Statistical Learning Models for Text and Graph Data Lecture 1: Introduction

Yangqiu Song

Hong Kong University of Science and Technology yqsong@cse.ust.hk

September 4, 2019

*Contents are based on materials created by Chris Manning, Percy Liang, Hongning Wang, Heng Ji, Dan Roth, and Haixun Wang

Reference Content

- Chris Manning. CS 224N/Ling 237. Natural Language Processing. https://web.stanford.edu/class/cs224n/
- Percy Liang. ICML tutorial on Natural Language Understanding: Foundations and State-of-the-Art https: //icml.cc/2015/tutorials/icml2015-nlu-tutorial.pdf

Overview

Logistics

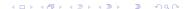
- 2 Introduction to NLP
 - Why is NLP Important?
 - Machine Learning for NLP: Algorithms, Tasks, and Challenges
 - The Need of Knowledge Graphs

Logistics

- Instructor: Yangqiu Song
- Email: yqsong@cse.ust.hk
- Office: RM3518 (Lift25/26)
- Canvas (https://canvas.ust.hk)
- For CSE students, even if you enroll MATH5471, this course may not satisfy the requirement: "The 3 credits may be satisfied by courses from other Schools"
- Difference between COMP5222 and MATH5471: you can do a survey instead of the course project for MATH students
- NOTE: This is not an entry level course; students should have some machine learning background

Course Information

- Four reading notes (20%): one paper per week, related to lectures
 - Find long papers in top venues such as ACL, EMNLP, NAACL, ICML, TACL, CL, JAIR, JMLR
 - Write a review about the strength and weakness of the paper
- Mid-term project proposal: title and abstract (10%):
 - Could be a discussion/survey paper for Math students
 - Free research, or
 - A given project: how to combine knowledge graphs to NLP tasks
- Project report (30%)
 - 8 pages not including references in ACL format
 - Consider to submit to ACL this year (deadline: December 9, 2019)
- Final project presentation(10%)
- Final exam (30%)
 - Examples put to Canvas
 - Reduced difficulty level than lecture notes



Topic Covered

- Sequence modeling: language models, distributed representations
- Document classification: supervised learning, semi-supervised learning
- Topic modeling: SVD, probabilistic models
- Sequence labeling: sequence models, constrained models, posterior regularization
- Graph modeling: graph embedding, random walks, knowledge graphs
- Deep learning
 - Text and graph

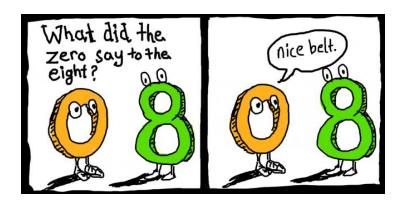
Overview

Logistics

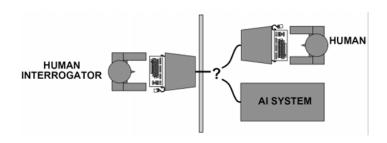
- Introduction to NLP
 - Why is NLP Important?
 - Machine Learning for NLP: Algorithms, Tasks, and Challenges
 - The Need of Knowledge Graphs

Natural Language

- Understanding language is a very complex thing
- But something that humans are amazingly good at

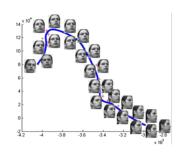


Artificial Intelligence: Turing Test (1950)



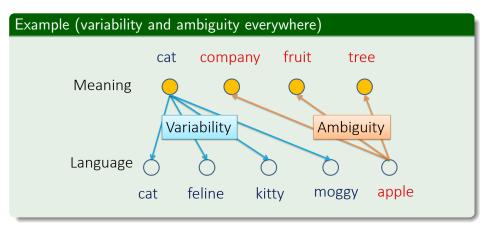
- Replacement of "Can machines think?"
 - "Can machines behave intelligently?"
 - Operational test for intelligent behavior: the Imitation Game (later dubbed the Turing test)
 - Suggested major components of AI: knowledge, reasoning, language understanding, learning

What's Special about Human Language?



- A human language is a discrete/symbolic/categorical signaling system
- With very minor exceptions for expressive signaling ("I loooove it." "Whoomppaaa")
- Large vocabulary, symbolic encoding of words creates a problem for machine learning – sparsity!

