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Abstract

Sequence-to-sequence (seq2seq) model
refer to all models that solve tasks by
mapping one sequence to another. While
seq2seq tasks differ in their nature, the
principles are shared behind seq2seq mod-
els for different tasks. This survey focuses
on seq2seq models for machine transla-
tion tasks, in particular neural machine
translation (NMT) models. The paper
surveys different structure of NMT mod-
els, including various encoder and decoder
structures and different attention mech-
anisms. It further investigates different
training methods for NMT models in su-
pervised, semi-supervised and unsuper-
vised manners.

1 Introduction

Sequence-to-sequence model refer to all models
that map one sequence to another (Neubig, 2017).
A broad spectrum of tasks could be viewed as
sequence-to-sequence problems, such as dialog
systems, speech recognition and machine transla-
tion. While these tasks differ in nature, seq2seq
models for these tasks share a lot of principles be-
hind. Therefore, this survey focuses on seq2seq
models for machine translation tasks, in particular
neural machine translation models.

Neural machine translation is one of the most
successful application of seq2seq models. It is
also one of the driving tasks behind the devel-
opment of new seq2seq models (Neubig, 2017).
NMT models provides a powerful solution to ma-
chine translation yet keeps a simple end-to-end
structure (Wu et al., 2016; Hassan et al., 2018)
compared to traditional phrase based statistical
machine translation, which typically consists of

several sub-components like language model and
translation model.

The basic idea of NMT models consists of an
encoder and a decoder. The encoder transforms a
sentence x = (x1, x2, ..., x|x|) of source language
into sentence representations. Based on the repre-
sentations, the decoder generates another sentence
y = (y1, y2, ..., y|y|) of target language by maxi-
mizing the conditional probability of y given x i.e.
argmaxy P (y | x).

This survey aims at introducing and comparing
different structure of NMT models as well as iden-
tifying the contribution and incentives of different
training methods in supervised, semi-supervised
and unsupervised manners.

2 Model Structures

2.1 RNN Encoder-Decoder
Cho et al. (2014b) and Sutskever et al. (2014) pro-
posed NMT models that used two recurrent neural
networks (RNN) for encoding and decoding re-
spectively. Both models shared the same design
principle as the encoder encoded the whole source
sentence into a fixed-length vector and the decoder
RNN generated target words one at a time.

Cho et al. (2014b) adopted one layer RNN with
gated recurrent units (GRU) for encoding and de-
coding. The encoder read words of input sentence
x sequentially and summarized the whole sentence
into a context vector c, where c was the final hid-
den state h|x| of RNN. The decoder differed from
the encoder in that the hidden states and outputs
were conditioned on both previous output yt−1 and
context vector c. The encoder’s states h was com-
puted by,

ht = f(ht−1, xt) (1)

and similarly, the decoder’s states and outputs
were given by,

st = f(st−1, yt−1, c) (2)



P (yt | yt−1, ..., y1, c) = g(st, yt−1, c) (3)

where f and g were activation functions. This
work successfully explores the effectiveness of
NMT models, however the performance of model
drops drastically for long sentences (Cho et al.,
2014a).

Sutskever et al. (2014) adopted 2-layer RNN
with long short-term memory (LSTM) cells for
encoding and decoding. The model essentially
differed from the model of Cho et al. (2014b) in
that the context vector was only used to initial-
ize hidden states of the decoder and was not in-
volved in further computation. Despite the sim-
plicity, Sutskever et al. (2014) managed to handle
long sentences by reversing the order of input sen-
tence. In the original paper, it was argued that re-
versing the order of input sentence would intro-
duce short term dependencies between the input
and output words, which would boost the training
performance.

2.2 RNN Encoder-Decoder with Attention
Mechanism

Ideally, RNN should encode all information for
translation into the fixed-length context vector.
However, RNN is not good at capturing long-
distance dependencies and the models cannot han-
dle long sentences properly (Cho et al., 2014a).
This gap between ideals and realities suggests that
the fixed-length vector is the bottleneck in improv-
ing NMT models’ performance.

