Lecture 11: The Good-Turing Estimate

Scribes: Ellis Weng, Andrew Owens
March 4, 2010

1 Introduction

In many language-related tasks, it would be extremely useful to know the
probability that a sentence or word sequence will occur in a document. How-
ever, there is not enough data to account for all word sequences. Thus, n-gram
models are used to approximate the probability of word sequences. Making an
independence assumption between the n-grams reduces some of the problems
with data sparsity, but even n-gram models can have sparsity problems. For
example, the Google corpus has 1 trillion words of running English text. There
are 13 million words that occur over 200 times, so there are at least 169 trillion
potential bigrams - much more than the 1 trillion words in the corpus. Smooth-
ing is a strategy used to account for this data sparsity. In this lecture, we will
explore Good-Turing smoothing, a particular kind of smoothing.

2 Setup

Suppose we have the set of all possible item types: X = {z1,...,2,,}. These
item types may be n-grams, but for simplicity, we will consider unigram item
types. For example, X = {the, bad, cat,dog} .

We also have a sequence W of N independent samples: W = wy, ..., wy,
where w;, € X. We want to estimate 6[;], the probability that a future sample
will be z;. We can assume 6[;j] > 0 because we want to account for the possi-
bility of a word occurring even if it does not appear in the corpus. This implies
that the relative frequency estimate %, where #(z;) is the count of z; in W,
is not desirable or accurate for small counts. Here we run into a problem: how
can we estimate the probability of something we have never seen before?

In order to reduce the number of parameters, we introduce the idea of ty-
ing parameters based on observed events in W, a key idea in Good-Turing
smoothing. We can reduce the number of parameters by making the following
assumption: if #(z;) = #(x;), then 0[] = 6[;']. In other words, if two words
appear the same number of times in the corpus, we assume that they have the
same probability of occurring in general. This assumption is not entirely real-
istic; it may be a coincidence that these two items appeared the same number

of times. However, this assumption significantly reduces the number of the
parameters.

With this assumption, we introduce the notation 6(r) to mean the proba-
bility of a word occurring given that it appeared r times in W. We also let
N, denote the number of item types that occur exactly r times in W. In other
words, N, = |{z; : #(z;) = r}|. For example, if W = the, bad, cat, the, cat then:

Ny = 1 because dog does not appear in W,
N; = 1 because “bad” appears once in W,

N3 = 2 because the words “cat” and “the” appear twice in W.

With these definitions, the following property holds:

N =>"rN,.)
We now introduce the Good-Turing estimate for 6(r).
A - 1 Nr—i—l
) =+ D el

This estimate seems strange at this point, but we will present two deriva-
tions to justify it. As a sanity check, we verify that the sum of the word-
occurrence probabilities is 1.

D0 = D 0mN, (3)

— Sl)IEN, @
= % > (r+1)Npy. (5)

We show Y (r+1)N, 1 =Y, rN,. All of the terms in the right hand side
are also present in the left hand side (except for the term where r = 0, which
contributes nothing). The only term that appears on the left hand side but not
the right is (r,,, +1) N, +1 where r,, is the maximum number of times any word
appears in the corpus. Since N, 11 = 0, this term also contributes nothing to
the summation. Thus equality holds, and

Zém = %Z(T‘i‘ DNy = %ZTNT = N/N = 1. (6)
J r

T

3 First Derivation

For the first derivation, we will make up a “generative” story for W. Start by
assuming that we have access to 6[j] (remember that we're trying to derive 6(r)

and the problem is that the [;j]’s for different terms that occur exactly r times
might be different). Draw j (hence 6[;]) uniformly at random from {1, 2, ..., m}.
Then flip a coin N times, with 0[j] being the probability of success (e.g. Yes, Yes,
No, ..., No, Yes). The number of successes is the number of times the word z;
is generated by our model. If z; appears exactly r times, then throw ;] into
the average for 6(r). At the end of this process, 6(r) will (approximately) be the
average of the 6[;] for which #(z;) = r. More precisely, we set

O(r) = E[0[j] | #(x;) = 1] 29 [Pr(0)j] [#(x;) = 7).)