Why is NLP Difficult?



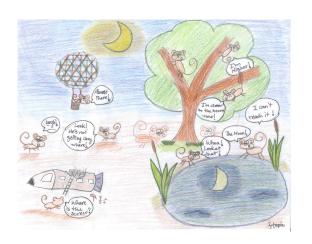
Why is NLP Difficult?

Example ("Get the cat with the gloves.")

The Al Winter

- Al winters: 1974-80 and 1987-93
 - 1966: the failure of machine translation,
 - 1970: the abandonment of connectionism,
 - 1971-75: DARPA's frustration with the Speech Understanding Research program at Carnegie Mellon University,
 - 1973: the large decrease in Al research in the United Kingdom in response to the Lighthill report,
 - 1973-74: DARPA's cutbacks to academic Al research in general,
 - 1987: the collapse of the Lisp machine market,
 - 1988: the cancellation of new spending on AI by the Strategic Computing Initiative,
 - 1993: expert systems slowly reaching the bottom, and
 - 1990s: the quiet disappearance of the fifth-generation computer project's original goals.

"All models are wrong; but some are useful." – George E. P. Box



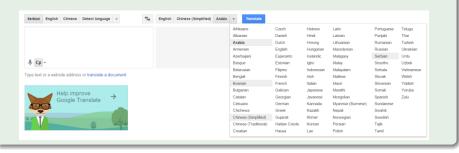
http://www.stat.ucla.edu/~sczhu/research_blog.html

Texts in the Era of Big Data

- Huge in size
 - Google processes 5.13B queries/day (2013)
 - Twitter receives 340M tweets/day (2012)
 - Facebook has 2.5 PB of user data + 15 TB/day (4/2009) (1PB= 10^{15} bytes=1000terabytes)
 - \bullet eBay has 6.5 PB of user data + 50 TB/day (5/2009)
- 80% data is unstructured (IBM, 2010)
 - Traditional NLP techniques (e.g., parsing) are too slow to handle them
 - Traditional NLP models are based on labeled data in specific domains (WSJ data)

Example (Google Translate)

- 1966: the failure of machine translation
- Now: Google Translate can work with more than 100 languages



Example (Facebook Translation)

Example (IBM's Watson)

- 1971–75:DARPA's frustration with the Speech Understanding
- Now: "Watson is aquestion answering (QA) computing system that IBM built to apply advanced
 - natural language processing,
 - information retrieval,
 - knowledge representation,
 - automated reasoning, and
 - machine learning technologies
- to the field of open domain question answering."

In 2011, Watson competed on Jeopardy! against former winners Brad Rutter and Ken Jennings. Watson received the first place prize of \$1 million.

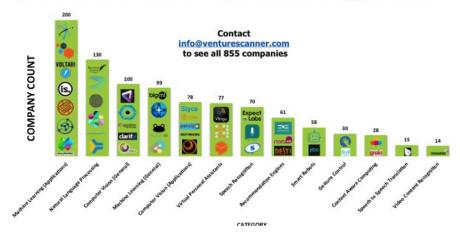
September 4, 2019

Example (Apple's Siri)

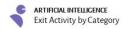
Example (WolframAlpha Knowledge Powered QA)

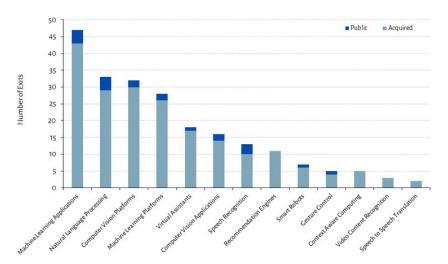
Startup Companies (2015)

Which Artificial Intelligence Categories Are Seeing the Most Innovation? by ::: Venture Scanner

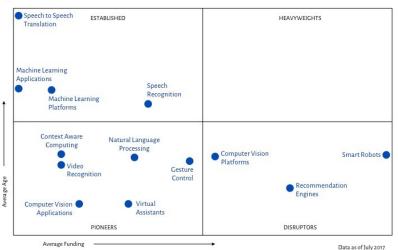


Number of Exits (Acquisitions and IPOs, 2017)





Funding Size vs. Company Age (2017)