Inspired by the alignment process of traditional
phrase based statistical machine translation, Bah-
danau et al. (2014) first proposed to add an atten-
tion mechanism (also called global attention (Lu-
ong et al., 2015)) to NMT models. The original pa-
per followed up with the encoder-decoder model
of Cho et al. (2014b) and replaced the encoder
with a bi-directional RNN in addition to adding
the attention layer.

The basic idea of attention mechanism (Bah-
danau et al., 2014) is that instead of learning a
single vector representation for input sentence, the
model keeps vector representations of every input
word. This is done by concatenating the states of
encoder H = concat(h1, ..., h|x|). The context
vector is then computed as weighted sum over all
representations

ct = H ∗ αt (4)

at each decoding step, where αt is the attention
vector compute as

αtj =
exp(score(st−1, hj))∑
k exp(score(st−1, hk))

(5)

and score is the attention score function to be in-
troduced later. This idea relaxes the requirement
of encoding everything into a fixed-length vector.
Hence, the decoder gets to decide how much at-
tention to pay for each input word.

The score function in Eq.(5) computes a score
of decoder state and encoder representation. Lu-
ong et al. (2015) proposed three ways to compute
the score:

dot: The simplest way to compute score
is by taking dot products of two vectors:
score(st, hj) = sTt hj . However, this would re-
quire the encoder and decoder states to be in the
same vector space.

general: the general score function relaxes the
constraint of dot product by adding an extra linear
transformation: score(st, hj) = sTt Wahj .

concat: The most general way to compute
score is to use a neural network with one hidden
layer: score(st, hj) = υTa tanh (Wa[st;hj ]). This
method was adopted in the original paper of Bah-
danau et al. (2014).

Besides different score functions, Luong et al.
(2015) also proposed two attention mechanism,
namely global attention and local attention. The
global attention model essentially resembled the
model of Bahdanau et al. (2014). The local atten-
tion model, on the other hand, computed the con-
text vector over a dynamically determined window
[pt − D, pt + D]. The window parameter D was
a hyper-parameter and pt could either be mono-
tonic aligned as pt = t or be predictive aligned
as pt =| y | ·σ(υTp tanh (Wpst)). In experiments
of Luong et al. (2015), dot score worked well for
global attention and general score did better for lo-
cal attention.

2.3 Encoder-Decoder beyond RNN

Despite the success of attention mechanism, RNN
cannot be efficiently paralleled on GPU and often
fail to capture long term dependencies (Gehring
et al., 2017; Vaswani et al., 2017). Recently pro-
posed NMT models dispensed with recurrent neu-
ral networks completely for the sake of paral-
lelism.



ConvS2S

Gehring et al. (2017) proposed a NMT model
named ConvS2S that used multi-layer convolution
neural networks (CNN) for encoding and decod-
ing. Each convolution layer was parameterized as
a large matrix W ∈ R2d×kd and bW ∈ R2d, where
k was the kernel width and d was the embedding
size. The input to convolution layer would be
X ∈ Rkd, which was the concatenation of ei-
ther the input to encoder(decoder) or the output
of previous convolution layer. The original paper
also adopted gated linear units as non-linearity:
υ([A;B]) = A⊗ σ(B) where [A;B] was the out-
put of convolution and ⊗ was point-wise multipli-
cation.

Besides convolutional encoder and decoder,
Gehring et al. (2017) used a special attention
mechanism called multi-step attention. It was es-
sentially taking global attention for every decoder
layer. At each decoding step, for layer l, the de-
coder first combined previous output word and
convolution output similar to an RNN decoder:
dlt = W l

dh
l
t + bld + gt where hlt was the output

of convolutional layer and gt was the previous tar-
get word. The model then computed dot product
global attention of dlt with respect to output of last
layer of encoder. The context was computed as
weighted sum of the sum of input sentences and
encoder’s final layer output: clt =

∑
j α

l
tj(zj+ej).