We want a generative model, so we would like to condition on the “gener-
ator,” 6[j]. We do this by applying the Bayes flip.

m—rwm Y(0])
2 z) =7 05 Pr(0G) ®)

We are assuming a uniform prior on 6[j] (i.e. P(8[j]) = 1/m), so the Pr(6[j])
and Pr(0[j']) terms cancel.

0lj] Pr(#(x;) = r | 6[4])
> Pr(# () =] 0[5'])

Now we rewrite the numerator and denominator in terms of the probability
mass function for the binomial distribution.

o1 (Mol (1 — o[V
zj: > (Mol —elN -

Let E;,, v[/V-] be the expected value of N, given that we flipped NN coins at
each step of our experiment. Then we can rewrite the equation as

©)

(10)

1 NN
EmN[NT];@M(T)em (100N -

We cannot immediately rewrite the numerator in terms of Ej,, 5 [NV;] be-

cause of the extra 0[j] term. However, it is possible to write it in terms of

Ein n41[Nr41]. Observe that

o) (N) oL (1 — oY 12)

r
— L ar+1leq \N—1
= ol A= (13)
_ r+1N+1 N L (VD ()
= Nairrr vl =0 (14)
o r+1 (N+ 1)' ar41 - IV (N+1)—(r+1)
= Nri@m om0 (15)
 r+1(N+1 b1 ar (N —(r—1)
= (V) eureia - o 16)

r+1
= N1 8in v Vel (17)
Therefore . N
b(r) = L i (18)

TN+1 Ey NN

Now we plug in our observed values for Ei, y[N;] and Eipy v [Nrg1]-
These are N, and N,; respectively. This yields

A 1 Nr+1

For large N, 315 ~ 4, so finally we can rewrite the above equation as
A 1 N,
0(r) = 5 (r +)= (20)

We will explore this approximation and an alternate explanation more in
exercise 4.
This estimate has the nice property that
1N M

Nob(0) = NON N TN (21)

In other words, the total probability mass assigned to unseen events is the
same as the relative occurrence of words that appear just once! This makes
sense, because appearing zero times is not so different from appearing once in
a relatively small sample.

One potential problem with this estimate is that it does not assign enough
probability mass to events that occur a large number of times. For example, if
ra is the maximum number of times any word was observed, then

. 1 N,
O(rar) = N(?‘M +1) NM“
TM

because N,.,, 11 = 0 (i.e. there is no word that appeared rj; + 1 times).

=0, (22)

4 Second Derivation

We will also examine another way to derive the Good-Turing estimation based
on the concept of “deleted etimation” proposed by [3] (also see [4]). The idea
behind this derivation is to divide W into two sets: the “train” set and the
“heldout” set. The train set will be used to determine which terms occur r
times, while the heldout set is used to estimate 6(r).

Let Heldcounts(r) be the number of times r-count items occur in the held-
out set.

For example, let X = {the,bad, dog, cat}, W = the, cat, the, cat, the, dog,
the, cat, the, dog, cat. The train set and the heldout set are partitioned in the
following manner:

Train: the, cat, the cat
Heldout: the, dog, the, cat, the, dog, cat

In this scenario the Heldcounts are as follows:

Heldcounts(0) = 2. The 0-count items are “dog” and “bad”; “dog” occurs
twice in the heldout set.

Heldcounts(1) = 0. There are no 1-count items in the train set.

Heldcounts(2) = 5. The 2-count items are “the” and “cat”; there are 5 of these
items in the heldout set.

In order to estimate 6(r) for a given heldout set H, we can take () values
to be the max-likelihood estimates.

We introduce the non-normalized likelihood for a multinomial distribution

F(H) = [Tou1#=, (23)
J

where C' is the multinomial coefficient. Note that C is a constant, so we can re-
move it to get an equation that is equivalent under ranking. We will maximize
this equation subject to the constraint

> ol =1 (24)
J
With our definition of Heldcounts, we can rewrite the likelihood as
F(H) — H Q(T)Heldcounts(r) (25)
and the constraint as A
> 0(r)N, =1. (26)

We will continue this derivation in the next lecture.

