Chapter 1

Language Modeling

(Course notes for NLP by Michael Collins, Columbia University)

1.1 Introduction

In this chapter we will consider the the problem of constructing a language model
from a set of example sentences in a language. Language models were originally
developed for the problem of speech recognition; they still play a central role in
modern speech recognition systems. They are also widely used in other NLP ap-
plications. The parameter estimation techniques that were originally developed for
language modeling, as described in this chapter, are useful in many other contexts,
such as the tagging and parsing problems considered in later chapters of this book.

Our task is as follows. Assume that we have a corpus, which is a set of sen-
tences in some language. For example, we might have several years of text from
the New York Times, or we might have a very large amount of text from the web.
Given this corpus, we’d like to estimate the parameters of a language model.

A language model is defined as follows. First, we will define V to be the set
of all words in the language. For example, when building a language model for
English we might have

V = {the, dog, laughs, saw, barks, cat, ...}

In practice V can be quite large: it might contain several thousands, or tens of
thousands, of words. We assume that V is a finite set. A sentence in the language
is a sequence of words

T1X2...Tp

where the integer n is such that n > 1, we have x; € Vfori € {1...(n — 1)},
and we assume that x,, is a special symbol, STOP (we assume that STOP is not a

1

2CHAPTER 1. LANGUAGE MODELING(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMI

member of V). We’ll soon see why it is convenient to assume that each sentence
ends in the STOP symbol. Example sentences could be

the dog barks STOP

the cat laughs STOP

the cat saw the dog STOP
the STOP

cat the dog the STOP

cat cat cat STOP

STOP

We will define V1 to be the set of all sentences with the vocabulary V: this is
an infinite set, because sentences can be of any length.
We then give the following definition:

Definition 1 (Language Model) A language model consists of a finite set V, and
a function p(x1,x2, . . . T,) such that:

1. Forany (z1...x,) € VI, p(x1,22,...75) >0

2. In addition,
Z p(r1, o, ... 2n) =1

(x1...wn)EVT
Hence p(x1, T2, . . . z,) is a probability distribution over the sentences in V1.

As one example of a (very bad) method for learning a language model from a
training corpus, consider the following. Define ¢(z ... x,) to be the number of
times that the sentence xj ...x, is seen in our training corpus, and /N to be the
total number of sentences in the training corpus. We could then define

(g ...xn)
N

This is, however, a very poor model: in particular it will assign probability O to any
sentence not seen in the training corpus. Thus it fails to generalize to sentences
that have not been seen in the training data. The key technical contribution of this
chapter will be to introduce methods that do generalize to sentences that are not
seen in our training data.

At first glance the language modeling problem seems like a rather strange task,
so why are we considering it? There are a couple of reasons:

p(zy...2pn) =

1.2. MARKOV MODELS 3

1. Language models are very useful in a broad range of applications, the most
obvious perhaps being speech recognition and machine translation. In many
applications it is very useful to have a good “prior” distribution p(z1 ... zy,)
over which sentences are or aren’t probable in a language. For example, in
speech recognition the language model is combined with an acoustic model
that models the pronunciation of different words: one way to think about it
is that the acoustic model generates a large number of candidate sentences,
together with probabilities; the language model is then used to reorder these
possibilities based on how likely they are to be a sentence in the language.

2. The techniques we describe for defining the function p, and for estimating
the parameters of the resulting model from training examples, will be useful
in several other contexts during the course: for example in hidden Markov
models, which we will see next, and in models for natural language parsing.

1.2 Markov Models

We now turn to a critical question: given a training corpus, how do we learn the
function p? In this section we describe Markov models, a central idea from proba-
bility theory; in the next section we describe trigram language models, an impor-
tant class of language models that build directly on ideas from Markov models.