Finally, clt was added back to decoder’s states as fi-
nal decoder output of layer l.

This paper adopted the basic principle of RNN
encoder-decoder model with attention, while fa-
cilitated parallel computation on GPU. To further
equip the model with a sense of time step, Gehring
et al. (2017) added positional embedding to origi-
nal input word embedding. In additional, residual
connections were added to enable deep networks.

Transformer

Vaswani et al. (2017) proposed a model that
adopted very similar design philosophy of
ConvS2S (Gehring et al., 2017), called the trans-
former. The goal of transformer was also to re-
duce sequential computation while reserved the
elegance of encoder-decoder structure and effec-
tiveness of attention mechanism. In fact, by using
only attention mechanism for encoding and decod-
ing, the transformer achieved not only great train-
ing speed but also state-of-the-art translation per-
formance.

Vaswani et al. (2017) took advantage of a gen-
eral view of attention: an attention function is a
mapping of a query and a set of key-value pairs
to an output value, where the output is computed
as a weighted sum of values and weights are com-
puted by query and keys. In the original paper, the
particular attention was called scaled dot-product
attention, computed as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (6)

where matrix Q contains packed queries, matrices
K and V are key-value pairs and dk is a magic
scaling factor. To enable the model to attend to
different semantics, Vaswani et al. (2017) further
proposed multi-head attention, which linearly pro-
jected each query, key, value into smaller vector
space for attention respectively. The results were
then concatenated back.

Similar to Gehring et al. (2017), the encoder
of transformer was composed of multiple lay-
ers. Each layer contained a self-attention sub-
layer and a position-wise feed forward network
sub-layer. Self-attention was the attention func-
tion with queries, keys and values being all the
same i.e. Attention(X,X,X), which functioned
similarly to CNN of ConvS2S. The output of self-
attention then went to a feed forward network for
non-linearity.

The decoder of transformer shared the same
sub-layers as the encoder. However, the decoder
had a unique sub-layer, which performed multi-
head attention over the output of the encoder stack.
This sub-layer essentially took global attention of
each decoder state with respect to encoder’s output
and functioned very similar to multi-step attention
of Gehring et al. (2017).

In addition to the aforementioned similarities,
the transformer also adopted position embedding
and residual connections for the same reason as
Gehring et al. (2017). The advantages of the trans-
former are two-folds. First, attention functions can
be greatly parallelized. Second, self-attention al-
lows the model to establish dependencies to arbi-
trarily distant words in input sentence in constant
amount of operations.

3 Supervised Learning for NMT Models

The training settings of supervised learning for
NMT models is not very interesting. Most NMT
models trained with the same objective, which is



to maximize the conditional probability of P (y |
x). Since decoders of NMT models generate tar-
get word distribution one at a time, the conditional
probability is further decomposed into P (y | x) =∏

t P (yt | yt−1, . . . , y1, x). Hence, the general
training goal for NMT model, particularly atten-
tional model, is to maximize the log likelihood on
N parallel sentence pairs,

(θ) =
N∑

n=1

∑
t

logP (y
(n)
t | y(n)<t , h

(n)
t−1, f

att; θ)

(7)
where h

(n)
t−1 denotes an internal decoder state

and fatt denotes the attention mechanism for the
model (Hassan et al., 2018).

4 Semi-Supervised Learning for NMT
Models

Semi-supervised learning for NMT models is very
useful since large parallel corpora is hard to ob-
tain while monolingual corpora is easy to collect.
Moreover, with well designed learning methods,
monolingual data can be used without modify-
ing original models, which could help boost the
performance of well trained NMT models. The
most important idea for semi-supervised learning
in NMT is the duality of translation task and back
translation (Sennrich et al., 2016; He et al., 2016;
Hassan et al., 2018).

