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Recollections.

Last week you learned

• Structure theorem of open sets in R. Think about the generalization
in Rn.

• The “volume” of open sets in R. The volume of compact sets and
closed sets in R.

• Definition of outer & inner measures. The first definition for measur-
ability: E ⊆ R is measurable iff. µ∗(E) = µ∗(E).

• Properties about outer measure, in particular, the countably sub-
additivity.

• The Cantor set, which will be summarized below.

• The Caratheodory condition, the second definition of measurability. It
seems strange and less intuitive, but it is described in terms of outer
measures only, and is not essentially related to the topology of R, so
it can be generalized to an abstract framework, as was already shown
in the lecture on this Wednesday.

Reminder. In the logical order of learning, one has to learn some basic
set theory and topology before learning measure theory, even the Lebesgue
measure on R. But the course is designed to avoid set-theoretic issues and
directly learn measure theory. This might result in difficulty in understand-
ing constructions that are in set-theoretic nature. If you want to get a
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complete understanding to this subject, I recommend you to learn some set
theory as well as topology by yourself.

1 Warm-up.

E ⊆ R, µ∗(E) > 0. For any m ∈ [0, µ∗(E)], show that there exists F ⊆ E
s.t. µ∗(F ) = m.

2 Review of the Cantor Set

Let C0 = [0, 1], C1 = [0, 13 ]⊔ [23 , 1], · · · be the sequence defined recursively
by removing the middle 1

3 of each piece of closed intervals of the last set.
Let C = ∩∞

i=0Ci be the Cantor set. Show that:

(i) C is non-empty.

(ii) C is compact.

(iii) C is measurable with measure zero. That is to say, C is “small” from
the measure-theoretic point of view.

(iv) C is totally disconnected i.e. ∀c1, c2 ∈ C, ∃c /∈ C s.t. c1 < c < c2. This
implies that C is nowhere dense i.e. C does not contain any non-
empty open sets. That is to say, C is “small” from the Baire category
theoretic point of view.

(v) C has no isolated points. That is to say, for any c ∈ C and open
neighborhood U of c, U ∩ C is not the single point set {c}.

(vi) C is not countable. Actually there exists a surjection φ : C → [0, 1].
That is to say, C is “big” from the set-theoretic point of view.

3 The Illusion of Measures

The early dream of “volume”. At the beginning, mathematicians wanted
to generalize the notion of “area” or “volume” in geometry. Concretely in
the 3-dimensional case, they wanted to create a function

v : subsets of R3 → [0,+∞]

called the volume function, such that v is countably additive, invariant under
rigid motions, and takes value 1 for the unit cube. This is an ideal definition
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for a volume function that is used to do geometry. But their dream turns
out to be impossible, even in the 1-dimensional case:

A strange set. Define the following equivalence relation on (0, 1): x ∼ y
iff. x − y ∈ Q. Let S be a set of representatives of the equivalence classes.
Let W = (−1, 1)∩Q, for any r ∈ W , let Sr = r+S = {r+ s : s ∈ S}. Show
that:

(i) For any real number x ∈ R, there exists a unique s ∈ S s.t. x− s ∈ Q.

(ii) For any r ∈ W , Sr ⊆ (−1, 2).

(iii) For r1 ∕= r2 ∈ W , Sr1 ∩ Sr2 = φ.

(iv) We have

(0, 1) ⊆


r∈W
Sr ⊆ (−1, 2)

Now suppose we have a volume function v satisfying the above properties.
Consider v(S). Because of translation invariance (translation is a rigid mo-
tion), v(S) = v(Sr) for any r ∈ W . Since W is countable, by countable
additivity we have

1 ≤


w∈W
v(S) ≤ 3

which is a contradiction. (If v(S) > 0,


w∈W v(S) = +∞; if v(S) = 0,
w∈W v(S) = 0. Neither is possible because of the inequality above. )

Measurable sets. The above example shows that the desired volume
function does not exist. So mathematicians just “give up” some awful sets
like the S above, and developed Lebesgue measure theory for Lebesgue mea-
surable sets.

Remark 3.0.1. • In the construction of the set S above, we have to
choose a representative in each equivalence class, where we have to
invoke the axiom of choice.

• If one wants a function that is only finitely additive rather than
countably additive, unfortunately the answer is still negative. An in-
teresting aspect is the following theorem, which is counter-intuitive:

(Banach-Tarski) For arbitraty bounded open sets U, V ⊆ Rn(n ≥ 3)
there exists k ∈ N and disjoint partitions U = ⊔k

i=1Ui, V = ⊔k
i=1Vi such

that for each i, Ui can be transformed into Vi via rigid motions.
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