1.2.1 Markov Models for Fixed-length Sequences

Consider a sequence of random variables, X1, Xo, ..., X,,. Each random variable
can take any value in a finite set V. For now we will assume that the length of
the sequence, n, is some fixed number (e.g., n = 100). In the next section we’ll
describe how to generalize the approach to cases where n is also a random variable,
allowing different sequences to have different lengths.

Our goal is as follows: we would like to model the probability of any sequence
Z1...Tp, wheren > 1l and z; € V foriv = 1...n, that is, to model the joint
probability

P(Xl = .’El,XQ = 1/‘2,...,Xn = $n)

There are |V|" possible sequences of the form z7 . . . ,,: so clearly, it is not feasible
for reasonable values of |V| and n to simply list all |V|™ probabilities. We would
like to build a much more compact model.

In a first-order Markov process, we make the following assumption, which
considerably simplifies the model:

P(Xl :afl,XQZI'Q,...Xn:IBn)

4CHAPTER 1. LANGUAGE MODELING(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMI

n
= PXi=m) [[PXi=a|X1=21,.... Xim1 =xi1) (11)
i—2

= PXi=mx) || P(Xi=a|Xiz1 = x5-1) (1.2)
i=2

The first step, in Eq. 1.1, is exact: by the chain rule of probabilities, any distribution
P(X; = z1...X,, = z,) can be written in this form. So we have made no
assumptions in this step of the derivation. However, the second step, in Eq. 1.2, is
not necessarily exact: we have made the assumption that for any i € {2...n}, for
any ri ...,

P(Xz = SUZ‘Xl =1 .. -Xi—l = xi_l) = P(Xz = CCZ"Xi_l = xi—l)

This is a (first-order) Markov assumption. We have assumed that the identity of the
1’th word in the sequence depends only on the identity of the previous word, x;_.
More formally, we have assumed that the value of X is conditionally independent
of X1 ...X; o, given the value for X;_;.

In a second-order Markov process, which will form the basis of trigram lan-
guage models, we make a slightly weaker assumption, namely that each word de-
pends on the previous two words in the sequence:

P(X;=z| X1 =21,..., Xj_1 = 1)
= PXi=z|Xi0=2i 0, X; 1 =2 1)
It follows that the probability of an entire sequence is written as
P(Xl = 1‘1,X2 =T, .. Xn = mn)
n
= [[P(Xi=wi|Xis =22, Xis1 = xi1) (1.3)
i=1
For convenience, we will assume that xg = x_1 = * in this definition, where * is
a special “start” symbol in the sentence.

1.2.2 Markov Sequences for Variable-length Sentences

In the previous section, we assumed that the length of the sequence, n, was fixed.
In many applications, however, the length n can itself vary. Thus n is itself a
random variable. There are various ways of modeling this variability in length: in
this section we describe the most common approach for language modeling.

The approach is simple: we will assume that the n’th word in the sequence,
X, is always equal to a special symbol, the STOP symbol. This symbol can only

1.3. TRIGRAM LANGUAGE MODELS 5

appear at the end of a sequence. We use exactly the same assumptions as before:
for example under a second-order Markov assumption, we have

n

P(Xi =21, Xo=m3,... Xp =) = [[PXi=ai|Xico=mi_9, X1 =1i1)
=1

(1.4)

for any n > 1, and for any z; ...z, such that z,, = STOP, and z; € V for
i=1...(n—1).

We have assumed a second-order Markov process where at each step we gen-
erate a symbol x; from the distribution

P(X; =zi|Xi—o = xi—2, Xi—1 = xi_1)

where z; can be a member of V, or alternatively can be the STOP symbol. If we
generate the STOP symbol, we finish the sequence. Otherwise, we generate the
next symbol in the sequence.

A little more formally, the process that generates sentences would be as fol-
lows:

1. Initialize: =1,and zg =2x_1 = *
2. Generate z; from the distribution

P(X; =il Xio =2j—2, Xi 1 =xi—1)

3. If x; = STOP then return the sequence x; . ..x;. Otherwise, set? = ¢ + 1
and return to step 2.

Thus we now have a model that generates sequences that vary in length.

