香港科技 大 學 THE HONG KONG UNIVERSITY OF SCIENCE

MIDTERM EXAMINATION

Course Code：MATH 3043

Course Title：Honors Real Analysis
Semester：\quad Spring 2018－19
Date and Time：2：00PM－5：00PM， 26 October 2019

Instructions

－Do NOT open the exam until instructed to do so．
－All mobile phones and communication devices should be switched OFF．
－It is an OPEN－NOTES exam．Only authorized materials specified in the midterm an－ nouncement are allowed．
－Answer ALL problems．Write your solutions in the space provided．
－You must SHOW YOUR WORK and JUSTIFY YOUR STEPS to receive credits in every problem in Part B．
－Some problems in Part B are structured into several parts．You can quote the results stated in the preceding parts to do the next part．

HKUST Academic Honor Code

Honesty and integrity are central to the academic work of HKUST．Students of the Uni－ versity must observe and uphold the highest standards of academic integrity and honesty in all the work they do throughout their program of study．As members of the University community，students have the responsibility to help maintain the academic reputation of HKUST in its academic endeavors．Sanctions will be imposed on students，if they are found to have violated the regulations governing academic integrity and honesty．
＂I confirm that I have answered the questions using only materials specified approved for use in this examination，that all the answers are my own work，and that I have not received any assistance during the examination．＂
\qquad
Student＇s Name：
FAMILY NAME，First Name
HKUST ID： \qquad

Part A - Short Questions (20 points)

[Recommended time: < 30 min .]

1. Who is the doctoral adviser of Henri Lebesgue? Put \checkmark in the correct answer:
\bigcirc Elias Stein
(8) Émile Borel

Constantin Caratheodory
Augustin-Louis Cauchy
O None of the above. Please write down: \qquad
2. Consider a countable sequence of subsets $\left\{E_{i, j}\right\}$ of \mathbb{R} indexed by pairs $(i, j) \in \mathbb{N} \times \mathbb{N}$.
(a) Which ONE of the following sets below is equal to the set S_{1} ?
$S_{1}:=\left\{x: \exists k \in \mathbb{N}\right.$ such that whenever $i \geq k$ we have $x \in E_{i, j}$ for infinitely many j 's $\}$
Put \checkmark in the correct answer:

- $\bigcap_{k=i=k}^{\infty} \bigcup_{i=1}^{\infty} \bigcup_{j=l}^{\infty} E_{i, j}$
$\bigcirc \bigcap_{k=1}^{\infty} \bigcup_{i=k}^{\infty} \bigcup_{l=1}^{\infty} \bigcap_{j=l}^{\infty} E_{i, j}$
(6) $\bigcup_{k=1}^{\infty} \bigcap_{i=k}^{\infty} \bigcap_{l=1}^{\infty} \bigcup_{j=l}^{\infty} E_{i, j}$
$\bigcirc \bigcup_{k=1}^{\infty} \bigcap_{i=k}^{\infty} \bigcup_{l=1}^{\infty} \bigcap_{j=l}^{\infty} E_{i, j}$
(b) Express the set S_{2} below using: countable unions, countable intersections, complements (i.e. minus), and the sets $E_{i, j}$ and \mathbb{R}.

$$
S_{2}=\left\{x: \text { there exists infinitely many } i \text { 's such that } x \in E_{i, j} \text { for finitely many } j \text { 's }\right\}
$$

3. Consider the following functions:
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, f=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \chi_{[n-1, n)}$. Put \checkmark in ALL correct description(s):
(d) f is a measurable function (with respect to the Lebesgue measure)
(d) f is (improper) Riemann integrable on \mathbb{R}.
(d) f is Lebesgue integrable on \mathbb{R}.
(b) $g: \mathbb{R} \rightarrow \mathbb{R}, g=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \chi_{[n-1, n)}$. Put \checkmark in ALL correct description(s):
© g is a measurable function (with respect to the Lebesgue measure)
(g is (improper) Riemann integrable on \mathbb{R}.
$\bigcirc g$ is Lebesgue integrable on \mathbb{R}.
4. Give a short proof of each statement below.
(a) Show that any outer measure μ^{*} on a nonempty set X is a complete measure.

