End-to-End Memory Networks for Question Answering

Zheye Deng
zdengah@ust .hk

Abstract

In this work, we compare several end-to-
end memory networks and explore the ap-
plication of these models to question an-
swering tasks. We re-implement the cur-
rent state-of-the-art memory network, the
Dynamic Memory Network Plus(DMN+),
under a weakly supervised learning ap-
proach, aiming to replicate their strong re-
sults on the Facebook bADbI dataset. We
also propose some extensions on DMN+
and explore the application of DMN+ to a
relatively untested multiple choice dataset,
Microsoft’s MCTest dataset. Ultimately,
we basically replicate the state-of-the-art
results and even outperform on some tasks
in bADbI dataset.

1 Introduction

Question answering (QA) is a complex natural
language processing task which requires an under-
standing of the meaning of a text and the ability to
reason over relevant facts.

Currently, several state-of-the-art end-to-end
memory networks exist for QA. Specifically, End-
to-End Memory Networks, Dynamic Memory
Networks and their variants have all been applied
to this task all with reasonable degree of success.

We are aiming for a comparison among these
end-to-end memory networks and try to imple-
ment Dynamic Memory Network Plus and repli-
cate the state-of-the-art results, then explore an ap-
plication of DMN on MCTest dataset.

2 Dataset

This section discusses about the two datasets and
the evaluation used in our project.

2.1 The Facebook bAbI dataset

In the bADI dataset(Jason W., 2015), a given QA
task consists of a set of statements, followed by
a question whose answer is typically a single
word(in a few tasks, answer are a set of words).
The answer is available to the model at training
time but must be predicted at test time. The dataset
consists of 20 different tasks with various em-
phases on different forms of reasoning. Here is
a sample of the tasks.

Mary and Jeff went to the kitchen.

Then Jeff went to the park.

Q: Where is Mary? A: Kitchen
Q: Where is Jeff? A: Park

2.2 The Microsoft MCTest dataset

MCTest dataset(Matthew R., 2013) consists of a
paragraph story, a few associated questions, and
multiple choices answer for each question. While
the bADI is a synthetic dataset, MCTest is an or-
ganic dataset, mechanically turned to ensure relia-
bility.

2.3 Evaluation

For the one word answers in the bAbI dataset and
the multiple choice answers in the MCTest dataset,
we frame the problem as a multi-class classifica-
tion problem, and use a softmax categorical cross-
entropy loss function. We can then evaluate the
model by calculating the accuracy on the test set
and comparing our results to the benchmarks from
various published papers.

3 Previous Work

This section starts with an introduction of the pri-
mary elements of End-to-End Memory Network,
or MemN2N. Then, we review some other end-
to-end memory networks with excellent perfor-
mance.

Figure 1: End-to-End Memory Networks

3.1 End-to-End Memory Networks

The MemN2N architecture, introduced by Sainba-
yar S. (2015), as depicted in Fig. 1, consists of two
main components: supporting memories and final
answer prediction.

Supporting memories: They are comprised of
a set of input and output memory representations
with memory cells. The input and output mem-
ory cells, denoted by m; and c;, are obtained by
transforming the input context{z;} using two em-
bedding matrices. Similarly, the question g is en-
coded using another embedding matrix, resulting
in a question embedding u. The input memories
{m;}, together with the embedding of the ques-
tion u, are utilized to determine the relevance of
each of the stories in the context, yielding a vector
of attention weights

pi = softmazx(ul m;) (D

Subsequently, the response o from the output
memory is constructed by the weighted sum:

o= pc; @)

For multiple layers model, each memory layer
is named a hop and the (k +1)™ hop takes as input
the output of the k™ hop:

uf ! = oF - u” 3)

Answer prediction: The prediction of the an-
swer to the question g, is performed by

a = softmaz(W (o + u®) 4)
where a is the predicted answer distribution, W is

a parameter matrix for the model to learn and K
the total number of hops.

Answer module

Episodic Memory
Module 00 jos ‘0o

Figure 2: Dynamic Memory Networks

3.2 Gated End-to-End Memory Networks

Based on the elements behind residual learning
and highway neural models, equation 3 can be
considered as a form of residuality with o* work-
ing as the residual function and u” the shortcut
connection. However, as discussed in Rupesh
K. S. (2015), in contrast to the hard-wired skip
connection in Residual Networks, one of the ad-
vantages of Highway Networks is the adaptive gat-
ing mechanism, capable of learning to dynami-
cally control the information flow based on the
current input. Therefore, Fei L. (2016) adopt the
idea of the adaptive gating mechanism of Highway
Networks and integrate it into MemN2N. The re-
sulting model, named Gated End-to-end Memory
Networks (GMemN2N) is capable of dynamically
conditioning the memory reading operation on the
controller state u® at each hop. Concretely, they
reformulate equation 3 into:

TF(uF) = o(Whu” + bk) (5)
uk-i—l — Ok: ® Tk:(uk) + uk o (1 _ Tk:(uk:))
(6)

where le‘i and b are the hop-specific parameter
matrix and bias term for the £ hop and T*(z) the
transform gate for the £™ hop.