1.3 Trigram Language Models

There are various ways of defining language models, but we’ll focus on a particu-
larly important example, the trigram language model, in this chapter. This will be
a direct application of Markov models, as described in the previous section, to the
language modeling problem. In this section we give the basic definition of a tri-
gram model, discuss maximum-likelihood parameter estimates for trigram models,
and finally discuss strengths of weaknesses of trigram models.

6CHAPTER 1. LANGUAGE MODELING(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMI

1.3.1 Basic Definitions

As in Markov models, we model each sentence as a sequence of n random vari-
ables, X1, Xo,...X,. The length, n, is itself a random variable (it can vary across
different sentences). We always have X,, = STOP. Under a second-order Markov
model, the probability of any sentence x . ..z, is then

n
P(Xi =1, Xo=129,...X;y = 2p) = H P(X; = 2| Xj—g =22, X;—1 = xi_1)
i=1
where we assume as before that xog = x_1 = *.
We will assume that for any ¢, for any x;_2, x;—1, x4,

P(X; = x| Xi—a = wi—0, Xio1 = xi—1) = q(wi|wi—2, xi—1)

where g(w|u,v) for any (u,v,w) is a parameter of the model. We will soon see
how to derive estimates of the ¢(w|u, v) parameters from our training corpus. Our
model then takes the form

n

p(z1...an) = H q(zi|Ti-2,7i1)
i=1

for any sequence x1 ... Zp.
This leads us to the following definition:

Definition 2 (Trigram Language Model) A frigram language model consists of
a finite set V, and a parameter

q(wlu,v)
for each trigram u, v, w such that w € V U {STOP}, and u,v € V U {*}. The
value for q(w|u,v) can be interpreted as the probability of seeing the word w
immediately after the bigram (u,v). For any sentence xi ...z, where x; € V

fori=1...(n—1), and x,, = STOP, the probability of the sentence under the
trigram language model is

n

plry...2n) = H q(wi|zi2, 1)
i=1
where we define xo = x_1 = * [

For example, for the sentence

the dog barks STOP

1.3. TRIGRAM LANGUAGE MODELS 7

we would have
p(the dog barks STOP) = ¢(the|*, *) xg(dog|*, the) x g(barks|the, dog) x ¢(STOP|dog, barks)

Note that in this expression we have one term for each word in the sentence (the,
dog, barks, and STOP). Each word depends only on the previous two words: this
is the trigram assumption.

The parameters satisfy the constraints that for any trigram w, v, w,

q(wlu,v) >0
and for any bigram u, v,

> awluv) =1
weVU{STOP}

Thus g(w|u,v) defines a distribution over possible words w, conditioned on the
bigram context u, v.

The key problem we are left with is to estimate the parameters of the model,
namely

q(wlu, v)

where w can be any member of VU{STOP}, and u,v € VU{*}. There are around
|V|? parameters in the model. This is likely to be a very large number. For example
with |V| = 10,000 (this is a realistic number, most likely quite small by modern
standards), we have |V|? ~ 10'2.

1.3.2 Maximum-Likelihood Estimates

We first start with the most generic solution to the estimation problem, the maximum-
likelihood estimates. We will see that these estimates are flawed in a critical way,
but we will then show how related estimates can be derived that work very well in
practice.

First, some notation. Define ¢(u, v, w) to be the number of times that the tri-
gram (u,v,w) is seen in the training corpus: for example, c(the, dog, barks) is
the number of times that the sequence of three words the dog barks is seen in the
training corpus. Similarly, define ¢(u, v) to be the number of times that the bigram
(u,v) is seen in the corpus. For any w, u, v, we then define

B c(u, v, w)
Q(w’u7 U) - C(u7 U)

8CHAPTER 1. LANGUAGE MODELING(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMF

As an example, our estimate for g(barks|the, dog) would be

c(the, dog, barks)
c(the, dog)

q(barks|the, dog) =

This estimate is very natural: the numerator is the number of times the entire tri-
gram the dog barks is seen, and the denominator is the number of times the bigram
the dog is seen. We simply take the ratio of these two terms.