5 Exercises

1. This exercise is to test your understanding of the basic notation and con-
cepts used in Good-Turing smoothing. Suppose we have the following

set of possible item types: X = {apple, banana, carrots, dates, eggs, frogs, grapes}.
And suppose we have a sequence of N independent samples: W =
apple apple apple banana banana dates dates eggs eggs eggs frogs grapes grapes

(a) Calculate the empirical (observed relative-frequency) probabilities,
Oc(r).

(b) Calculate the Good-Turing probability estimates, §(r), based on .

(c) Verify that) O(r)N, = 1.

2. (a) What would the Good-Turing estimates be for the following ob-
served values: Ng =1, Ny =0, Ny =1, N3 =0, Ny, = 1?
(b) What problems do you run into when you try to calculate these es-
timates? How might you correct these problems?

-

3. Show that #(0) = 6(1) = ... = O(m) x 1/N if N, = s<-\" (ie. N,

r!

has Poisson form), where s is a positive constant. Note that %)\T <1
because it is the density function of the Poisson distribution, so the s term
acts as a scale factor that expands the range of N, to the interval [0, s].

This exercise is based on a fact in [1].

4. In equation (20), we replaced the “normalization” term 2 with % to

get
A 1 Nr+1
O(r) = — 1 .
() = 5+ D
(a) Argue that w1 is not the correct normalization for (r 4 1) N](,: by

showing that if we use 7+ as the normalization, then we get an

invalid probability distribution for the resulting word occurrence

probability distribution.
(b) What went wrong? How did our derivation produce the wrong nor-

malization for 6(r)?

6 Solutions

1. Ny = 1 (carrots)
N; =1 (frogs)
Ny = 3 (banana, dates, grapes)
N3 =2 (apple, eggs)

3.

4.

(b) 0(0) = 5 (1)1 = 13
(1) =527 =5
02)=53)3 =55
0(3) = $;(4)3 =0

(c) 6(0) +0(1) +3(6(2)) +2(03) = 5 + 5+ 3 +0= 5 =1

—

(a)

DN

= undefined
0

6
= undefined
0

6

W

A~ o~~~
ot w
D D O —

TN N N TN N
S~— \[\3 S—
| I |
O~ O~ D~ O~ O~

HIO O RIO O RIO

(b) There are at least two problems with these estimates. First of all,
there are undefined values if » = 1 or r = 3. This might not be a
problem because one can argue that if there are no items that appear
once, or if there are no items that appear 3 times in W, then there
should be no probability associated with these values of . However,
there is another potential problem: the probabilities do not sum to
1. In real data samples, we can expect that there are some N, values
that are zero, so this could be a problem in practice.

This example suggests that there are problems that arise when using
the Good-Turing estimation with a dataset that has some N, values
equal to 0. One way to fix this problem is to smooth the V,. counts so
that they are all nonzero. For example, we can use linear regression
to interpolate values for unobserved ¢(r), as in [2].

We have

A r4+1se 2\t pl
= 27
6(r) N (r+1)! se @7

= M/N. (28)

Note that A cannot be a free parameter, since there is only one value of A
that normalizes the probability distribution.

(a) Let 6'(r) be the new value for 6(r) that we get under this normal-
ization scheme and similarly let §'[j] be the new value for §[j]. Note
that §'(r) = Niﬂé(r) and thus 0'[j] = NLHGA[]] YVe showed pAreVi—
ously that if we use the Good-Turing estimate for 6(r), then > 0[j] =
1. Therefore), 0']j] = - and thus 6 is not a valid probability
distribution.

(b) We used N1 as an estimate for Ej,, +1[NT+1]. However, N,
was based on observing N items rather than NV + 1, so really it is an

approximation for E;;, /[N,41]. Therefore we need a correction.

7 References

1. I. . Good. The population frequencies of species and the estimation of
population parameters. Biometrika 40: 237-264 (1953).

2. W. A. Gale. Good-Turing Smoothing Without Tears. Journal of Quantita-
tive Linguistics 2: 217-237 (1995).

3. Frederick Jelink and Robert Mercer. Probability distribution estimation
from sparse data. IBM Technical Disclosure Bulletin 28: 2591-2594 (1985).

4. Arthur Nadas. On Turing’s formula for word probabilities. IEEE Transac-
tions on Acoustics, Speech and Signal Processing ASSP-33(6):1414-1416, 1985.

