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Abstract

Developers often come to Stack Over-
flow to seek help about their programming
problems. However, the technicality of the
content makes the task of relevant ques-
tion retrieval especially difficult: questions
vary significantly in formality, specificity,
and style. Drawing from a wide pool
of natural language processing techniques,
we devise a model for question similar-
ity that attempts to learn the semantic re-
lationships between Stack Overflow ques-
tions using the titles and tags of posts. We
demonstrate that pretraining against Quora
data provides robustness against the noisy
Stack Overflow dataset. We additionally
provide a study into the effectiveness of
our model components, and investigate
the differences between the two datasets
through the lens of tranferred knowledge.

1 Introduction

Stack Overflow (SO) is among the most popular
developer-oriented Community Question Answer-
ing (cQA) websites. Owing to the technicality of
the content, questions are asked with a wide range
of specificity, formality, and style. Ahasanuzza-
man et al. (2016) suggest that this diversity con-
tributes to the prevalence of duplicate questions,
with users unable to strike the right balance of key-
words to find existing questions that match their
own.

Consider the question pair, “Check connection
is active in ASPNET?” and “How to check if
user is still present?” (QIDs: 761376, 3374120).
Only by considering the nuance of the questions
(i.e. present users maintain active connections) can
we determine that these questions are duplicates.
We argue that the large volume of duplicate ques-

tions on SO can be attributed to the failure of ex-
isting question retrieval systems to capture such
semantic similarities between question pairs.

To address the question similarity task, we draw
from a wide pool of Natural Language Process-
ing (NLP) techniques. For example, we apply at-
tention mechanisms to pinpoint informative words
when constructing our sentence representations
(Yang et al., 2016). We additionally leverage sub-
word information (Bojanowski et al., 2016) to pry
into the internal structure of words, which is rel-
evant when dealing with a technical vocabulary.
While there have been many attempts (dos Santos
et al., 2015; Lei et al., 2016; Wang et al., 2017)
tackling the question similarity task, our work dif-
ferentiates itself in that the SO dataset is noisy and
necessitates building around transfer learning.

Our model is built around the assumption that
our non-duplicate examples are noisy. Although
duplicate questions are reliably marked by users
and moderators, there are no corresponding mech-
anisms for selecting non-duplicate questions. To
address this issue, we learn robust, sentence-level
representations based on Quora’s question similar-
ity dataset (Iyer et al., 2017), then transfer these
intuitions towards identifying duplicate SO ques-
tions. This way, we take advantage of the “catch-
ment basin” (Mou et al., 2016b) formed by pre-
training to avoid overfitting to noisy examples.

In summary, this work contributes a model for
question similarity built with robust sentence rep-
resentations in mind. Our model achieves a fairly
high test F1 score of 0.814, which is over a one
point improvement over its non-pretrained coun-
terpart. We additionally provide an ablation study
exploring how our model components inform the
question similarity task, as well as a study into
how model size and frozen layers may affect the
transfer learning process, with a focus on the dif-
ferences between the Quora and SO datasets.



2 Related Work

There are a number of works focusing on dupli-
cate question detection on SO (Zhang et al., 2015;
Ahasanuzzaman et al., 2016; Zhang et al., 2018).
These approaches largely rely on features that we
jointly learn through our model. Xu et al. (2016)
make a preliminary effort at applying Deep Neural
Networks (DNN5s) towards classifying the seman-
tic relatedness of SO posts. However, their Con-
volutional Neural Network (CNN) based approach
is trained on a comparatively small dataset, and
considers significantly more information per post,
including the question and answer bodies on top
of our question titles and tags. We make the lat-
ter adaptation to align our task more closely with
question retrieval from a user’s perspective.

Many works approaching textual (e.g. docu-
ment, sentence, question) matching tasks follow
the Siamese network architecture (Bromley et al.,
1993). This architecture breaks the matching pro-
cess into two steps. The first step, creating vec-
tor representations, has been explored through
encoder-decoder models (Lei et al., 2016) as well
as CNNs over Bags of Words (BoW) (dos San-
tos et al., 2015). The second step, classifying the
vector representations, has been explored through
the Manhattan distance (Mueller and Thyagara-
jan, 2016) and multi-perspective matching (Wang
et al., 2017). Parikh et al. (2016) propose forgo-
ing the initial step, directly comparing documents
on a word-by-word basis. Our model adapts the
Siamese network architecture with a focus on cre-
ating sentence representations that can be transfer-
able from the Quora domain to the SO domain.

