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Q1. Yes/No Questions (10 Points)

Indicate whether each statement is true ( ) or false (×).

1. For a fully connected deep network with one hidden layer, increasing the number of
hidden units could decrease bias and increase variance of the prediction.

2. Recurrent neural networks can handle a sequence of arbitrary length, while feedforward
neural networks can not.

3. Multi-layer neural network model trained using stochastic gradient descent on the same
dataset with different initializations for its parameters is guaranteed to learn the same
parameters.

4. Stochastic gradient descent results in a smoother convergence plot (loss vs epochs) as
compared to batch gradient descent.

5. In supervised learning, training data includes both inputs and desired outputs.
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Q2. Short-Answer Questions (5 Points)

Please provide short answers to following questions:

1. What are epoch, batch size, and learning rate in the context of machine learning?

2. What’s the risk with tuning hyper-parameters using the test dataset?

3. Provide a typical goal of (good) weight initialization for deep neural networks.
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Q3. Perceptron (15 Points)

The perceptron algorithm is to predict the label y′i = sgn(wTxi) for each data point xi.

For the following dataset, please derive the perceptron algorithm and give the solution to w.

We set: learning rate α=0.2 and initial weight vector w0 = [1, 0.5, 0]T . The input sequence
is:

x1 = [1, 1, 1]T

x2 = [2,−2, 1]T

x3 = [−1,−1.5, 1]T

x4 = [−2,−1, 1]T

x5 = [−2, 1, 1]T

x6 = [1.5,−0.5, 1]T
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Q4. Logistic Regression (10 Points)

Remember the form of Logistic Regression function

P (y = 1|x; θ) =
1

1 + e−θT x

Let us assume

P (y = 1|x; θ) = σθ(x) and P (y = 0|x; θ) = 1− σθ(x)

then
P (y|x; θ) = (σθ(x))y(1− σθ(x))1−y

Now you can learn your logistic model using maximum likelihood estimation, for which you
should use gradient descent to maximize the log-likelihood function iteratively. Derive the
stochastic gradient descent update rule for logistic regression.
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Q5. Statistical Language Models (10 Points)

We build a uni-gram language model based on the following word frequency table. (Do
NOT use any smoothing technique.)

word frequency word frequency
i 100 hate 50
you 100 book 100
he 50 desk 50
she 50 paper 200
like 100 reading 60
love 100 writing 40

(1) What is the likelihood of the sequence “i love reading” based on the language model
you build?

(2) List a disadvantage of the uni-gram language model. (4 points)
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Q6. Language Model Applications (10 Points)

Nathan L. Pedant would like to build a spelling corrector focused on the particular problem
of there vs. their. The idea is to build a model that takes a sentence as input, for example

He saw their football in the park (1)

He saw their was a football in the park (2)

and for each instance of their or there predict whether the true spelling should be their or
there. So for sentence (1) the model should predict their, and for sentence (2) the model
should predict there. Note that for the second example the model would correct the spelling
mistake in the sentence.

Nathan decides to use a language model for this task. Given a language model p(w1, . . . , wn),
he returns the spelling that gives the highest probability under the language model. So for
example for the second sentence we would implement the rule

If

p(He saw their was a football in the park) > p(He saw there was a football in the park)

Then Return their

Else Return there.

(1): The first language model Nathan designs is of the form

p(w1, . . . , wn) =
n∏
i=1

q(wi),

where
q(wi) = Count(wi)/N

and Count(wi) is the number of times that word wi is seen in the corpus, and N is the total
number of words in the corpus. Let’s assume

N = 10, 000,

Count(there) = 50,

and
Count(their) = 100.

Assume in addition that for every word v in the vocabulary, Count(v) > 0. What does the
rule given above return for “He saw their was a football in the park?” (there or their?)
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(2): The second language model Nathan designs is of the form

p(w1, . . . , wn) = q(w1)
n∏
i=2

q(wi|wi−1),

where
q(wi|wi−1) = Count(wi, wi−1)/Count(wi−1)

and Count(wi−1) is the number of times that word wi−1 is seen in the corpus, and Count(wi, wi−1)
is the number of co-occurrences of two words in the corpus. Let’s assume

Count(there, saw) = 20,

Count(their, saw) = 40,

Count(saw) = 200,

Count(was, there) = 20,

Count(was, their) = 2,

Count(there) = 50,

Count(their) = 100.