Unfortunately, this way of estimating parameters runs into a very serious issue.
Recall that we have a very large number of parameters in our model (e.g., with
a vocabulary size of 10, 000, we have around 10'? parameters). Because of this,
many of our counts will be zero. This leads to two problems:

e Many of the above estimates will be ¢(w|u,v) = 0, due to the count in
the numerator being 0. This will lead to many trigram probabilities being
systematically underestimated: it seems unreasonable to assign probability 0
to any trigram not seen in training data, given that the number of parameters
of the model is typically very large in comparison to the number of words in
the training corpus.

e In cases where the denominator ¢(u, v) is equal to zero, the estimate is not
well defined.

We will shortly see how to come up with modified estimates that fix these problems.
First, however, we discuss how language models are evaluated, and then discuss
strengths and weaknesses of trigram language models.

1.3.3 Evaluating Language Models: Perplexity

So how do we measure the quality of a language model? A very common method
is to evaluate the perplexity of the model on some held-out data.

The method is as follows. Assume that we have some test data sentences
2 2@ 2(m) Each test sentence x() for i € {1...m} is a sequence of
words m@, ey :L‘%?, where n; is the length of the 7’th sentence. As before we
assume that every sentence ends in the STOP symbol.

It is critical that the test sentences are “held out”, in the sense that they are
not part of the corpus used to estimate the language model. In this sense, they are
examples of new, unseen sentences.

For any test sentence (¥, we can measure its probability p(x(i)) under the
language model. A natural measure of the quality of the language model would be

1.3. TRIGRAM LANGUAGE MODELS 9

the probability it assigns to the entire set of test sentences, that is

m

[»(z?)

=1

The intuition is as follows: the higher this quantity is, the better the language model
is at modeling unseen sentences.

The perplexity on the test corpus is derived as a direct transformation of this
quantity. Define M to be the total number of words in the test corpus. More
precisely, under the definition that n; is the length of the i’th test sentence,

M = an
i=1

Then the average log probability under the model is defined as
L toe TTp(z@) — L 37 (0
MIOgQi:l_[lp(l’ 7)) = M;k’gzp(fﬁ)

This is just the log probability of the entire test corpus, divided by the total number
of words in the test corpus. Here we use logsy(z) for any z > 0 to refer to the
log with respect to base 2 of z. Again, the higher this quantity is, the better the
language model.

The perplexity is then defined as

271

where
I = Vi ;logzp(ﬂv())

Thus we take the negative of the average log probability, and raise two to that
power. (Again, we’re assuming in this section that log, is log base two). The
perplexity is a positive number. The smaller the value of perplexity, the better the
language model is at modeling unseen data.

Some intuition behind perplexity is as follows. Say we have a vocabulary V,
where |V U {STOP}| = N, and the model predicts

1
(wlu,v) =
for all u, v, w. Thus this is the dumb model that simply predicts the uniform dis-

tribution over the vocabulary together with the STOP symbol. In this case, it can

10CHAPTER 1. LANGUAGE MODELING(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUM

be shown that the perplexity is equal to N. So under a uniform probability model,
the perplexity is equal to the vocabulary size. Perplexity can be thought of as the
effective vocabulary size under the model: if, for example, the perplexity of the
model is 120 (even though the vocabulary size is say 10, 000), then this is roughly
equivalent to having an effective vocabulary size of 120.