Transferable sentence representations have
been investigated through both unsupervised (Le
and Mikolov, 2014) and supervised (Conneau
et al., 2017) techniques. For example, Conneau
et al. (2017) show that representations trained
against the Natural Language Inference (NLI) task
can generalize well to other NLP tasks. In con-
trast, we transfer our sentence representations be-
tween datasets pertaining to semantically similar
tasks; specifically, we are interested in transfer to
a noisy target domain. This brings our work closer
in line to that of Tomar et al. (2017), who transfer
Jfrom a noisy source domain using the aforemen-
tioned Parikh et al. model. Our work is also sim-
ilar to that of Wiese et al. (2017), who target the
similarly-technical biomedical domain.
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Figure 1: An overview of accepted and re-
jected linked question pairs. The gray circles are
connected components in the duplicate question
graph. We accept pairs (1) and (3) because they
are relevant to our duplicate pairs but not transi-
tively duplicates of one another. We reject (2) be-
cause it is irrelevant to our set of duplicate pairs,
and we reject (4) because the questions are transi-
tively duplicates of one another.

3 Dataset Construction

Our task can be formulated as a binary classifica-
tion problem of whether or not two questions are
duplicates. As such, we construct our SO dataset
with both duplicate and non-duplicate examples.

SO Question Pairs

The SO dataset is assembled using the Stack
Exchange Data Explorer (Stack Exchange Inc.,
2018). The Data Explorer allows us to perform
SQL queries on the SO database, returning at
most 50,000 rows per query. As such, we it-
eratively fetch examples using the OFFSET N
ROWS clause until we retrieve the desired num-
ber of rows. Because our data is fetched across
a number of queries, we order by QID rather than
RAND () to avoid fetching duplicate results.

We model our duplicate examples after the
dataset used in Ahasanuzzaman et al. (2016). This
dataset draws question pairs from the Mining Soft-
ware Repositories (MSR) 2015 data dump, which
contains a snapshot of the SO database between
August 2008 and September 2014. A question
is considered a duplicate of another if the ques-
tions are related using the duplicate link type in
the PostLinks table, and the duplicate question has
been closed. We exhaust all duplicate question
pairs in this time range, fetching the QID, title, and
tags for each post. In total, we retrieve 137,793
question pairs for use as positive examples.

In line with the Quora Question Pairs
dataset (Iyer et al., 2017), we select pairs of
related questions as our negative examples. As



in Xu et al. (2016), we use the linking between
posts as a proxy for question relatedness. For
each linked question pair, we perform two forms
of filtering, using the NetworkX package (Schult,
2008) to construct our duplicate pair clusters. The
filtering process is presented in Figure 1. We
ensure that question pairs cannot be transitive
duplicates of one another, and that at least one of
the questions must be associated with a duplicate
example. We add the latter contraint to ensure that
the model cannot simply memorize questions in
the duplicate examples. Despite this filtering, we
cannot claim that our duplicate clusters can catch
all duplicate examples, so our negative examples
are inevitably noisy.

Altogether, we iteratively retrieve 500,000
linked question pairs from the same time period
as before, then filter these down to 139,282 non-
duplicate examples, which is approximately the
same as the number of duplicate examples. Al-
though the question pairs are not exhaustive for
this time period, we maintain that the relatively
large sample size should provide sufficient diver-
sity to the dataset. More crucially, even though
sorting by QID may lend to a concentration of ear-
lier posts, we argue that the patterns with which
questions are asked should not vary significantly
over time. As such, we believe this sample to be a
reasonable source of negative examples.

After collecting these question pairs, we tok-
enize the question titles using spaCy (Honnibal
and Johnson, 2015). We then sample 5,000 pos-
itive and 5,000 negative examples for test, 5,000
positive and 5,000 negative examples for dev, and
utilize the remaining examples for training.

Quora Question Pairs

We use the splits published by Wang et al. (2017)
to create our Quora dataset. However, because
these splits are already tokenized using the Stan-
ford CoreNLP (Manning et al., 2014) tokenizer,
we recover the original questions by matching
the QIDs of the splits with the original Quora-
published dataset. We then carry out tokeniza-
tion using spaCy as before. Altogether, the Quora
dataset consists of 149,306 positive examples and
255,045 negative examples. The splits consist of
5,000 positive and 5,000 negative examples for
test, 5,000 positive and 5,000 negative examples
for dev, and the remaining examples for training.
Unlike those in the SO dataset, the Quora ques-
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Figure 2: An overview of our model.

tions do not contain any tag information.