Suppose $S c x$ ct. $\mu^{*}(S)=0$, then $\forall Y C X$, we have
$\therefore S$ is measurable $\forall S$ with $\mu^{x}(S)=0 . \quad \therefore \mu$ is complete.
(b) Suppose $g: \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function, show that $f(x):=g([x]): \mathbb{R} \rightarrow \mathbb{R}$ is also measurable. Here $[x]$ denotes the largest integer less than or equal to x, e.g. $[\pi]=3$, $[1.99]=1,[2]=2$.
$f(x)=g(n)$ if $x \in[n, n+1), \quad n \in \mathbb{Z}$.

$$
\therefore f(x)=\sum_{n \in \mathbb{Z}} g(n) X_{[n, n+1)}
$$

$$
\Rightarrow f(4)=\lim _{N \rightarrow \infty} \sum_{n=0}^{N} g(n) X_{(n, n+1)} \begin{gathered}
\text { measurable }
\end{gathered} \Rightarrow X_{N \rightarrow-\infty} \lim _{[n, n+1)} \text { is measurable } \sum_{-N}^{-1} g(w) X_{(n, n+1)} \text { is measurable . }
$$

5. Show that

$$
f(t):=\int_{-\infty}^{\infty} e^{-x^{2}} \sin \left(t x^{2}\right) d x
$$

is a continuous function of t.
Consider any sequence $t_{n} \rightarrow t_{0} \in \mathbb{R}$.
let $F_{n}(x)=e^{-x^{2}} \sin \left(t_{n} x\right)$, then

$$
\begin{aligned}
\left|F_{n}(x)\right| \leq e^{-x^{2}}=: g(x) & \\
\int_{-\infty}^{\infty} e^{-x^{2}} d x<\infty \Rightarrow \text { By LDCT, } & \lim _{n \rightarrow \infty} \int_{\mathbb{R}} F_{n}(x) d x \\
& =\int_{\mathbb{R}} \lim _{n \rightarrow \infty} e^{-x^{2}} \sin \left(t_{n} x^{2}\right) d x \\
\therefore \lim _{n \rightarrow \infty} f\left(t_{n}\right)=f\left(t_{0}\right) & =\int_{\mathbb{R}} e^{-x^{2}} \sin _{\substack{m\\
}}\left(t_{0} x^{2}\right) d x
\end{aligned}
$$

\forall sequence $t_{n} \rightarrow t_{0}$.
$\Rightarrow f(t)$ is continuous is any $t=t_{0}$.

Page 2

Part B - Long Questions (80 points): Answer ALL FOUR problems

[Recommended time: $\mathrm{Q} 1<30 \mathrm{~min}, \mathrm{Q} 2<30 \mathrm{~min}, \mathrm{Q} 3<45 \mathrm{~min}, \mathrm{Q} 4<45 \mathrm{~min}$]

1. Given a C^{1} vector field $F(x, y)=\left(f_{1}(x, y), f_{2}(x, y)\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that its Jacobian matrix at $(0,0)$ is given by:

$$
D F(0,0)=P^{T}\left[\begin{array}{cc}
-2 & 0 \\
0 & -3
\end{array}\right] P
$$

where P is a fixed 2×2 invertible matrix of real entries. Suppose further that $F(0,0)=$ $(0,0)$. Let $(x(t), y(t))$ be the solution to the ODE system

$$
\begin{aligned}
x^{\prime}(t) & =f_{1}(x(t), y(t)) \\
y^{\prime}(t) & =f_{2}(x(t), y(t))
\end{aligned}
$$

