Tutorial 6 Problems

CHEN Yanze*

October 24, 2019

Recollections.

Last week you learned the definition of Lebesgue integration. Recall the following key points:

- Any measurable function can be approximated by simple functions.
- Egorov's theorem. This is of fundamental importance in the theory of integrations, since other convergence theorems essentially come from this theorem.
- Definition of integration for simple functions: it can be proved that the obvious definition one can write down is well-defined.
- Definition of integration of nonnegative functions: taking sup among all the nonnegative simple functions less than the function.
- Definition of integration of general functions: separate the positive and negative parts.
- Properties of integration.
- Lebesgue Control Convergence theorem: $f_{n} \rightarrow f$ a.e., $\left|f_{n}\right| \leq g, g$ integrable $\Rightarrow \int f_{n} \rightarrow \int f$. This is the most important theorem in the theory of Lebesgue integrations.

1 Warm Up.

1.1 ${ }^{* * *}$ A Dirty Trick in Linear Algebra.

$G_{r s s}$ is dense in G. One can use analysis to solve problems in linear algebra.

[^0]
1.2 Use Fatou's Lemma to prove Lebesgue Control Convergence theorem.

Recall Fatou's Lemma: $\int \liminf f_{n} \leq \liminf \int f_{n}$

1.3 Chebyshev's Inequality.

$f \geq 0$ integrable, $a>0, E_{a}=\{x: f(x)>a\}$. Then $\mu\left(E_{a}\right) \leq \frac{1}{a} \int f$. This very simple result has some implication in probability theory: it directly implies the Law of large numbers.

1.4 Deal with Sets by Integrations.

E_{1}, \cdots, E_{n}, E measurable sets, $\mu(E)<\infty$. Every point in E belongs to at least k of the E_{i} 's. Then there exists some i s.t. $\mu\left(E_{i}\right) \geq \frac{k}{m} \mu(E)$.

2 Proof of Egorov's Theorem.

$\mu(E)<\infty$. On E, measurable functions $f_{n} \rightarrow f$ a.e. $\forall \epsilon>0, \exists A \subseteq E$ closed s.t. $f_{n} \rightarrow f$ uniformly on A and $\mu(E-A)<\epsilon$.

3 The Graph of a Measurable Function

$f: \mathbf{R} \rightarrow \mathbf{R}$ measurable. $\Gamma_{f}=\left\{(x, f(x)) \in \mathbf{R}^{2}: x \in \mathbf{R}\right\}$. Then Γ_{f} is a measurable set in \mathbf{R}^{2} with measure 0 .

4 The Boss

$f \geq 0$ measurable. $F_{k}=\left\{x: 2^{k}<f(x) \leq 2^{k+1}\right\}, E_{k}=\left\{x: f(x)>2^{k}\right\}$. Then f is integrable iff. $\sum_{k \in \mathbf{Z}} 2^{k} \mu\left(F_{k}\right)<\infty$ iff. $\sum_{k \in \mathbf{Z}} 2^{k} \mu\left(E_{k}\right)<\infty$.

[^0]: *Department of Mathematics, the UST, HK.