4 Model Components

Our model follows the Siamese network archi-
tecture (Bromley et al., 1993). An overview of
our model is presented in Figure 2. The input to
our Gated Recurrent Units (GRUs) consists of a
concatenation of pretrained word embeddings and
character-based embeddings.

Word Embeddings

The pretrained word embeddings utilize 300d
GloVe vectors (Pennington et al., 2014) trained on
the Wikipedia 2014 and Gigaword 5 corpora. Only
words found in our Quora and SO training corpora
are indexed by our word embeddings.

Character-Based Embeddings

Our character-based embeddings are informed by
the techniques in Seo et al. (2016) and follow sim-
ilar hyperparameters to Lee et al. (2017). Char-
acters are projected into 8d character embeddings,
then convolved over using kernels of sizes [3, 4, 5].
Each convolving kernel has 50 output channels.
The output from each kernel is then max-pooled,
passed through a ReL.U nonlinearity, then concate-
nated to form 150d character-based embeddings.
Only characters found in our Quora and SO train-
ing corpora are indexed by our character embed-
dings.



GRUs

We employ bi-directional GRUs (Cho et al., 2014)
to create our sentence representations. We use the
concatenation of hidden states from the forward
and backward GRUs as sentence representations
at each timestep. As such, the dimension of our
GRU output is double the GRU hidden size.

Attention Mechanism

Our attention mechanism draws from Yang et
al. (2016) and can be described as follows:

w = ReLU(Wyhy + by)

= exp(utTqurbc)
t ZZ exp(u?u1‘,+bc)
v = Zz Otihi

Where h; is timestep ¢ of the GRU output, u,,
is a trainable context vector, and b.. is a trainable
bias term. We subsequently refer to the output di-
mension of W, as the “attention size”. We con-
struct our sentence representations by taking the
weighted sum of each timestep of the GRU output
with respect to the scores assigned by the attention
mechanism. These scores are computed by tak-
ing the dot product of the transformed GRU output
with the context vector.

Fully-Connected Classifier

We compare the sentence representations using
two fully-connected layers. The input to our clas-
sifier draws from Mou et al. (2016a).

m = [v1; v2; [v1 — v2|; U1 0 va;t;to]
h= ReLU(Whm + bh)
o = sigmoid(W,h + b,)

Where v; and v2 denote the representations of
the first and second questions respectively; o de-
notes the element-wise product; and ¢; and ¢y de-
note the concatenated tag embeddings for the first
and second questions respectively. ; denotes the
concatenation operation. m is the input to the clas-
sifier, h is the output of the hidden layer, and o is
the classification output.

Owing to the large number of tags on SO, we
compress each tag into a 16d tag embedding. Each
question on SO can be at most assigned five tags,
SO we cap our input to contain five tags per ques-
tion, assigning [pad] tokens in the case that there
are fewer than five tags. Quora question pairs pro-
vide no tag information, so the tag input for these
questions consists entirely of [pad] tokens.

The size of the first fully-connected layer out-
put is fixed at four times the GRU hidden size.
The second fully-connected layer produces a sin-
gle output, which is scaled between [0, 1] using
the sigmoid function. This serves as the classifi-
cation output, which is then subject to a threshold
of >= 0.5 to be predicted as a positive example.

5 Model Configuration and Training

Our model is implemented using PyTorch (Paszke
et al., 2017) and the experiments are conducted
on a single Nvidia GeForce GTX 1070 GPU with
8GB GDDRS5 RAM. Word embeddings are initial-
ized and frozen with GloVe vectors (Pennington
etal., 2014) corresponding to the vocabulary in the
Quora and SO training corpora. We use He nor-
mal initialization (He et al., 2015) to initialize our
components unless we are copying weights from a
pretrained model.

For training, we use the Adam opti-
mizer (Kingma and Ba, 2014) with default
settings. We fix the learning rate at lr=1e-3
for both training and evaluation as we find that
maintaining the learning rate does not result
in the destruction of knowledge accumulated
from pretraining. When training our model
with the fully-connected layers for classification,
we use the binary cross-entropy loss function.
For our ablation study, we consider replacing
the fully-connected layers with the Manhattan
distance; in this case, we use the mean-squared
error loss function as discussed in Mueller and
Thyagarajan (2016).

