 4: N-Grams.
https://web.stanford.edu/~jurafsky/slp3/

Chen and Goodman (1996). An empirical study of smoothing
techniques for language modeling.

Collins (2011). Course notes for COMS w4705: Language modeling,
2011. http://www.cs.columbia.edu/~mcollins/courses/

nlp2011/notes/lm.pdf

Zhu (2010). Course notes for cs769: Language modeling, 2011.
http://pages.cs.wisc.edu/~jerryzhu/cs769/lm.pdf

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 89 / 90

https://web.stanford.edu/~jurafsky/slp3/
http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/lm.pdf
http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/lm.pdf
http://pages.cs.wisc.edu/~jerryzhu/cs769/lm.pdf

References

Brown, P. F., Pietra, V. J. D., Mercer, R. L., Pietra, S. A. D., and Lai, J. C. (1992). An
estimate of an upper bound for the entropy of english. Comput. Linguist.,
18(1):31–40.

Chen, S. F. and Goodman, J. (1996). An empirical study of smoothing techniques for
language modeling. In ACL, pages 310–318.

Collins, M. (2011). Course notes for coms w4705: Language modeling. Technical report,
Columbia University.

Good, I. J. (1953). The population frequencies of species and the estimation of
population parameters. Biometrika, 40 (3 and 4):237–264.

Heinrich, G. (2008). Parameter estimation for text analysis. Technical Report Version
2.4, vsonix GmbH + University of Leipzig, Germany.

Jurafsky, D. and Martin, J. H. (2017). Speech and Language Processing. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA.

Lin, J. and Dyer, C. (2010). Data-Intensive Text Processing with MapReduce. Morgan
and Claypool Publishers.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information
Retrieval. Cambridge University Press, New York, NY, USA.

Zhu, X. J. (2010). Course notes for cs769: Language modeling. Technical report,
University of Wisconsin-Madison.

Yangqiu Song (HKUST) COMP5222/MATH5471 September 11, 2019 90 / 90

	Language Models
	Parameter Estimation
	Maximum Likelihood
	Unseen Events (Words)
	Add-one Smoothing
	Add-K Smoothing and Bayesian Estimation
	Good-Turing Smoothing
	Interpolation Smoothing

	Evaluation