Show that there exists $\varepsilon>0$ such that whenever $0<\sqrt{x(t)^{2}+y(t)^{2}}<\varepsilon$ at t, we have

$$
\frac{d}{d t}\left(x(t)^{2}+y(t)^{2}\right)<0 \text { at } t .
$$

2. Consider a C^{1} function $f(x, y, z): \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\Sigma:=f^{-1}(0)$ is non-empty and $\nabla f(p)$ is non-zero for any $p \in \Sigma$. Show that for any $p \in \Sigma$, there exists a bijective map $\psi: U \rightarrow V$ from an open set $U \subset \mathbb{R}^{3}$ containing p to another open set $V \subset \mathbb{R}^{3}$ so that both ψ and its inverse ψ^{-1} are C^{1}, and that

$$
\Sigma \cap U=\left\{\psi^{-1}(x, y, 0):(x, y, 0) \in V\right\}
$$

[Hint: Draw a picture first!]
3. Consider a sequence of measurable functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ with respect to the Lebesgue measure μ on \mathbb{R}. Given that for each $n, k \in \mathbb{N}$, we have

$$
\mu\left(\left\{x \in \mathbb{R}:\left|f_{n}(x)\right|>\frac{1}{k}\right\}\right) \leq \frac{1}{2^{n}}
$$

Consider the sets

$$
\begin{aligned}
E_{k}^{+} & :=\left\{x \in \mathbb{R}: \limsup _{n \rightarrow \infty} f_{n}(x)>\frac{1}{k}\right\} \\
E_{k}^{-} & :=\left\{x \in \mathbb{R}: \liminf _{n \rightarrow \infty} f_{n}(x)<-\frac{1}{k}\right\}
\end{aligned}
$$

(a) Suppose $x \in \mathbb{R}-\bigcup_{k=1}^{\infty}\left(E_{k}^{+} \cup E_{k}^{-}\right)$. Show that $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$.
(b) Show that $f_{n} \rightarrow 0$ a.e. on \mathbb{R}.
4. (a) Denote by $\mathcal{H}^{n}(A)$ the n-dimensional Hausdroff measure of a set $A \subset \mathbb{R}^{n}$, where $n \in \mathbb{N}$. Show that $\mathcal{H}^{n}\left([-N, N]^{n}\right)<+\infty$ for any square cube $[-N, N]^{n} \subset \mathbb{R}^{n}$ where $N \in \mathbb{N}$.
(b) Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of measurable functions on a measure space $\left(\mathbb{R}^{n}, \Sigma, \mathcal{H}^{n}\right)$, where Σ is the σ-algebra of all \mathcal{H}^{n}-measurable sets in \mathbb{R}^{n}. Suppose $f_{n} \rightarrow f$ a.e. on \mathbb{R}^{n} to a measurable function f. Show that there exist countably many sets $E_{k} \in \Sigma$ and a set $S \in \Sigma$ with $\mu(S)=0$, such that

$$
\mathbb{R}^{n} \mathbb{\cup}=S \cup\left(\bigcup_{k=1}^{\infty} E_{k}\right)
$$

and f_{n} converges to f uniformly on each E_{k}.

[^0]1. Given a C^{1} vector field $F(x, y)=\left(f_{1}(x, y), f_{2}(x, y)\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that its Jacobian matrix at $(0,0)$ is given by:

$$
D F(0,0)=P^{T}\left[\begin{array}{cc}
-2 & 0 \\
0 & -3
\end{array}\right] P
$$

where P is a fixed 2×2 invertible matrix of real entries. Suppose further that $F(0,0)=$ $(0,0)$. Let $(x(t), y(t))$ be the solution to the ODE system

$$
\begin{aligned}
x^{\prime}(t) & =f_{1}(x(t), y(t)) \\
y^{\prime}(t) & =f_{2}(x(t), y(t))
\end{aligned}
$$

Show that there exists $\varepsilon>0$ such that whenever $0<\sqrt{x(t)^{2}+y(t)^{2}}<\varepsilon$ at t, we have

$$
\frac{d}{d t}\left(x(t)^{2}+y(t)^{2}\right)<0 \text { at } t .
$$

$$
f_{1}, f_{2} \text { are } c^{1} \Rightarrow\left\{\begin{array}{l}
f_{1}(x, y)=f(0,0)+\frac{\partial f_{1}}{\partial x}(0,0) \cdot x+\frac{\partial f_{1}}{\partial y}(0,0) \cdot y+E_{1}(x, y) \\
f_{2}(x, y)=f_{2}(0,0)+\frac{\partial f_{2}}{\partial x}(0,0) x+\frac{\partial f_{2}}{\partial y}(0,0) \cdot y+E_{2}(x, y)
\end{array}\right.
$$

where $\left|E_{i}(x, y)\right|=0\left(\sqrt{x^{2}+y^{2}}\right), i=1,2$.