101 1 185 1 18

Overview

Logistics

- Introduction to NLP
 - Why is NLP Important?
 - Machine Learning for NLP: Algorithms, Tasks, and Challenges
 - The Need of Knowledge Graphs

Statistical Machine Learning

- Natural Language Processing
 - Natural Language Understanding (NLU)
 - Natural Language Generation (NLG)
- Machine learning has been widely used in both NLU and NLG
 - given that we have a lot of data now

Popular Statistical Machine Learning Algorithms for NLP

- Mid-1970s: Hidden Markov Models (HMMs) for speech recognition
 → probabilistic models
- Early 2000s: Conditional Random Fields (CRFs) for part-of-speech tagging → structured prediction
- Early 2000s: Latent Dirichlet Allocation (LDA) for modeling text documents → topic modeling
- \bullet Mid 2010s: sequence-to-sequence models for machine translation \to Deep Learning neural networks with memory/state
- Now: ??? for natural language understanding/generation
 - Reinforcement learning?
 - Turing machines?
 - Knowledge graph reasoning models?

NLP Tasks: Levels of Linguistic Analysis

Morphology: basic unit of words naming your world no compiler errors Syntax: what is grammatical? Semantics: what does it mean? no implementation bugs implemented the Pragmatics: what does it do? right algorithm

Analogy with Programming Languages

- Syntax: no compiler errors
- Semantics: no implementation bugs
- Pragmatics: implemented the right algorithm
- Different syntax, same semantics (5):

$$2+3 \Leftrightarrow 3+2$$

• Same syntax, different semantics (1 and 1.5):

$$3 / 2$$
 (Python 2.7) $\Leftrightarrow 3 / 2$ (Python 3)

Good semantics, bad pragmatics:

correct implementation of deep neural network for estimating coin flip prob.

Syntax (1): Part of Speech

Example (Part of speech)

Part-of-Speech:

Tags:

- NN: common noun
- NNP: proper noun
- VB: verb, base form
- VBZ: verb, 3rd person singular
- ...

Syntax (1): Part of Speech

Penn Treebank part-of-speech tags (including punctuation).

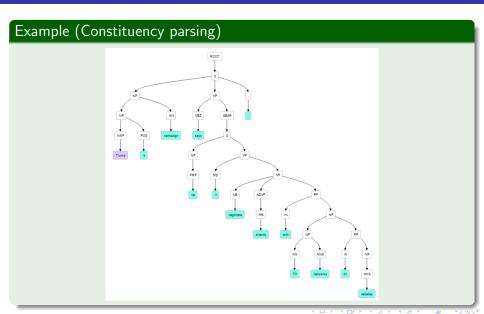
Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	"	Left quote	(' or ")
POS	Possessive ending	'S	,,	Right quote	(' or ")
PRP	Personal pronoun	I, you, he	(Left parenthesis	([, (, {, <)
PRP\$	Possessive pronoun	your, one's)	Right parenthesis	$(],),\},>)$
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ;)
RP	Particle	up, off			

Syntax (2): Dependency Parse Tree

Basic Dependencies: | Trump 's campaign says he 'll negotiate directly with TV networks on debates. | Dependency parse | Dependency parse | Dependency relations: | nmod case | NN | nsubj vez | PRP MD | aux ve advmod | RB | IN | NN | compound | NNS | IN | case | NNS | networks on debates.

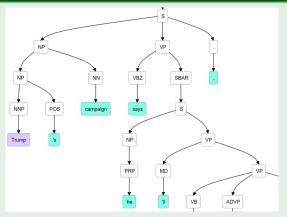
advmod: adverbial modifier

Syntax (3): Constituency Parse Tree



Syntax (3): Constituency Parse Tree

Example (Constituency parsing)



- POS: possessive ending
- PRP: personal pronoun
- MD: modal; can, should

Semantics

- Syntax: no compiler errors
- Semantics: no implementation bugs
- Pragmatics: implemented the right algorithm
- Semantics: meanings
 - Lexical semantics: what words mean
 - Compositional semantics: how meaning gets combined

Semantics (1): What's a Word?

Example

Words

light

Multi-word expressions: meaning unit beyond a word

light bulb

Morphology: meaning unit within a word

light lighten lightening relight

Polysemy: one word has multiple meanings (word senses)

- The light was filtered through a soft glass window.
- He stepped into the light.
- This lamp lights up the room.
- The load is not light.