Sennrich et al. (2016) first proposed two general
learning framework for semi-supervised learning
for NMT models that required no modification to
the original model structure. The first method
was to provide target monolingual training ex-
amples with empty source sentence, which was
essentially training a language model. The sec-
ond method alleviated the drawback by providing
target monolingual training examples with syn-
thetic source (back translation). The source was
obtained through a separately trained translation
model. In the original paper’s experiment, al-
though back translation helped boost the model’s
performance, there was concern that the quality of
back translation might be a bottleneck.

It is easy to observe that back translation is fa-
cilitated by a more general property of translation
task, duality. For any translation task i.e. En to
Zh, there exists a dual task i.e. Zh to En. He et al.
(2016) went on utilizing monolingual data of both
source side and target side by dual learning. Dual
learning formulated the learning problem as a two-

agent communication game, where agents were
well trained language models i.e. LMA and LMB

and communication channels were two translation
models i.e. PAB and PBA.

The game of dual learning began with one agent
translated a source sentence s through translation
model PAB into smid to the other agent. The
other agent would give a translation reward by
LMB(smid) and back translated smid with a back
translation reward logPBA(smid). The models
were then updated with reinforcement learning
(He et al., 2016).

The dual property of translation task offers
more possibilities for semi-supervised learning.
Recently, Zhang et al. (2018) took advantage of
dual property but formulated the learning process
in a different way from dual learning (He et al.,
2016). Instead of training two language models,
Zhang et al. (2018) updated models with a joint
EM optimization method.

Given parallel corpus D = {(x(n), y(n))}Nn=1

and monolingual corpus Y = {(yt)}Tt=1, the ob-
jective for semi-supervised learning was

L∗(θxy) =
∑
n

logP (y(n) | x(n)) +
∑
t

logP (y(t))

(8)

where the second half of the right hand side could
be maximized by EM algorithm,

logP (y(t)) = log
∑
x

Q(x)
P (x, y(t))
Q(x)

(9)

≥
∑
x

Q(x) log
P (x, y(t))
Q(x)

(10)

To make the equal sign valid, we let Q(x) =
P ∗(x | y(t)). Since P ∗(x | y(t)) was intractable,
Zhang et al. (2018) approximated this with back
translation P (x | y(t)) and trained the model with
new objective as an lower bound of L∗(θxy):

L(θxy) =
∑
n

logP (y(n) | x(n))

+
∑
t

∑
x

P (x | y(t)) logP (y(t) | x)

5 Unsupervised Learning for NMT
Models

Recently, several researchers proposed to use
cross-lingual word embeddings as a starting point
to enable unsupervised neural machine translation



(Artetxe et al., 2017; Lample et al., 2017). A
shared encoder would be used to transform sen-
tences into language independent representation.
The training process not only resembled the train-
ing of denoising autoencoder and but also lever-
aged back translation to boost the models’ ability
to perform translation.

While Artetxe et al. (2017) used a dual ap-
proach to iteratively update the model, Lample
et al. (2017) adopted adversarial training to update
the model. Both work showed the possibility of
unsupervised learning for NMT models, but ex-
periments of Artetxe et al. (2017) showed that the
model structure might still need improvements.

6 Future Developments

This survey discussed the structure of some NMT
models from the simplest RNN encoder-decoder
to the state-of-the-art transformer. It further in-
vestigated different training settings for neural ma-
chine translation i.e. supervised, semi-supervised
and unsupervised, among which semi-supervised
learning could boost NMT models’ performance
with monolingual data without modifying the
models themselves.

Despite the success of encoder-decoder ar-
chitecture, it’s possible to go beyond encoder-
decoder. Hassan et al. (2018) used an delibera-
tion network as polish process, which is a close
analogy to human translator. And neural machine
translation beyond one pass decoding might fur-
ther improve the performance of current NMT
models.
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