$$
\begin{aligned}
& \frac{d}{d t}\left(x(t)^{2}+y(t)^{2}\right)=2 x(t) x^{\prime}(t)+2 y(t) y^{\prime}(t)=2[x(t) y(t)]\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right] \\
& =2[x(t) y(t)] \vec{F}(x(t), y(t)) \\
& =2[x(t) y(t)]\left(\vec{F}(0,0)+D F(0,0)\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+0\left(\sqrt{x(t)^{2}+y(t)^{2}}\right)\right) \\
& \leq 2\left[\begin{array}{ll}
x(t) & y(t)
\end{array}\right] \operatorname{DF}(0,0)\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+0\left(x(t)^{2}+y(t)^{2}\right) \\
& \|[x(t) \cdot y(t)]\|=\sqrt{x(t)^{2}+y(t)^{2}} \\
& =2[x(t) y(t)] P^{\top}\left[\begin{array}{cc}
-2 & 0 \\
0 & -3
\end{array}\right] p\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+0\left(x(t)^{2}+y(t)^{2}\right) \\
& =2\left(P\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]\right)^{T}\left[\begin{array}{cc}
-2 & 0 \\
0 & -3
\end{array}\right] P\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+0\left(x()^{2}+y(t)^{2}\right)
\end{aligned}
$$

let $\left[\begin{array}{l}\tilde{x}(t) \\ \tilde{y}(t)\end{array}\right]=P\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$, then

$$
\begin{aligned}
&=-4 \tilde{x}(t)^{2}-6 \tilde{y}(t)^{2}+E(x(t), y(t)) \\
& \Rightarrow \leq-6\left(\tilde{x}(t)^{2}+\tilde{y}(t)^{2}\right)+E(x(t), y(t)) \\
& x^{2}+y^{2} \leqslant\left\|p^{-1}\right\|^{2}\left(\tilde{x}^{2} 2 \tilde{y}^{2}\right) \rightarrow 0 \leq-\frac{6}{\left\|p^{-1}\right\|^{2}\left(x(t)^{2}+y(t)^{2}\right)+0\left(x(t)^{2}+y(t)^{2}\right)<0} \text { when } x(t)^{2}+y(t)^{2} \text { sha cl. }
\end{aligned}
$$

2. Consider a C^{1} function $f(x, y, z): \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\Sigma:=f^{-1}(0)$ is nonempty and $\nabla f(p)$ is non-zero for any $p \in \Sigma$. Show that for any $p \in \Sigma$, there exists a bijective map $\psi: U \rightarrow V$ from an open set $U \subset \mathbb{R}^{3}$ containing p to another open set $V \subset \mathbb{R}^{3}$ so that both ψ and its inverse ψ^{-1} are C^{1}, and that

$$
\Sigma \cap U=\left\{\psi^{-1}(x, y, 0):(x, y, 0) \in V\right\}
$$

[Hint: Draw a picture first!]
At $p, \quad \nabla f(p) \neq \overrightarrow{0} \rightleftharpoons W L O G$ assume $\frac{\partial f}{\partial z}(p) \neq 0$.
Define a "straightening" map $\Psi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by:

$$
\phi(x, y, z)=(x, y, f(x, y, z))
$$

Then $D \phi=\frac{\partial(x, y, f)}{\partial(x, y, z)}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z}\end{array}\right]$

$$
\therefore \quad \operatorname{det} D \phi(p)=\frac{\partial f}{\partial z}(p) \neq 0
$$

By inverse function theorem, $\exists U \ni p$ and $v \Rightarrow \psi C p$ sit.
$\psi:=\left.\phi\right|_{u} ; u \rightarrow v$ is a diffeomouphism.
Claim: $\quad \sum n U=\left\{\Psi^{-1}(x, y, 0):(x, 4,0) \in V\right\}$.