We also assumes all other probabilities are non-zero. What does the rule given above return
for “He saw their was a football in the park?” (there or their?)
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Q7. Convolutional Neural Network (10 Points)

A convolutional neural network has one 2x3 convolutional layer with stride 1 and a max
pooling layer. Suppose the input sequence is “a cat sits on the mat”; the filter K is defined
as follows,

K =

[
1 0 1
0 1 −1

]
and embeddings (2 dimensional) of input sequence are listed as follows,

a cat sits on the mat[
0.1
1.2

] [
0.2
1.0

] [
0.3
0.8

] [
0.4
0.6

] [
0.5
0.4

] [
0.6
0.2

]

(i) What is the output of the max pooling layer? (6 points)
0.6, 0.8, 1.0, 1.2 worth 1 point. 1.2 worth 2 point.

(ii) What is the role of a pooling layer in a convolutional neural network (4 points)?
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Q8. Recurrent Neural Network (10 Points)

Considering the following architecture: This architecture can be formalized as follows:
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ht = tanh (Whht−1 +Wixt)

vt = relu(Wvht + b)

yt = softmax (Wovt)

where Wh,Wi,Wv,Wo are the parameters, and xt ∈ RD, ht ∈ RH , vt ∈ RV , yt ∈ RY . Now
given D = 50, H = 100, V = 10, Y = 1000. Please compute the number of all the parameters
in these network in two cases: word embeddings xt are trainable and not trainable (hint:
here parameters are those updated while training).
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Q9. Dot-Product Attention (10 Points)

Sequence to Sequence (Seq2Seq) is about training models to convert sequences from one
domain (e.g. sentences in French) to sequences in another domain (e.g. the same sentences
translated to English), introduced in 2014 by Sutskever et al. But the simple version Seq2Seq
utilizes limited information. Attention mechanism is a simple but effective way to improve
the performance of Seq2Seq.

The details of Dot-product Attention are as follows:

1. Compute the dot product: et,j = sTt−1hj , where sTt−1 is the transpose of st−1 which is
the decoder hidden state at time t− 1, hj is the encoder hidden state at time j.

2. Compute the weight: αt,j =
exp(et,j)∑T−1

k=0 exp(et,k)

3. Compute the attention output: ct =
∑T−1

j=0 αt,jhj

4. Concatenate the attention output with decoder hidden state before sending the decoder
RNN, or concatenate the attention output with the decoder output (we use the latter
method in lab 10).

According to the description above, please compute the attention output at time 2.

h0 h1 h2 h3 s0 s1
0.1
0.2
0.3
0.4



0.2
0.3
0.1
0.4



0.1
0.4
0.3
0.2



0.3
0.4
0.2
0.1



0.4
0.1
0.2
0.3



0.2
0.4
0.3
0.1
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Q10. Attention Variants (10 Points)

We have introduced the dot-product attention in the previous question, and there are other
attention variants. Please write down the et,j formulas according to the Keras code below.

Dot-Product
weight = Act ivat ion ( ’ softmax ’ ) (

dot ( [ decoder outputs [−1] , encoder output ] ,
axes =[2 , 2 ] ) )

et,j = sTt−1hj

Multiplicative

encoder output maped = Dense ( un i t s=2∗hidden dim ,
b i a s=False ) ( encoder output )

weight = Act ivat ion ( ’ softmax ’ ) (
dot ( [ decoder outputs [−1] , encoder output maped ] ,

axes =[2 , 2 ] ) )

Additive

decoder output maped = Dense ( un i t s=2∗hidden dim ,
b i a s=False ) ( decoder output )

encoder output maped = Dense ( un i t s=2∗hidden dim ,
b i a s=False ) ( encoder output )

t anh r e s u l t = Act ivat ion ( ’ tanh ’ ) (Add ( ) ( [
Lambda(lambda x : K. expand dims (x , ax i s =2))(

decoder output maped ) ,
Lambda(lambda x : K. expand dims (x , ax i s =1))(

encoder output maped ) ] ) )
weight = Act ivat ion ( ’ softmax ’ ) (

Lambda(lambda x : K. squeeze (x , ax i s =3))(
Dense ( un i t s =1, b i a s=Fal se ) ( t anh r e s u l t ) ) )
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