3.3 Dynamic Memory Networks

The Dynamic Memory Networks (DMN), intro-
duced by Ankit K. (2016), is developed to signif-
icantly improve the logical inference process. As
depicted in Fig. 2, it consists of four parts: input
module, question module, episodic memory mod-
ule and answer module.

Input Module: The input module encodes raw
text inputs from the task into distributed vector
representations using a RNN(gated recurrent net-
work). In cases where the input sequence is a

single sentence, the input module outputs the hid-
den states of the RNN. In cases where the input
sequence is a list of sentences, the input module
outputs the hidden states at each of the end-of-
sentence tokens.

Question Module: Similar to the input module,
the question module encodes the question into a
vector representations using a RNN.

Episodic Memory Module: This module is
what makes the DMN special. It consists of
episode e’ and memory m‘, where i is the iter-
ation. During each iteration, an attention mech-
anism, which is a two-layer feed forward neu-
ral network, generate gates g; for each input c;
based on its similarity to the question ¢ and pre-
vious memory m’~!, then use a RNN gated by
g: over ¢; to produce as final state a new episode
¢!, then a new memory state is produced through
m! = GRU (e, m'~1), with m® = ¢. The update
stops at Tjs when the attention mechanism picks
an end-of-pass over all inputs.

Answer Module: This module generate the an-
swer by GRU, using vector m”™ as initial hidden
state, and with query ¢ and previous prediction as
input to each step.

3.4 Dynamic Memory Networks+

Although DMN achieved a set of state-of-the-art
results, it does have two main problems.

e The GRU only allows sentences to have con-
text from sentences before them, but not after
them. This prevents information propagation
from future sentences.

e The supporting sentences may be too far
away from each other on a word level to allow
for these distant sentences to interact through
the word level GRU.

Therefore, the appearance of Dynamic Mem-
ory Networks+ (DMN+), introduced by Caiming X.
(2016), solves these problems successfully.

Basically, there are mainly two improvements
made by DMN+: input representation, and atten-
tion mechanism.

Input representation: As depicted in Fig. 3,
they replace the single GRU in DMN with two dif-
ferent components: a sentence reader which is re-
sponsible only for encoding the words into a sen-
tence embedding and a input fusion layer allow-

Textual Input Module

Facts fi fp fy
GrU |
Input fusion GRU [GRU | GRY
layer
Yy GRU GRU GRU

Figure 4: (a) The traditional GRU model, and (b)
the proposed attention-based GRU model

ing for interactions between sentences. They se-
lect positional encoding described in Caiming X.
(2016) to for sentence reader and bi-directional
GRU for the input fusion layer because it allows
information from both past and future sentences
to be used.

Attention Mechanism: They propose a modifi-
cation to the GRU architecture by embedding in-
formation from the attention mechanism, as de-
picted in Fig. 4. The update u; decides how much
of each dimension of the hidden state to retain and
how much should be updated with the transformed
input z; from the current timestep. As u; is com-
puted using only the current input and the hidden
state from previous timesteps, it lacks any knowl-
edge from the question or previous episode mem-
ory. By replacing the update gate wu; in the GRU
with the output of the attention gate g¢, the GRU
can now use the attention gate for updating its in-
ternal state, which improves performance.

4 Approach

We re-implement Dynamic Memory Networks
Plus introduced by XXX using Tensorflow and
propose some small modifications in order to im-
prove the performance and to comfort to the input

Answer Module

Figure 5: DMN+ with an added Choice Module in
order to conform the MCTest data

format of MCTest dataset.

Modification on Answer Module: In the origi-
nal DMN+, they employ a GRU whose initial state
is initialized to the last memory ag = m™™. At
each timestep, it takes as input the question ¢, last
hidden state a;—1, as well as the previously pre-
dicted output y;_1.

Y = softmaac(W(“)at) @)
at = GRU([yt—lv Q]’at—l) 3)

where they concatenate the last generated word
and the question vector as the input at each time
step.

In this way, the weighted on the last memory
is always decreasing, in other words, it may lose
some memories. Therefore, at each timestep, we
let the model take the last memory m”™ into ac-
count as well, which means to reformulate the
equation 8 to

ar = GRU([yi—1,¢,m™),a4—1) (9)

Modification for MCTest dataset Because the
main feature of the MCTest dataset is that each
question has four multiple choice answers, we
need a choice module to encode the choices infor-
mation, as depicted in Fig. 5. Also, when produc-
ing memory vector representation in the episodic
memory module and making prediction in the an-
swer module, we need to take into account the
choices as well. Because the modification is kind
of slight, we will not discuss about the details.
Note that a simple way to implement this is to con-
catenate question ¢, an end-of-question token and
four choices 01, 02, 03, 04 to get a new vector rep-
resentation ¢ to replace the original q.