$$
\begin{gathered}
\therefore \sum_{(x, y, z)} \cap u \in\left\{\psi^{-1}(x, y, 0):(x, y, 0) \in V\right\} \\
\text { Conversely, if } \left.q=\psi^{-1}(x, y, 0)=\frac{\psi^{-1}}{-1}(x, y, 0):(x, y, 0) \in V\right\} \\
\psi(q, y, 0) \in V, \text { then } \\
\therefore(q)=(x, y, 0) \Rightarrow(x, y, f(x, y, z))=(x, y, z) \Rightarrow f^{\prime}(q)=0 \Rightarrow q \in \sum \\
\therefore q \in \sum n u .
\end{gathered}
$$

3. Consider a sequence of measurable functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ with respect to the Lebesgue measure μ on \mathbb{R}. Given that for each $n, k \in \mathbb{N}$, we have

$$
\mu\left(\left\{x \in \mathbb{R}:\left|f_{n}(x)\right|>\frac{1}{k}\right\}\right) \leq \frac{1}{2^{n}}
$$

Consider the sets

$$
\begin{aligned}
& E_{k}^{+}:=\left\{x \in \mathbb{R}: \limsup _{n \rightarrow \infty} f_{n}(x)>\frac{1}{k}\right\} \\
& E_{k}^{-}:=\left\{x \in \mathbb{R}: \liminf _{n \rightarrow \infty} f_{n}(x)<-\frac{1}{k}\right\}
\end{aligned}
$$

(a) Suppose $x \in \mathbb{R}-\bigcup_{k=1}^{\infty}\left(E_{k}^{+} \cup E_{k}^{-}\right)$. Show that $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$.
(b) Show that $f_{n} \rightarrow 0$ a.e. on \mathbb{R}.
(a) Suppose $x \in \mathbb{R}-\bigcup_{k=1}^{\infty}\left(E_{k}^{+} \cup E_{k}^{-}\right)=\bigcap_{k=1}^{\infty}\left(\left(\mathbb{R}-E_{k}^{+}\right) \cap\left(\mathbb{R}-E_{k}^{-}\right)\right)$ then $\forall k \in \mathbb{N}, \quad x \in \mathbb{R}-E_{k}^{+}$and $x \in \mathbb{R}-E_{k}^{-}$

$$
\Rightarrow \underbrace{-\frac{1}{k} \leq{\underset{x i m}{n \rightarrow \infty}}^{\lim _{n}(x)} \leqslant \underbrace{\lim _{n \rightarrow \infty} f_{n}(x) \leqslant \frac{1}{k}}_{x \notin E_{k}^{+}} \quad \forall k \in \mathbb{N} . \text {. } \quad \forall \underbrace{}_{x}}_{x \notin E_{k}^{-}} \quad \forall \underbrace{}_{x}
$$

let $k \rightarrow \infty$, then $0 \leq \lim _{n \rightarrow \infty} f_{n}(x) \leq \lim _{n \rightarrow \infty} f_{n}(x) \leq 0$

$$
\therefore \lim _{n \rightarrow \infty} f_{n}(x)=0
$$

(b) We argue that $\mu\left(\bigcup_{k=1}^{\infty}\left(E_{k}^{+} \cup E_{k}^{-}\right)\right)=0$:

When $x \in E_{k}^{+}$, we have

$$
\lim _{n \rightarrow \infty} f_{n}(x)>\frac{1}{1 k}
$$

From 2043, \exists infinitely many n's

$$
\text { st. } \quad f_{n}(x)>\frac{1}{k} \Rightarrow \quad\left|f_{n}(x)\right|>\frac{1}{k}
$$

Denote $F_{n, k}:=\left\{x \in \mathbb{R}: \quad\left|f_{n}(x)\right|>\frac{1}{k}\right\}$
then $x \in E_{k}^{+} \Rightarrow x \in F_{n, k}$ for infinitely many $n ' s$.