To give some more motivation, it is relatively easy to show that the perplexity
is equal to

1

t

t= % ﬁp(w“))
i=1

Here we use A/ to refer to the M th root of z: so ¢ is the value such that t* =
17, p(z™). Given that

where

m m

[1p®) =TT IT a2z, 282

i=1 i=1j=1

and M =}, n;, the value for ¢ is the geometric mean of the terms q(xg-i) |x§-i22, :):y_)l)
appearing in [[, p(z(®). For example if the perplexity is equal to 100, then
t = 0.01, indicating that the geometric mean is 0.01.

One additional useful fact about perplexity is the following. If for any trigram

u, v, w seen in test data, we have the estimate
q(wlu,v) =0

then the perplexity will be co. To see this, note that in this case the probability of
the test corpus under the model will be 0, and the average log probability will be
—oo. Thus if we take perplexity seriously as our measure of a language model,
then we should avoid giving 0 estimates at all costs.

Finally, some intuition about “typical” values for perplexity. Goodman (“A
bit of progress in language modeling”, figure 2) evaluates unigram, bigram and
trigram language models on English data, with a vocabulary size of 50, 000. In a
bigram model we have parameters of the form ¢(w|v), and

n

p(x1...2n) = H q(zilzi-1)

i=1

1.4. SMOOTHED ESTIMATION OF TRIGRAM MODELS 11

Thus each word depends only on the previous word in the sentence. In a unigram
model we have parameters ¢(w), and

plxy...xp) = H q(x;)

Thus each word is chosen completely independently of other words in the sentence.
Goodman reports perplexity figures of around 74 for a trigram model, 137 for a bi-
gram model, and 955 for a unigram model. The perplexity for a model that simply
assigns probability 1/50,000 to each word in the vocabulary would be 50, 000.
So the trigram model clearly gives a big improvement over bigram and unigram
models, and a huge improvement over assigning a probability of 1/50, 000 to each
word in the vocabulary.

1.3.4 Strengths and Weaknesses of Trigram Language Models

The trigram assumption is arguably quite strong, and linguistically naive (see the
lecture slides for discussion). However, it leads to models that are very useful in
practice.

1.4 Smoothed Estimation of Trigram Models

As discussed previously, a trigram language model has a very large number of
parameters. The maximum-likelihood parameter estimates, which take the form

whi o) = c(u, v, w)
q(wlu, v) R

will run into serious issues with sparse data. Even with a large set of training
sentences, many of the counts ¢(u, v, w) or ¢(u, v) will be low, or will be equal to
zZero.

In this section we describe smoothed estimation methods, which alleviate many
of the problems found with sparse data. The key idea will be to rely on lower-order
statistical estimates—in particular, estimates based on bigram or unigram counts—
to “smooth” the estimates based on trigrams. We discuss two smoothing methods
that are very commonly used in practice: first, linear interpolation; second, dis-
counting methods.

12CHAPTER 1. LANGUAGE MODELING(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUM

1.4.1 Linear Interpolation

A linearly interpolated trigram model is derived as follows. We define the trigram,
bigram, and unigram maximum-likelihood estimates as

qur(wlu,v) = m
qur(wlv) = Cclzvvt)")
qur(w) = CEE‘;)

where we have extended our notation: ¢(w) is the number of times word w is seen
in the training corpus, and ¢() is the total number of words seen in the training
corpus.

The trigram, bigram, and unigram estimates have different strengths and weak-
nesses. The unigram estimate will never have the problem of its numerator or
denominator being equal to 0: thus the estimate will always be well-defined, and
will always be greater than 0 (providing that each word is seen at least once in the
training corpus, which is a reasonable assumption). However, the unigram estimate
completely ignores the context (previous two words), and hence discards very valu-
able information. In contrast, the trigram estimate does make use of context, but
has the problem of many of its counts being 0. The bigram estimate falls between
these two extremes.

The idea in linear interpolation is to use all three estimates, by defining the
trigram estimate as follows:

g(wlu,v) = A1 x qur(w|u,v) + Ao X garr(wlv) + A3 % qarr (w)
Here A1, A2 and A3 are three additional parameters of the model, which satisfy
A1 >0,22>0,23>0

and
AMF+X+A3=1

Thus we take a weighted average of the three estimates.