Semantics (1): Synonymy

Example (Synonymy)

Words:

confusing unclear perplexing mystifying

Sentences (paraphrases):

- I have fond memories of my childhood.
- I reflect on my childhood with a certain fondness.
- I enjoy thinking back to when I was a kid.

Beware: no true equivalence due to subtle differences in meaning; think distance metric

But there's more to meaning than similarity...

Other Lexical Relations

Hyponymy (is-a):

a cat is a mammal

Meronomy (has-a):

a cat has a tail

Useful for entailment:

Alice is 170cm high and Bob is 180cm high.

 \Rightarrow

Bob is taller than Alice.

WordNet (Starting from 1985)

- A machine readable lexical database of English:
- Word senses grouped into synonym sets ("synsets") linked into a conceptual-semantic hierarchy

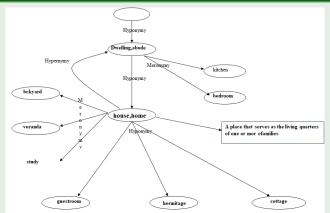
Example (Bank)



WordNet (Starting from 1985)

- A machine readable lexical database of English:
- Word senses grouped into synonym sets ("synsets") linked into a conceptual-semantic hierarchy

Example (Overview)



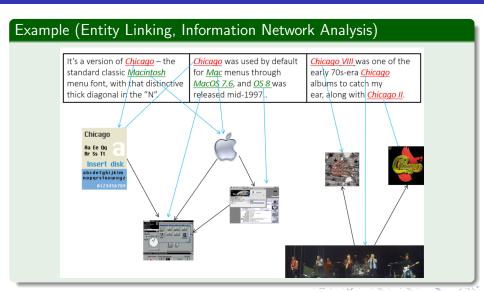
Semantics (2): Named Entities (Recognition, Typing, Linking)

Example (Named Entity Recognition) Named Entity Recognition: Person Trump's campaign says he'll negotiate directly with TV networks on debates. Person Location 2 The move by Trump, coming just hours after his and other campaigns huddled in a Washington suburb to craft a three-page letter of possible demands, thwarts an effort to find consensus after what most candidates agreed was a Date Ora debacle hosted by CNBC last week. Pers: Person Location

Date/time

Org: Organization

Semantics (2): Named Entities (Recognition, Typing, Linking)



Semantics (3): Frame based Semantics

Semantics (4): Topics

Example (Topics)

Trump's campaign says he'll negotiate directly with TV networks on debates. The move by Trump, coming just hours after his and other campaigns huddled in a Washington suburb to craft a three-page letter of possible demands, thwarts an effort to find consensus after what most candidates agreed was a debacle hosted by <u>CNBC</u> last week.

Category 1 politics

Category 2 entertainment

- Classification
- Clustering
- Topic modeling

Discourse

Example (Coreference Resolution (Pronoun Resolution))

Coreference:

```
Mention /----Coref----
```

1 Trump's campaign says he'll negotiate directly with TV networks on debates.

"The Winograd Schema Challenge" (Levesque, 2011)

- The dog chased the cat, which ran up a tree. It waited at the top.
- The dog chased the cat, which ran up a tree. It waited at the bottom.
- Paul tried to call George on the phone, but he wasn't successful.
- Paul tried to call George on the phone, but he wasn't available.

Easy for humans, can't use surface-level patterns

Discourse

Example (Shallow Discourse Parser for Document-level Analysis)

- S1: Kemper is the first firm to make a major statement with program trading.
- S2: He added that "having just one firm do this isn't going to mean a hill of beans."

We can add a connective "but" between to above two sentences to indicate "Contrast relationship"

- S1: Senator calls this "the first gift of democracy."
- S2: The Poles might do better to view this as a Trojan Horse.