$$
\therefore E_{k}^{+} C \bigcap_{m=1}^{\infty} \bigcup_{n>m} F_{n, k}
$$

Similarly, if $x \in E_{k}^{-}$, then $\lim _{n \rightarrow \infty} f_{n}(x)<-\frac{1}{k} \Rightarrow \exists$ infinitely many

$$
\begin{aligned}
& \text { s.t. } f_{n}(x)<-k \\
& \Rightarrow\left|f_{n}(x)\right|>k
\end{aligned}
$$

$$
\sum_{n=1}^{\infty} \mu\left(F_{n, k}\right) \leq \sum_{n=1}^{\infty} \frac{1}{2^{n}}=2<\infty
$$

Borel-Cantell:

$$
\begin{aligned}
& \stackrel{\text { Orel-canterki }}{\Longrightarrow}\left(\bigcap_{n=1}^{\infty} \cup_{n>m}^{\cup} F_{n, k}\right)=0 \quad \forall k \\
& \Rightarrow \mu\left(E_{k}^{+} \cup E_{k}^{-}\right) \leq \mu\left(\bigcap_{m=1}^{\infty} \cup_{n \rightarrow m} F_{n, k}\right)=0 \quad \forall k \\
& \Rightarrow \mu(\underbrace{\infty}_{k=1}\left(E_{k}^{+} \cup E_{k}^{-}\right)) \leq \sum_{k=1}^{\infty} \mu \underbrace{\mu\left(E_{k}^{+} \cup E_{k}^{-}\right)}_{=0}=0 \\
& f_{n}(x) \rightarrow 0 \quad \forall x \notin \underbrace{\bigcup_{k=1}^{\infty}\left(E_{k}^{+} \cup E_{k}^{-}\right)}_{\mu=0}, \Rightarrow f_{n} \rightarrow 0 \text { a.e. on } \mathbb{R} .
\end{aligned}
$$

4. (a) Denote by $\mathcal{H}^{n}(A)$ the n-dimensional Hausdroff measure of a set $A \subset \mathbb{R}^{n}$, where $n \in \mathbb{N}$. Show that $\mathcal{H}^{n}\left([-N, N]^{n}\right)<+\infty$ for any square cube $[-N, N]^{n} \subset \mathbb{R}^{n}$ where $N \in \mathbb{N}$.
(b) Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of measurable functions on a measure space $\left(\mathbb{R}^{n}, \Sigma, \mathcal{H}^{n}\right)$, where Σ is the σ-algebra of all \mathcal{H}^{n}-measurable sets in \mathbb{R}^{n}. Suppose $f_{m} \rightarrow f$ ae. on \mathbb{R}^{n} to a measurable function f. Show that there exist countably many sets $E_{k} \in \Sigma$ and a set $S \in \Sigma$ with $\boldsymbol{\mu}(S)=0$, such that

$$
\mathcal{H}^{n}
$$

$$
\mathbb{R}^{n} S=S \cup\left(\bigcup_{k=1}^{\infty} E_{k}\right)
$$

and f_{n} converges to f uniformly on each E_{k}.
(a)

For any $\delta>0$, we consider closed cubes $\frac{\pi}{\pi}$ with length $\frac{\delta}{2 \sqrt{n}}$ st.

$$
\operatorname{diam}(c)=\frac{\delta}{2}<\delta
$$

We $\left[\frac{2 N}{\delta / 2 \pi n} \operatorname{can}^{2}\right.$ cover many $[-N, N]^{n}$ by $\left[\frac{2 N}{\left(\frac{\delta}{2 \sqrt{n}}\right)}\right]^{n}$ El's with $\operatorname{diam}(c)=\frac{\delta}{2}$,

$$
\text { then } H_{\delta}^{n}\left([-N, N]^{n}\right)=\inf \left\{\sum_{j}\left(\frac{\operatorname{diam} C_{j}}{2}\right)^{n}: \quad \underset{[-N, N]^{n} \subset U_{j} C_{j}}{ }\right\}
$$