Task DMN+ MyDMN+

2: 2 Supporting Facts 99.7 98.3
3: 3 Supporting Facts 98.9 81.5
5: 3 Arg. Relations 99.5 100
7: Counting 97.6 98.4
14: Time Reasoning 99.8 100
16: Basic Induction 54.7 57.4
17: Positional Reasoning ~ 95.8 97.5
18: Size Reasoning 97.9 99.2
Mean Accuracy(%) 97.2 96.6

Table 1: Test accuracy on the bAbI-10k dataset.
DMN+ numbers taken from Caiming et al. (Caim-
ing X., 2016). Tasks where both models achieved
100% accuracy are skipped.

5 Experiments

5.1 My implementation

For all datasets we use either the official train, de-
velopment, test splits or if no development set was
defined, we used 10% of the training set for devel-
opment. Hyperparameter tunning and model se-
lection (with early stopping) is done on the devel-
opment set. The DMN+ is trained via backpropa-
gation and Adam optimizer (Diederik P. K., 2014)
with a learning rate of 0.002 and batch size of 128.
We employ Lo regularization, and dropout on the
context generation, keeping the input with proba-
bility p = 0.9. Most of the parameters are copied
from Caiming X.

We use Tensorflow as the deep learning frame-
work. The hardware we use is the NVIDIA GTX
960 GPU which has 2GB of memory.

We are able to reproduce results similar to those
in Caiming X. as shown in Table 1. We outper-
form the DMN+ on task 5,7,14,16,17,18, and are
close to the performance of the DMN+ on task
2, although far away from the DMN+ on task 3,
which leads to a slightly lower mean accuracy.
For example, as depicted in Fig. 6, we achieve
a better accuracy with a gain of 1.7% on accuracy.
We believe the reason for the improvement over
the DMN+ is the modification on answer module,
while the reason for the poor performance on task
2 and 3 is that there may be some training tricks
not mentioned in Caiming X..

Task 17

—— train loss
valid loss

100 -
80 -

60 -

Loss

40 -

20 -

Epoch

0.9-

0.8 -

Acc

0.7 -

0.6 - n
—— train acc

—— valid acc

0.5- i ' ' i '

0 50 100 150 200 250
Epoch

Figure 6: Training and validation accuracy and
loss on task 17

5.2 Comparison among end-to-end memory
networks

Up to now, we have introduced four end-to-end
memory networks. In order to understand how
the performance of models changes, we analyze
the performance of these four end-to-end mem-
ory networks on bAbI dataset. We copy the re-
sults of the networks we mentioned on the same
dataset using strongly supervised training and add
our results, trying to make a complete compari-
son. It should be noted that MemNN is the baseline
method, which is not end-to-end but is a strongly
supervised AM+NG+NL Memory Networks ap-
proach, proposed in Jason W. (2015). We list the
result in Table 2.

5.2.1 (G)MemN2N vs. DMN (+)

It is clear that compared with the MemN2N and
GMemN2N, DMN and DMN+ make a significant im-
provement on overall result, particularly on task 3,
7,9, 10, 19. We believe it is the episodic mem-
ory module that improves the result, because these
tasks require the model to iteratively retrieve facts
and store them in a representation that slowly in-
corporates more of the relevant information of the
input sequence.

5.2.2 MemN2N vs. GMemN2N

GMemN2N achieves substantial improvements on
task 5 and 17, which is a gain of more than 10 in
absolute accuracy. We believe the adaptive gating
mechanism really works.

5.2.3 DMN vs. DMN+

In general, DMN+ has a better performance.
Specifically, DMN+ makes some significant im-
provements on task 3 and 19, which is a gain of
5% accuracy. Due to the improvements of bidi-
rectional GRU and input fusion layers in the in-
put module and the Attention based GRU in the
episodic memory module, DMN+ does create a new
set of state-of-the-art results.

5.2.4 More details

To see the differences among these models in de-
tail, we list the methods they use in several aspects
in Table 3.

MemN2N vs. DMN Compare with MemN2N,
DMN replaces lots of modules by GRU, in order
to retrieve more information. Because the meth-
ods such as BoW, Linear Regression and Soft At-
tention have a big disadvantage, which is that they
will lose both positional and ordering information.
Whilst multiple attention passes can retrieve some
of this information, this is inefficient.

DMN vs. DMN+ Compared with DMN, DMN+
replaces the GRU with Bidirectional GRU in
the Input Module and replace the GRU with
Attention-based GRU in the attention mechanism,
in order to allow for distant supporting sentences
to have a more direct interaction. Moreover, DMN+
replaces the GRU in memory update session with
ReLU reduce the probability of overfitting and get
the accuracy improved.