There are various ways of estimating the A\ values. A common one is as fol-
lows. Say we have some additional held-out data, which is separate from both
our training and test corpora. We will call this data the development data. Define

1.4. SMOOTHED ESTIMATION OF TRIGRAM MODELS 13

' (u, v, w) to be the number of times that the trigram (u, v, w) is seen in the devel-
opment data. It is easy to show that the log-likelihood of the development data, as
a function of the parameters Aq, Ao, A3, is

L(A,A2,A3) = ch(u,v,w)logq(w\u,v)

U,V,W

= Z d (u,v,w)log (A1 x qurr(wlu,v) + Ao X qarr(w|v) + A3 X qarr(w))

UV,W

We would like to choose our A values to make L(A;, A2, A3) as high as possible.
Thus the A values are taken to be

L(X1, Ao, A
arg/\fg\%ﬁg (A1, A2, A3)
such that
A1 >0,22>0,23>0

and
M+ +A3=1

Finding the optimal values for A1, Ao, A3 is fairly straightforward (see section ??
for one algorithm that is often used for this purpose).

As described, our method has three smoothing parameters, A1, A2, and A3. The
three parameters can be interpreted as an indication of the confidence, or weight,
placed on each of the trigram, bigram, and unigram estimates. For example, if A\;
is close to 1, this implies that we put a significant weight on the trigram estimate
qnr(wlu, v); conversely, if A\ is close to zero we have placed a low weighting on
the trigram estimate.

In practice, it is important to add an additional degree of freedom, by allowing
the values for A1, A2 and A3 to vary depending on the bigram (u, v) that is being
conditioned on. In particular, the method can be extended to allow A; to be larger
when c(u,v) is larger—the intuition being that a larger value of ¢(u,v) should
translate to us having more confidence in the trigram estimate.

At the very least, the method is used to ensure that Ay = 0 when ¢(u,v) = 0,
because in this case the trigram estimate

c(u, v, w)
gmr(wlu, v) = c(u,v)
is undefined. Similarly, if both ¢(u, v) and ¢(v) are equal to zero, we need A\; =
Ao = 0, as both the trigram and bigram ML estimates are undefined.

14CHAPTER 1. LANGUAGE MODELING(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUM

One extension to the method, often referred to as bucketing, is described in
section 1.5.1. Another, much simpler method, is to define

c(u,v)

Ny =)
' c(u,v) +y

Ay = (1—X) X ———
S R O
A3 = 1= =X

where v > 0 is the only parameter of the method. It can be verified that A; >
0,2 > 0,and A3 > 0, and also that Ay + Ay + A3 = 1.

Under this definition, it can be seen that A\; increases as c(u,v) increases,
and similarly that A\ increases as c(v) increases. In addition we have A\; = 0
if c(u,v) = 0, and A2 = 0 if ¢(v) = 0. The value for y can again be chosen by
maximizing log-likelihood of a set of development data.

This method is relatively crude, and is not likely to be optimal. It is, however,
very simple, and in practice it can work well in some applications.

1.4.2 Discounting Methods

We now describe an alternative estimation method, which is again commonly used
in practice. Consider first a method for estimating a bigram language model, that
is, our goal is to define
q(wlv)
for any w € V U {STOP}, v € V U {x}.
The first step will be to define discounted counts. For any bigram c¢(v, w) such
that c(v, w) > 0, we define the discounted count as

c(v,w) = c(v,w) — B

where (3 is a value between 0 and 1 (a typical value might be 5 = 0.5). Thus we
simply subtract a constant value, (3, from the count. This reflects the intuition that
if we take counts from the training corpus, we will systematically over-estimate the
probability of bigrams seen in the corpus (and under-estimate bigrams not seen in
the corpus).