$$
\begin{aligned}
\leqslant & \underbrace{\left[\frac{2 N}{\frac{\sigma}{n}}\right]^{n}}_{A \text { of } \Delta_{s}^{\prime}} \cdot\left(\frac{\operatorname{diam} \bar{B}^{n}}{2}\right)^{n} \\
& =\left(\frac{\delta / 2}{2}\right)^{n} \frac{\delta}{2 \sqrt{n}}
\end{aligned} \underbrace{\left(\frac{2 N}{n}\left(\frac{\delta}{4}\right)^{n}\right.}
$$

$$
\begin{aligned}
H^{n}\left([-N, N]^{n}\right)=\lim _{\delta \rightarrow 0^{+}} H_{\delta}^{n}\left([-N, N]^{n}\right) \leq \lim _{\delta \rightarrow 0^{+}}\left(\sqrt{n} N+\frac{\delta}{4}\right)^{n}= & (\sqrt{n} N)^{n} . \\
& <+\infty
\end{aligned}
$$

(b) Consider each che $[-N, N]^{n}$ which has finite H^{n}.

As $[-N, N]^{n}$ is a Bevel set, it is H^{n}-measurable. By (a), $\mathcal{H}^{n}\left(E-N, N J^{n}\right)<+\infty$. By Egorff's Theorem (applied on $\underbrace{\left.E N, N V^{n}\right)}_{*}$): For each $k \in \mathbb{N}, \exists A_{N, k}^{E} \subset[-N, N]^{n}$ with $H^{\prime \prime}\left(A_{N, k}\right)<\frac{1}{k}$ s.t. $f_{m} \Rightarrow f$ on $E_{N, k}:=[E N, N]^{n}-A_{N, k}$
tgorff's requires finite measure!!

$$
\begin{aligned}
\mathbb{R}^{n} & =\bigcup_{N=1}^{\infty}[-N, N]^{n}=\bigcup_{N=1}^{\infty}\left(\left([-N, N]^{n}-\bigcap_{k=1}^{\infty} A_{N, k}\right) \cup \bigcap_{k=1}^{\infty} A_{N, k}\right) \\
& =\bigcup_{N=1}^{\infty} \bigcup_{k=1}^{\infty}(\underbrace{[-N, N]^{n}-A_{N, k}}_{E_{N, k}}) \cup \bigcup_{N=1}^{\infty} \bigcap_{k=1}^{\infty} A_{N, k}
\end{aligned}
$$

Take $S:=\underbrace{\infty}_{\text {countable }} \underbrace{\infty}_{N=1} \bigcap_{k=1}^{A_{N}, k} \in \Sigma$. We claim $H^{n}(S)=0$
$\begin{aligned} \forall N \in \mathbb{N}, H^{n}\left(\bigcap_{k=1}^{\infty} A_{N, k}\right) & \leq H^{n}\left(A_{N, k}\right) \leq \frac{1}{k} \rightarrow 0 \text { as } k \rightarrow \infty . \\ & \underset{\forall k \in \mathbb{N}}{ } \quad \text { our choice }\end{aligned}$

$$
\begin{aligned}
& \therefore H^{n}\left(\bigcap_{k=1}^{\infty} A_{N, k}\right)=0 \quad \forall N \in \mathbb{N} . \\
\Rightarrow & H^{n}(\underbrace{\left.\sum_{N=1}^{\infty} \bigcap_{k=1}^{\infty} A_{N, k}\right)}_{S} \leqslant \sum_{N=1}^{\infty} H^{n} \underbrace{\left(\bigcap_{k=1}^{\infty} A_{N, k}\right)}_{=0}=0
\end{aligned}
$$

$\therefore \exists$ doubly indexed countably many $E_{\nu, k}$'s $\in \Sigma$, st.

$$
\begin{aligned}
& f_{m} \rightarrow f \text { on each } E_{N, k}, \text { and } \\
& \mathbb{R}^{n}=\left(\bigcup_{\substack{N=1 \\
k=1}}^{\infty} E_{N, k}\right) \cup \begin{array}{l}
N \\
\\
\\
\\
\\
\\
\\
f^{n}(S)=0 .
\end{array}
\end{aligned}
$$

[^0]: * End of Paper *