With regards to regularization mechanisms, we
find that gradient clipping and weight regulariza-
tion are unnecessary for the model to converge.
However, we apply dropout with p=0.2, p=0.1,
and p=0. 5 for word embeddings, character-based
embeddings, and fully-connected layers respec-
tively. Where the outputs sizes are fixed, i.e. the
output of the character-based embeddings and the
classifier hidden layer, we additionally perform
batch normalization (Ioffe and Szegedy, 2015) to
speed up the convergence of our model.

For our character inputs, we truncate each word
at 10 characters, which sufficiently covers more
than the 90th percentile' of words in our training
corpora. For both training and evaluating our mod-
els, we use a batch size of 64 examples.

'The word at the 90th percentile has 8 characters.



Configuration | Dev Accuracy | Test Accuracy | Test F1
50, NPT 0.805 0.796 0.797
50, PT 0.808 0.795 0.795
100, NPT 0.814 0.803 0.803
100, PT 0.819 0.807 0.807
150, NPT 0.814 0.801 0.803
150, PT 0.824 0.814 0.814
200, NPT 0.819 0.809 0.809
200, PT 0.821 0.809 0.809

Table 1: Hyperparameter tuning results. NPT de-
notes “non-pretrained”, while PT denotes “pre-
trained”. Our selected model is bolded.

6 Experiments and Results

Under- and Overfitting Models

As a byproduct of hyperparameter tuning, we in-
vestigate the effect of GRU and attention sizes on
model performance.

e Model sizes. We fix the GRU hidden and at-
tention sizes to be equal, selecting sizes from
[50, 100, 150, 200] output neurons.

o Transfer process. We begin by training our
model on the Quora dataset for 50 epochs.
We then select the model from the epoch with
highest dev accuracy as our Quora-trained
model. When we tune this model against the
SO dataset, we re-initialize the weight matri-
ces of the fully-connected classification lay-
ers and train for another 50 epochs.

e Model selection. For both non-pretrained
and pretrained cases, the model from the
epoch with highest dev accuracy is selected
for evaluation.

From Table 1, we see that pretraining gener-
ally allows us to converge with higher dev accu-
racy. However, we also see that these performance
gains can fail to generalize when we evaluate the
pretrained models against the test set. For ex-
ample, we see that the size=50 model suffers
from underfitting, performing worse than its non-
pretrained counterpart on the test set. Meanwhile,
the size=200 model suffers from overfitting and
achieves the same accuracy as its non-pretrained
counterpart.

Pretraining as a regularization mechanism.
We begin our exploration of how pretraining
helps us by considering the attention weights pro-
duced by our models, which we produce in Fig-
ure 3. Interestingly enough, for the non-pretrained
size=200 model, we observe that the model at-
tends only to the last GRU timestep®. This would
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Figure 3: Attention weights for QID: 23088804.
The attention weights correspond to those pro-
duced by the (a) size=200, non-pretrained; (b)
size=200, pretrained; (c) size=150, non-
pretrained models.

suggest that the model has learnt to entirely cir-
cumvent the attention mechanism, relying exclu-
sively on the sentence representation produced by
the backwards GRU. We contrast this with the
pretrained size=200 model, where the model
shares the work between both GRU and atten-
tion mechanism. The non-pretrained size=150
model validates that focusing on a single timestep
is unusual behavior. To this end, we argue that
pretraining is acting as a form of regularization,
preventing the model from being overly reliant on
the GRU.

We additionally see the regularizing effects of
pretraining through the learning curves, which we
produce in Figure 4. Although the non-pretrained
models eventually achieve higher training accura-
cies, we see that this is because the models tend to
overfit: the dev accuracies of the pretrained mod-
els are consistently higher than those of their non-
pretrained counterparts. We can additionally ob-
serve the effects of under- and overfitting in the
dev plots. For both the size=50and size=200
cases, the differences between the pretrained and
non-pretrained curves are significantly less pro-
nounced than in the size=150 case.

Significance evaluation. To evaluate the sta-
tistical significance of our results, we apply the
continuity-corrected version of McNemar’s test
on the test set predictions produced by the non-
pretrained and pretrained size=150 models.

2We note that Conneau et al. (2017) observe similar but
less exaggerated behavior when max-pooling over the out-
puts of a non-pretrained LSTM. In their appendix, they show
that max-pooling generally focuses on the initial and final
timesteps. Our attention mechanism takes this to the extreme,
focusing exclusively on the final timestep of the backward
GRU.
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Figure 4: Learning curves for the non-pretrained
and pretrained models.

