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• You must SHOW YOUR WORK and JUSTIFY YOUR STEPS to receive credits in every
problem in Part B.
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Part A - Short Questions (20 points)

[Recommended time: < 30 min.]

1. [1]Who is the doctoral adviser of Henri Lebesgue? Put ! in the correct answer:

© Elias Stein

© Émile Borel

© Constantin Caratheodory

© Augustin-Louis Cauchy

© None of the above. Please write down:

2. Consider a countable sequence of subsets {Ei,j} of R indexed by pairs (i, j) ∈ N× N.

(a) [2]Which ONE of the following sets below is equal to the set S1?

S1 := {x : ∃k ∈ N such that whenever i ≥ k we have x ∈ Ei,j for infinitely many j’s}

Put ! in the correct answer:

©
∞!

k=1

∞"

i=k

∞!

l=1

∞"

j=l

Ei,j

©
∞!

k=1

∞"

i=k

∞"

l=1

∞!

j=l

Ei,j

©
∞"

k=1

∞!

i=k

∞!

l=1

∞"

j=l

Ei,j

©
∞"

k=1

∞!

i=k

∞"

l=1

∞!

j=l

Ei,j

(b) [3]Express the set S2 below using: countable unions, countable intersections, comple-
ments (i.e. minus), and the sets Ei,j and R.

S2 = {x : there exists infinitely many i’s such that x ∈ Ei,j for finitely many j’s}

3. Consider the following functions:

(a) [3]f : R → R, f =

∞#

n=1

(−1)n

n2
χ[n−1,n). Put ! in ALL correct description(s):

© f is a measurable function (with respect to the Lebesgue measure)
© f is (improper) Riemann integrable on R.
© f is Lebesgue integrable on R.

(b) [3]g : R → R, g =

∞#

n=1

(−1)n

n
χ[n−1,n). Put ! in ALL correct description(s):

© g is a measurable function (with respect to the Lebesgue measure)
© g is (improper) Riemann integrable on R.
© g is Lebesgue integrable on R.
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4. Give a short proof of each statement below.

(a) [2]Show that any outer measure µ∗ on a non-empty set X is a complete measure.

(b) [2]Suppose g : R → R is a measurable function, show that f(x) := g([x]) : R → R is also
measurable. Here [x] denotes the largest integer less than or equal to x, e.g. [π] = 3,
[1.99] = 1, [2] = 2.

5. [4]Show that

f(t) :=

ˆ ∞

−∞
e−x2

sin(tx2) dx

is a continuous function of t.
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Part B - Long Questions (80 points): Answer ALL FOUR problems

[Recommended time: Q1 < 30 min, Q2 < 30 min, Q3 < 45 min, Q4 < 45 min]

1. [10]Given a C1 vector field F (x, y) = (f1(x, y), f2(x, y)) : R2 → R2 such that its Jacobian matrix
at (0, 0) is given by:

DF (0, 0) = P T

$
−2 0
0 −3

%
P

where P is a fixed 2 × 2 invertible matrix of real entries. Suppose further that F (0, 0) =
(0, 0). Let (x(t), y(t)) be the solution to the ODE system

x′(t) = f1(x(t), y(t))

y′(t) = f2(x(t), y(t))

Show that there exists ε > 0 such that whenever 0 <
&

x(t)2 + y(t)2 < ε at t, we have

d

dt

'
x(t)2 + y(t)2

(
< 0 at t.

2. [10]Consider a C1 function f(x, y, z) : R3 → R such that Σ := f−1(0) is non-empty and ∇f(p)
is non-zero for any p ∈ Σ. Show that for any p ∈ Σ, there exists a bijective map ψ : U → V
from an open set U ⊂ R3 containing p to another open set V ⊂ R3 so that both ψ and its
inverse ψ−1 are C1, and that

Σ ∩ U = {ψ−1(x, y, 0) : (x, y, 0) ∈ V }.

[Hint: Draw a picture first!]

3. Consider a sequence of measurable functions fn : R → R with respect to the Lebesgue
measure µ on R. Given that for each n, k ∈ N, we have

µ

)*
x ∈ R : |fn(x)| >

1

k

+,
≤ 1

2n
.

Consider the sets

E+
k :=

*
x ∈ R : lim sup

n→∞
fn(x) >

1

k

+

E−
k :=

*
x ∈ R : lim inf

n→∞
fn(x) < −1

k

+

(a) [5]Suppose x ∈ R−
∞"

k=1

(E+
k ∪ E−

k ). Show that fn(x) → 0 as n → ∞.

(b) [20]Show that fn → 0 a.e. on R.

4. (a) [10]Denote by Hn(A) the n-dimensional Hausdroff measure of a set A ⊂ Rn, where n ∈ N.
Show that Hn

'
[−N,N ]n

(
< +∞ for any square cube [−N,N ]n ⊂ Rn where N ∈ N.

(b) [25]Let {fn}∞n=1 be a sequence of measurable functions on a measure space (Rn,Σ,Hn),
where Σ is the σ-algebra of all Hn-measurable sets in Rn. Suppose fn → f a.e. on Rn

to a measurable function f . Show that there exist countably many sets Ek ∈ Σ and a
set S ∈ Σ with µ(S) = 0, such that

X = S ∪
- ∞"

k=1

Ek

.

and fn converges to f uniformly on each Ek.