Pragmatics

Conversational implicature: new material suggested (not logically implied) by sentence

Example (Conversational implicature)

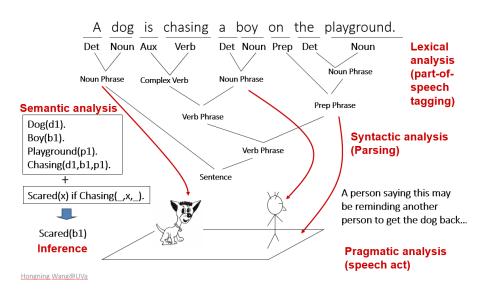
- A: What on earth has happened to the roast beef?
- B: The dog is looking very happy.
- Implicature: The dog at the roast beef.

Presupposition: background assumption independent of truth of sentence

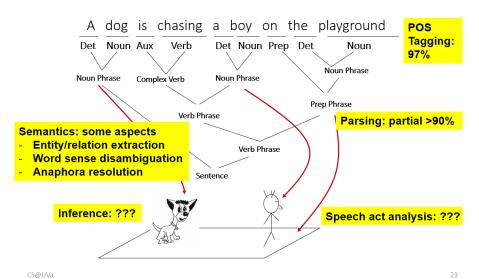
Example (Presupposition)

- I have stopped eating meat.
- Presupposition: I once was eating meat.

States of NLP



States of NLP



Overview

Logistics

- Introduction to NLP
 - Why is NLP Important?
 - Machine Learning for NLP: Algorithms, Tasks, and Challenges
 - The Need of Knowledge Graphs

Pragmatics

Semantics: what does it mean literally?

Pragmatics: what is the speaker really conveying?

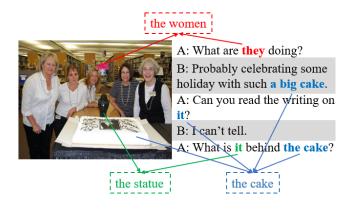
- Underlying principle (Grice, 1975): language is cooperative game between speaker and listener
- Implicature and presupposition depend on people and context (multi-modality and knowledge graph opportunities here) and involve soft inference (machine learning opportunities here)

We need a lot of background knowledge and commonsense knowledge

We need to combine symbolic reasoning and machine learning!

Pragmatics

Sometimes we need to ground natural language texts to the world or contexts to make inference



More about "Commonsense Knowledge"

When we communicate,

- we omit a lot of "common sense" knowledge, which we assume the hearer/reader possesses
- we keep a lot of ambiguities, which we assume the hearer/reader knows how to resolve

Knowledge about the everyday world that is possessed by all people

Example (Commonsense Knowledge)

- A lemon is sour.
- To open a door, you must usually first turn the doorknob.
- If you forget someones birthday, they may be unhappy with you.
- A coat is used for keeping warm.
- People want to be respected.
- The last thing you do when you cook dinner is wash your dishes.
- People want good coffee.

Commonsense Knowledge in Sentiment Analysis

Example (Sentiment Analysis)

To: mom@foobar.com Subject: my car

hi mom!

guess what? i bought a new car last week.

i got into an accident and I crashed it.

But please know that I wasn't hurt and that everything is okay.

Figure 2. Empathy Buddy Reacts to an E-mail.

More about Ambiguity

Ambiguity: more than one possible (precise) interpretations

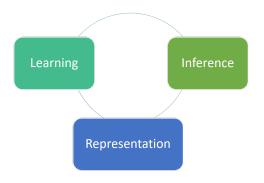
One morning I shot an elephant in my pajamas.

How he got in my pajamas, I don't know. — Groucho Marx

- The joke is based on misdirection, where the listener thinks one thing, and the teller says another
- "One morning I was wearing my pajamas, and I shot an elephant." or
- "One morning, an elephant was wearing my pajamas, and I shot that elephant."

How he got in my pajamas, I don't know. — Groucho Marx

Course Organization



- Representation: language models, word embeddings, topic models, knowledge graphs
- Learning: supervised learning, semi-supervised learning, distant supervision, indirect supervision, sequence models, deep learning, optimization techniques
- Inference: constraint modeling, joint inference, search algorithms

Applications: tasks introduced above

Summary

- Logistics
- 2 Introduction to NLP
 - Why is NLP Important?
 - Machine Learning for NLP: Algorithms, Tasks, and Challenges
 - The Need of Knowledge Graphs

In this course, we will

- Understand the intuition and motivation of how to model text and graph data
- Know popular and state-of-the-art statistical models for NLP
- Build relationships of different algorithms