When applying McNemar’s test, the null hypothe-
sis states that there is marginal homogeneity be-
tween the two models, which is to say that the
marginal probabilities for each outcome are the
same. We reject the null hypothesis of marginal
homogeneity with P < 0.001. Together with the
improved model F1 score, we demonstrate that
transferring between the Quora and SO domains
is beneficial towards the question similarity task.

Model Component Efficacy

In this section, we perform an ablation study to
better understand the efficacy of our model com-
ponents. The following ablations require slightly
more involved modifications to our model:

e Attention mechanism. The model with
ablated attention mechanism uses a uni-
directional GRU, passing the final GRU
timestep to the fully-connected classifier as
the sentence representation.

o Fully-connected classifier. The model with
ablated fully-connected classifier utilizes the
Manhattan distance to determine the dis-
tance between sentence representations, as
explored in Mueller and Thyagarajan (2016).
As this model cannot incorporate tag infor-
mation, we provide a tag-ablated model for
comparison.

For the remaining experiments, we pretrain and

tune our ablated models over 25 epochs rather than

Ablated Component Dev Accuracy | Test Accuracy | Test F1
None 0.824 0.814 0.814
Character-based Embeddings | 0.818 0.811 0.812
Attention Mechanism 0.814 0.803 0.804
Fully-connected Classifier 0.666 0.660 0.660
Tags 0.812 0.805 0.806

Table 2: Ablation study results.
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Figure 5: Comparison of attention weights be-
tween (a) the full model and (b) the model
with ablated character-based embeddings on QID:
1680111. The [unk]s are “int32” and “int64” re-
spectively.

50 epochs due to time constraints’. The results
of the ablation study are shown in Table 2. We
generally observe that each component contributes
positively to the performance of our model.

Character-based embeddings. We observe
that character-based embeddings should be es-
pecially important to the SO dataset, given that
45.8% of question pairs in the test set contain at
least one word that is out of vocabulary. However,
we see in Table 2 that adding the character-based
embeddings only yields a modest improvement of
0.002 to test F1 score.

Figure 5 illustrates how our character-based em-
beddings interact with our attention mechanism
for [unk]-containing examples. We find that
without the character-based embeddings, the at-
tention weights tend to be quite diffuse, where
as with the embeddings, the attention mechanism
is able to pinpoint the keywords in the question.
As such, character-based embeddings appear to be
a double-edged sword: while they provide much
needed information to classify question pairs, they
may also become overly strong signals, causing
the model to overfit. Pretraining the character-
based embeddings on the broader SO dataset may
help alleviate this problem.

Fully-connected classifier. The largest contrib-
utor to performance among our ablated compo-
nents is the fully-connected classifier. We find that

3Decreasing the number of epochs does not affect com-
parison with our full model as this model was selected at
epoch=16 and epoch=12 for pretraining and tuning re-
spectively.
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Figure 6: Attention weights for the model using
the Manhattan distance as its distance metric on
QID: 11545649.

Unfrozen Components | Dev Accuracy | Test Accuracy | Test F1
All 0.824 0.814 0.814
>=GRU 0.822 0.807 0.807
>= Attention mechanism | 0.785 0.769 0.770
>= Classifier 0.778 0.760 0.761
None (Quora-trained) 0.522 0.560

Table 3: Model performance with frozen layers.
The >= indicates that components including and
after the specified component are unfrozen for
training.

our fully-connected classifier provides the neces-
sary expressiveness to compare the question pairs.
Comparing the tag-ablated and classifier-ablated
models, we see that the former outperforms the lat-
ter on test set F1 score by a large margin of 0.146.

An interesting question was whether or not the
sentence representations produced by the ablated
model would be better transferable, given that
the GRU and attention mechanism are pushed to
create more expressive representations. Visualiz-
ing the attention weights, as in Figure 6, reveals
that the model attends to all the timesteps after
the question title relative to the backwards GRU.
This is quite different from what we see with the
fully-connected classifier, which may suggest an
overspecialization of the attention mechanism to
produce representations that are separable by the
Manhattan distance metric.

Transferable Knowledge between the Quora
and SO Domains

We now consider the transferable knowledge be-
tween Quora and SO datasets by incrementally
freezing the model layers. The results from our
various stages of freezing are presented in Table 3.
For each of these variants, we only re-initialize the
weight matrices of the fully-connected classifier.
Overall, we find that the largest performance in-
creases come after we unfreeze the classifier and
the GRU. Tuning the entire model produces the
best results.
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Figure 7: Correlation between attention weights
on the test set, as generated by Quora-trained and
fully-unfrozen models.