5.3 Training on MCTest

As a kind of very first attempt to use DMN+ for
MCTest, we implement the choice module o as de-
scribed in Section 4. Although the test accuracy
generated by DMN+ is better than random guess
(25%), it still cannot beat the test accuracy of the
baseline model (SW+D)(Matthew R., 2013). The
most convincing reason we think is due to the fact
that the MCTest dataset is too small to complete
the training. However, we can still see that the re-
sult of DMN+ is better than the result of DMN on
MCTest proposed in Qian L. from Table 4. We

Task MemNN MemN2N GMemN2N DMN MyDMN+

1: 1 Supporting Facts 100 100 100 100 100
2: 2 Supporting Facts 100 91.7 91.9 98.2 100
3: 3 Supporting Facts 100 59.7 61.2 95.2 100
4: 2 Arg. Relations 100 97.2 99.6 100 100
5: 3 Arg. Relations 98 86.9 99.0 99.3 100
6: Yes/No Questions 100 924 91.6 100 100
7: Counting 85 82.7 82.2 96.9 96.4
8: Lists/sets 91 90.0 87.5 96.5 99.0
9: Simple negation 100 86.8 89.3 100 100
10: Indefinite knowledge 98 84.9 83.5 97.5 95.3
11: Basic Coreference 100 99.1 100 100 100
12: Conjunction 100 99.8 100 100 100
13: Compound Coreference 99 99.6 100 98.8 100
14: Time Reasoning 100 98.3 98.8 100 100
15: Basic Deduction 100 100 100 100 100
16: Basic Induction 100 98.7 99.9 99.4 100
17: Positional Reasoning 65 49.0 58.3 59.6 61.0
18: Size Reasoning 95 88.9 90.8 95.3 95.0
19: Path finding 36 17.2 11.5 34.5 40.1
20: Agent’s Motivation 100 100 100 100 100
Mean Accuracy(%) 93.3 86.1 87.3 93.6 94.3
Failed tasks(Acc. < 95%) 4 11 10 2 2

Table 2: Test accuracy on the 20 QA tasks for models using 1k training examples.

(G) MemN2N DMN DMN+
Sentence BoW/Positional GRU Positional
Encoding Encoding+Weighted Sum Encoding+Bi-GRU
Attention Linear Regression Gating Function Gating
Computing Function+Softmax
Attention Soft Attention GRU Attention based GRU
Mechanism
Memory Concatenation GRU ReLU
Update
Memory Tied Tied Untied
Weights
Answer Softmax Softmax+GRU Softmax+GRU
Module

Table 3: A complete comparison among four kinds of end-to-end memory networks we have mentioned.

Method Accuracy(%)
Baseline(SW+D)(Matthew R.) 66.2
DMN(Qian L.) 37.3
My DMN+ 39.2

Table 4: Test accuracy on the MCTest

Loss

ain
— valid

Figure 7: Training and dev accuracy and loss on
MCTest

can see how the training accuracy and dev accu-
racy evolving as iteration increases from Fig.7. It
is clear to see it suffers from overfitting.

6 Conclusion and Future work

In this project, we have compared the four end-to-
end memory networks clearly and thoroughly. We
believe that we have replicated the state-of-the-art
techniques on DMN+, and with our proposed im-
provements, we create a new set of state-of-the-art
results. However, there are still some problems

remaining to be solved in the future. For exam-
ple, as the MCTest dataset is too small for de-
cent good training, we need some kind of model
which particularly suit for small dataset. And
some more complicated episodic memory module
is needed for weakly supervised training. More-
over, it must be promising to explore the applica-
tion of the DMN+ on other NLP tasks like senti-
ment analysis, POS tagging, etc.

References

Peter O. Mohit I. James B. Ishaan G. Victor Z. Romain
P. Richard S. Ankit K. 2016. Ask me anything: Dy-
namic memory networks for natural language pro-
cessing .

Stephen M. Richard S. Caiming X. 2016. Dynamic
memory networks for visual and textual question an-
swering .

Jimmy B. Diederik P. K. 2014. Adam: A method for
stochastic optimization .

Julien P. Fei L. 2016. Gated end-to-end memory net-
works .

Antoine B. Sumit C. Alexander M. R. Bart M. Armand
J. Tomas M. Jason W. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks .

Christopher J.C.B. Erin R. Matthew R. 2013. Mctest:
A challenge dataset for the open-domain machine
comprehension of test. .

Hongyu X. Qian L. 2016. Dynamic memory network
on natural language question-answeing .

Klaus G. Jrgen S. Rupesh K. S. 2015. Highway net-
works .

Arthur S. Jason W. Rob F. Sainbayar S. 2015. End-to-
end memory networks .