For any bigram (v, w) such that ¢(v,w) > 0, we can then define

(v, w)
Q(wh}) - C(’U)

Thus we use the discounted count on the numerator, and the regular count on the
denominator of this expression.

1.4. SMOOTHED ESTIMATION OF TRIGRAM MODELS 15

x c(x) | c*(x) CC(I(J;))

the 48

the, dog 15 14.5 | 14.5/48
the, woman 11 10.5 | 10.5/48
the, man 10 9.5 9.5/48

the, park 5 4.5 4.5/48

the, job 2 1.5 1.5/48

the, telescope 1 0.5 0.5/48

the, manual 1 0.5 0.5/48

the, afternoon 1 0.5 0.5/48

the, country 1 0.5 0.5/48

the, street 1 0.5 0.5/48

Figure 1.1: An example illustrating discounting methods. We show a made-up
example, where the unigram the is seen 48 times, and we list all bigrams (u, v)
such that u = the, and ¢(u,v) > 0 (the counts for these bigrams sum to 48). In
addition we show the discounted count ¢*(z) = c(x) — 3, where 5 = 0.5, and
finally we show the estimate ¢* () /c(the) based on the discounted count.

16CHAPTER 1. LANGUAGE MODELING(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUM

For any context v, this definition leads to some missing probability mass, de-
fined as

w:e(v,w)>0

As an example, consider the counts shown in the example in figure 1.1. In
this case we show all bigrams (u,v) where u = the, and c¢(u,v) > 0. We use a
discounting value of 8 = 0.5. In this case we have

Z c*(v,w)_14.5+1O.5+%+4j+g+5xﬁ_4j
c(v) 48 48 48 48 48 48 48
w:e(v,w)>0

and the missing mass is

43 5
the)=1— — = —
a(the) 48 48

The intuition behind discounted methods is to divide this “missing mass” be-
tween the words w such that ¢(v, w) = 0.

More specifically, the complete definition of the estimate is as follows. For any
v, define the sets

Aw) ={w : ¢(v,w) > 0}

and
B(v) =A{w : c(v,w) =0}

For the data in figure 1.1, for example, we would have
A(the) = {dog, woman, man, park, job, telescope, manual, afternoon, country, street}

and B(the) would be the set of remaining words in the vocabulary.
Then the estimate is defined as

< (v.w) If we A(v)
ap(wlv) = { o)

qnr(w)
a(v) x e @) If w e B(v)

Thus if ¢(v, w) > 0 we return the estimate ¢* (v, w)/c(v); otherwise we divide the
remaining probability mass «(v) in proportion to the unigram estimates gz, (w).

The method can be generalized to trigram language models in a natural, recur-
sive way: for any bigram (u, v) define

A(u,v) = {w : e(u,v,w) > 0}

and
B(u,v) = {w : c(u,v,w) = 0}

1.5. ADVANCED TOPICS 17
Define ¢*(u, v, w) to be the discounted count for the trigram (u, v, w): that is,
c*(u,v,w) = c(u,v,w) —

where (3 is again the discounting value. Then the trigram model is

c*C(Z;vU;U) If w e A(u,v)
qp(wlu,v) = a(u,v) x 4D (o[} Ifw € B(u, v)
weB(uw) 40 (W[V)

where

a(uv)=1-— > ¢ (u, v, w)

weA(u,v) c(u, U)

is again the “missing” probability mass. Note that we have divided the missing
probability mass in proportion to the bigram estimates gp(w|v), which were de-
fined previously.

The only parameter of this approach is the discounting value, 3. As in linearly
interpolated models, the usual way to choose the value for this parameter is by
optimization of likelihood of a development corpus, which is again a separate set
of data from the training and test corpora. Define ¢/(u, v, w) to be the number of
times that the trigram u, v, w is seen in this development corpus. The log-likelihood
of the development data is

Z Cl(u> v, w) 1Og qD (’LU|U, U)

U,V,W

where ¢p(w|u,v) is defined as above. The parameter estimates gp(w|u,v) will
vary as the value for 5 varies. Typically we will test a set of possible values for
p—rfor example, we might test all values in the set {0.1,0.2,0.3,...,0.9}—where
for each value of 5 we calculate the log-likelihood of the development data. We
then choose the value for 5 that maximizes this log-likelihood.