Where’s the discrepancy?  Despite per-
forming semantically similar tasks, the Quora-
trained model does not perform well on the SO
dataset. This finding is similar to that in Mou et
al. (2016b), where training on a larger NLI dataset
does not necessarily translate to good performance
on a separate, smaller NLI dataset.

We begin our exploration for why this is the
case by comparing the words attended to by the
Quora-trained and fully-unfrozen models. Specif-
ically, we calculate the Pearson and Spearman
rank-order correlation coefficients between the at-
tention weights of question pairs in the test set*.
The distribution of the correlations are presented
in Figure 7. We find that the medians for the corre-
lations are 0.738 and 0.765 for Pearson and Spear-
man correlation coefficients respectively, indicat-
ing strong correlation by both measures. Consid-
ering the two metrics together, we can conclude
that the two models not only share similar notions
of relative importance, but also weigh the magni-
tude of importance quite similarly.

We then consider the model performance when
only the classifier is unfrozen. This results in a
0.201 increase in test F1 score. Considering that
attention weights are strongly correlated, and that
sentence representations appear to encode the nec-
essary information for questions to be classifiable,
the difference then is likely to do with the criteria
with which questions are considered duplicates.

The most significant shortcoming of the Quora-
trained model is its exceptionally low recall
(0.080) on positive examples. An initial inspection
reveals that the positive pairs correctly identified
from the SO dataset generally appear to be mono-
tonically aligned, e.g. “difference between static

“Both values are calculated after trimming the [pad] to-
kens from the beginning of each question. Furthermore, we
exclude 22 out of the 20,000 questions in the test set because
the correlation coefficients cannot be calculated for questions
where the attention weights are all the same.
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Figure 8: NLD histograms.

class and singleton pattern ?” and “what is the
main difference between static class & singleton
class” (QIDs: 519520, 23566750). We notice a
similar trend when we consider the positive exam-
ples in the Quora dataset. We verify this align-
ment more rigorously using the Normalized Lev-
enshtein Distance (NLD) between each question
pair:

ILCS(q1,2)|
NLD = "
(@ 2) = Lol leel)

Where LCS is the Longest Common Subse-
quence. The histograms for character-based and
token-based NLDs are presented in Figure 8.

Examining the character-based overlaps, we
find that the distribution of positive examples in
the Quora dataset follows a similar distribution
to those that were correctly identified in the SO
dataset. On the other hand, we see that the distri-
bution of all positive examples in the SO dataset
is skewed to the left. This would suggest that the
model assumes a certain level of monotonic align-
ment between the question pairs, which is an as-
sumption that does not translate well when we take
the entire SO dataset into consideration.

We additionally notice differences in vocabu-
lary when we consider the distributions of token-
based overlaps. In contrast to the fairly consistent
matching between tokens in positive Quora exam-
ples, Figure 8f reveals that there are very few to-
ken matches between positive SO question pairs.
We see that this difference is far more exagger-
ated than when we compare the character-based
overlaps. We conjecture that the gulf between
the token- and character-based overlaps may arise
due to vocabulary splitting, e.g. “ValueError” vs.
“Value Error” when describing a camel-case iden-
tifier. This would suggest that the SO dataset ne-
cessitates better usage of the character-based em-
beddings, which is a likely adaptation when the
GRU is unfrozen for tuning (yielding a 0.037 im-
provement to test F1 score).

Overall, we argue that the relative homogeneity
of Quora question pairs in contrast to SO question
pairs is a likely reason for the weak performance
of the Quora-trained model on the SO dataset. We
find that this homogeneity is a result of policy:
Quora has very strict policies (Quora, 2017) on
how questions may be written, requiring that they
should be complete, concise questions. Regarding
the diversity of question structures, we may con-
sider applying components that encode question
information position-invariantly, e.g. CNNs, such
that structural conventions are not embedded into
the sentence representations.

7 Conclusion

In this work, we address the question similar-
ity task over SO question pairs. The SO dataset
is unique in that the vocabulary is technical and
rather diverse.  Furthermore, our constructed
dataset is noisy owing to our coarse methods when
supplementing the dataset with negative examples.
To address this issue, we built a model with the
intention of translating intuitions about question
pairs from the Quora domain to the SO domain.
We find that transfer learning is an effective tech-
nique for increasing the robustness of models over
the question similarity task, and may serve as an
effective regularization mechanism. We addition-
ally find that each of our model components con-
tributes positively to model performance. Finally,
we identify, with help from the model, interesting
structural differences in what duplicate questions
look like between the two datasets despite their
tackling the same question similarity task.
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