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MATH 3043 Fall 2019-20 Midterm Exam

Part A - Short Questions (20 points)

[Recommended time: < 30 min.]

1. Who is the doctoral adviser of Henri Lebesgue? Put v in the correct answer: [1]
(O Elias Stein

& Emile Borel
(O Constantin Caratheodory
(O Augustin-Louis Cauchy

(O None of the above. Please write down:

2. Consider a countable sequence of subsets {F; ;} of R indexed by pairs (i,5) € N x N
(a) Which ONE of the following sets below is equal to the set S;?

[2]
S1 := {z : 3k € N such that whenever i > k we have = € E, ; for infinitely many j’s}
Put v in the correct answer:
o NUNUE,
k=1i=k =1 j=I
(e olNe o lENe SN0 o]
o NUUNE,
k=1i=k =1 j=I
[ olNe o lNe SN0 o]
@ UNNUE,
k=1i=k =1 j=I
(e olNe o lNe SN0 o]
o UNUN ey
k=1i=k =1 j=I
(b) Express the set S, below using: countable unions, countable intersections, comple- [3]
ments (i.e. minus), and the sets £; ; and R.
Sy = {x : there exists inﬁnitely many ¢’s such that z € E; ; for finitely many j’s}
& DQ
(R (\uE m«(\uur\(ae\
3. Consider the following functions:
@ f:R=R, f= Z %X[n—l,n)- Put v* in ALL correct description(s): [3]
=1

@ f is a measurable function (with respect to the Lebesgue measure)
@ f is (improper) Riemann integrable on R.
o fis Lebesgue integrable on R.

1 n
b g:R—-R,g= Z (= “~——X[n—1,n)- Put v in ALL correct description(s): [3]
n=1

(J ¢ is a measurable function (with respect to the Lebesgue measure)
« ¢ is (improper) Riemann integrable on R.
(O g is Lebesgue integrable on R.
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4. Give a short proof of each statement below.
(a) Show that any outer measure p* on a non-empty set X is a complete measure. [2]

e SC X cX. II,L{(CS) =0,
en \I‘(\C,X W\l

PO « W((=9) € (DR H D € WO
/ \I’ZE/ / \(/:;( |

(b) Suppose g : R — R is a measurable function, show that f(x) := g([z]) : R — R is also [2]
measurable. Here [z] denotes the largest integer less than or equal to z, e.g. [7] = 3,
[1.99] =1,[2] = 2.
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5. Show that [4]

(i

is a continuous function of ¢.
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Part B - Long Questions (80 points): Answer ALL FOUR problems

[Recommended time: Q1 < 30 min, Q2 < 30 min, Q3 < 45 min, Q4 < 45 min] \5
1. Given a C! vector field F(z,y) = (f1(x,y), f2(z,y)) : R? — R? such that its Jacobian matrix ~ [#8]
at (0,0) is given by:
0 -3

where P is a fixed 2 x 2 invertible matrix of real entries. Suppose further that F'(0,0) =
(0,0). Let (z(t),y(t)) be the solution to the ODE system

'(t) = f(2(t),y(t))
y'(t) = fa(z(t), y(t))
Show that there exists ¢ > 0 such that whenever 0 < /z(t)? + y(¢)? < ¢ at t, we have

DF(0,0) = PT [_2 0 } P

d%(:c(t)Q +y(t)?) < 0 att.

2. Consider a C! function f(z,y,z) : R® — R such that ¥ := f~1(0) is non-empty and Vf(p)  [10]
is non-zero for any p € . Show that for any p € ¥, there exists a bijective map ¢ : U — V

from an open set U C R? containing p to another open set V C R? so that both ¢ and its
inverse ¢! are C', and that

SNU ={¢ (z,y,0): (z,y,0) € V}
[Hint: Draw a picture first!]

3. Consider a sequence of measurable functions f, : R — R with respect to the Lebesgue
measure p on R. Given that for each n, k € N, we have

w({reriih@i>}) < 5

1
El = {:L’ € R : limsup fp(z) > —}

n—oo k

Consider the sets

_ . 1
E, = {I eR: hnrggolffn(x) < _E}

(a) Suppose x € R — U (E,j U E, ). Show that f,(z) — 0 as n — oo. [5]
k=1
(b) Show that f,, — 0 a.e. on R. [20]

4. (a) Denote by H"(A) the n-dimensional Hausdroff measure of a set A C R", wheren € N. [10]
Show that H" ([N, N]") < 4oo for any square cube [N, N|* C R" where N € N.

(b) Let {f,}>2, be a sequence of measurable functions on a measure space (R", %, H"), [?30]
where ¥ is the o-algebra of all #"™-measurable sets in R". Suppose f,, — f a.e. on R"
to a measurable function f. Show that there exist countably many sets £}, € ¥ and a
set S € ¥ with p(S) = 0, such that

n o
W 5=s50U (U Ek)
k=1
and f, converges to f uniformly on each Fj.

* End of Paper *
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1. Given a C! vector field F(z,y) = (fi(x,y), f2(z,y)) : R? — R? such that its Jacobian matrix
at (0,0) is given by:

(@]

DF(0,0) = PT [_2 y ] P o

0 -3

where P is a fixed 2 x 2 invertible matrix of real entries. Suppose further that F'(0,0) =
(0,0). Let (x(t),y(t)) be the solution to the ODE system

a'(t) = fila(t), y(t))
y'(t) = fa(=(t), y(¢))

Show that there exists € > 0 such that whenever 0 < /z(t)? + y(t)% < € at t, we have

g7 (z(t)* +y(t)*) < Oatt.
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2. Consider a C! function f(x,y, z) : R* — R such that ¥ := f~!(0) is non-empty and V f(p) [10]
is non-zero for any p € . Show that for any p € ¥, there exists a bijective map ¢ : U — V
from an open set U C R? containing p to another open set V' C R? so that both v and its
inverse ¢»~! are C'!, and that

YU = {¢y (2,9,0) : (x,9,0) € V}.

[Hint: Draw a picture first!]
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3. Consider a sequence of measurable functions f, : R — R with respect to the Lebesgue
measure y on R. Given that for each n, k € N, we have

w({zeriit@n>1}) < 5

1
B 1= {m € R : limsup f,(x) > —}

n—oo k

Consider the sets

_ o 1
E, = {a: eR: hnn_lggffn(x) < ——}

k
(a) Suppose z € R — U (E,j U E, ). Show that f,(z) — 0 as n — oc. [5]
k=1
(b) Show that f,, — 0 a.e. on R. [20]
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4. (a) Denote by H"(A) the n-dimensional Hausdroff measure of a set A C R”, wheren € N. [10]
Show that H"([~N, N|") < +oc for any square cube [N, N|" C R" where N € N. -

(b) Let {f,}>°, be a sequence of measurable functions on a measure space (R", 3, H"), [33]
where ¥ is the o-algebra of all #"-measurable sets in R™. Suppose f,,— f a.e. on R"
to a measurable function f. Show that there exist countably many sets Ej € 3 and a
set S € X with £(S) = 0, such that

H - 0
R §=5u(Ex
k=1
and f,, converges to f uniformly on each E}.
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