1.5 Advanced Topics

1.5.1 Linear Interpolation with Bucketing

In linearly interpolated models the parameter estimates are defined as

q(wlu,v) = q(wlu,v) = A\ X qarr(wlu, v) + A2 X garr(wlv) + A3 X qarr(w)

where A1, A\s and A3 are smoothing parameters in the approach.

18CHAPTER 1. LANGUAGE MODELING(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUM

In practice, it is important to allow the smoothing parameters to vary depending
on the bigram (u,v) that is being conditioned on—in particular, the higher the
count c¢(u,v), the higher the weight should be for A; (and similarly, the higher
the count c(v), the higher the weight should be for A2). The classical method for
achieving this is through an extension that is often referred to as “bucketing”.

The first step in this method is to define a function IT that maps bigrams (u, v)
to values II(u,v) € {1,2,..., K'} where K is some integer specifying the number
of buckets. Thus the function II defines a partition of bigrams into K different
subsets. The function is defined by hand, and typically depends on the counts seen
in the training data. One such definition, with K = 3, would be

M(u,v) = 1 ifc(u,v) >0
M(u,v) = 2 ife(u,v) =0andc(v) >0
II(u,v) = 3 otherwise

This is a very simple definition that simply tests whether the counts ¢(u,v) and
¢(v) are equal to 0.

Another slightly more complicated definition, which is more sensitive to fre-
quency of the bigram (u, v), would be

M(u,v) = 1 if100 < c(u,v)

M(u,v) = 2 if50 < c(u,v) < 100
M(u,v) = 3 if20 <c(u,v) <50
M(u,v) = 4 if10 <c(u,v) <20
I(u,v) = 5 if5 <c(u,v) <10
M(u,v) = 6 if2<c(u,v)<b

I(u,v) = 7 ife(u,v)=1

II(u,v) = 8 ife(u,v)=0andc(v) >0
II(u,v) = 9 otherwise

Given a definition of the function II(wu,v), we then introduce smoothing pa-

rameters)\gk),)\(Qk),)\gk) forall kK € {1...K}. Thus each bucket has its own set of
smoothing parameters. We have the constraints that forall kK € {1... K’}

k)

AF > 00 > 0,08 >0

and

k)

AP AP P =1

1.5. ADVANCED TOPICS 19

The linearly interpolated estimate will be

q(wlu,v) = q(wlu,v) =)\gk) X qML(w|u,v)+)\gk) X qML(w|v)—|—)\gk) X gy (w)
where
k= 1I(u,v)

Thus we have crucially introduced a dependence of the smoothing parameters on
the value for II(u,v). Thus each bucket of bigrams gets its own set of smoothing
parameters; the values for the smoothing parameters can vary depending on the
value of IT(u, v) (which is usually directly related to the counts ¢(u, v) and ¢(v)).

The smoothing parameters are again estimated using a development data set.
If we again define ¢/ (u, v, w) to be the number of times the trigram u, v, w appears
in the development data, the log-likelihood of the development data is

> ¢, w) logg(wlu, v)

U,U,W

= Z d (u,v,w) log (Agn(u’v)) X gy (wlu,v) +)\én(u’v)) X qur(wlv) +)\:(,)H(u’v)) X qML(w))

K
= Z Z d (u,v,w)log ()\gk) x qurr(wlu, v) +)\gk) X gz (wlv) +)\gk)
k=1 u,v,w
M(u,v)=k

The)\gk),)\gk),)\gk) values are chosen to maximize this function.

X QML(w))