* End of Paper *

Page 3

15
•

20

Z

TRY o



•

[15]

Fs
,
fu are d ⇒ fix g) = few + doftecoo) - set 0¥00) -y t E, cx.gs{ fix.y) = + 0¥Cooke -0¥ Coos -

ye Ezlxiy)

where IEik.gl/=olxFey) , i --i. 2 .

*(xth't yKY) = 2xLt) x'It) t 2y Its y't) = 2 Exits yet)) [
→

= 2[XGD yes] F-(x eyes)

= 2 Exa) yes] (FC a DFco.es [YET,] + oGx¥yHi))
⇐ 2 Exits yes] DFA .o) [Y, ) t o (HeftyHR)
-

Hexes .YKDH --Txtyitf

= 2 ExleyHD PT [I 5)PITTI)
.

+ ocxefeyi.ci)

= 245k¥35 g) pff¥) i-ocxefeyi.ci)
let LIFE!) : P ,

then

¥ (xkskyl.ci) E 2 Exits ,FH) I ][If t Ecxcei . yet)
= - 45M - 6845 t E-Cuts . yes)F'[ IT] = Th) \ e - 6 (Ith't jur) t Ecxct) - let ')

⇒ x'vie Hp -' 11¥99 e - ftp.yplxui-H") tween"
e,%

.

Be



At p , of to ⇒ Whoa assume ¥43 to .

Define a "

straightening
"

map Y : R'→ R
'
by :

#x.g.⇒ = (x. y , fcxiyizs)

T & T'

cos -- E →

7- →d- i
am Doi = =L:÷I¥¥!

-

'

.
det DHp7= ¥407 to .

By inverse function theorem
,
I Usp and U ⇒ 443 sit .

if :=&/u : Usv is a diffeomorphism .

Claim : In U = { Y'' (x.g. o) : 6.4.03 EV ) .

Proof : aft ?nu ⇒ figs -_ o ⇒ Ycq) -- (xiy.fayqzD-cx.IO)
⇐y, f-

'

lo) EV

i
. off { Y'they ,o) : G. -1.02 EV }

⇒ In U C {4- ' cx.q.co) : ⇐4,03GW }

Conversely , if
'"if Y'' G.no#tICx.y.osc-v , then

Y(g) = 6.1.07 ⇒ (t.y.fcx.IID-cx.ve) ⇒ fcq7=o⇒qE -2 .

q
.

'

. ft Eru . ⇒ zm= {y-' cx.no) : Gyro > EV ).



Cas suppose XE IR - (EE' v EI ) = ((IR- Eet ) NCR -EI ))
then Yak EN

, XE IR - EE
'

and XE IR -EI

⇒
- the nimfuas E ligsasfncxs Etz V-Kent.

- -

x # Ee
-

XE Eet

let k-so
,
then o E nliuyfucxn E LEE fix' EO

!
. tiny facts = O -

(b) We argue that µ(E ,(Eiu Eis) - o :

when XE Ekt ,
we have

III. f-now > Is
K

From 2043
, I infinitely many n's

51 . fncx) > Is ⇒ Ifncxy >¥

Denote Fn .ie {XEIR : (final>¥}
then x C- Eli ⇒ x e- Fn .ee for infinitely many n's .

i
. fEicm%nYmFn
-

Similarly , if XE EE , then nlinsjfixsc- th ⇒ I infinitely many
u's

I ←
" sits:c:E¥

.



II. Mtn .k) EEE, = 2 - is

T

Bord - Genteel.
given

⇒ HI , nymfn.la/--o.V-k
⇒ µCEEuEI ) Ep In Fnma) -

- O HK

⇒ µ( LEEUEEI) EEE,r(EEUEI) - o .

-

= O

fncxs → o 4x4 ⇐E' u EE ) ,
⇒ fn → o a.e . an R .

÷



M

ft
IR
"

@

For any 8 > o , we consider"
-
- EN 'D

"

closed cubes TIES with length East .
EEE. - - -ET c
-
X diam(c) = ELS .

WeFETTLE"En,N5 by I
"

EB's with diana) --E
,

then HI-L-n.wst-inffjldiczcijni.fi?ngficyg. I
⇐ k¥7 n' ⇐÷ Eat
--

* of E3's =@az-ntITpn_fTnNtEYHnLEN.n5I-gliIoetirLEniv57Efizo.CTNta)
'

= # NY .

< + is
.

(b) Consider each cube C-NINI which has finite Hh
.

As EN.ws
"

is a Beret set
,
it is H

"
- measurable . By Cal ,

FTCEa .n5) Ctcs . By Egorff 's Theorem (applied on EN .n5) -

EZ Tg
'

For each Kent
,
IAN

,
KC E-NINI with t5(AN,k) sets' n

sit
. Fm f on EN ,k÷= EN ,

NY - Anda /
Fgorff's requires
finite measure ! !



Rn -_ ¥ ,

EN
,NJ = ((EN ,n5 - II.An .ec/uIEAn.k)

A

= LEN ,
NI- Anik) u It

,

Anik
-

is A
EN ,k

Take S := U n AN .ec we claim HMS) = O
NI KEI

countable
IE

⇐ E .

-

V-NEN.mn/iE.An.k)EtifAn.k) E # → o as k-so .

Tt
FK GN our choice

-

'

. jiff
,
Ann) - o V-NEIN .

⇒ til E. Ama) c- Erica,Amu) - o
-
-

=O
S

'
. . I doubly indexed countably many Ew .ee's E E , sit .

Fm f on each EN
-
k
, and

pi = Erik) " Eppes
, .- o .

SEZ .


